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Abstract: We develop a group-theoretic method of generalizing the Laplace-Beltrami opera-
tors on the classical domains. In [18], we defined the generalized Poisson-Cauchy transforms on the
classical domains. We show that the generalized Poisson-Cauchy transforms give us eigenfunctions
of the generalized Laplacians defined in this paper.
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Introduction. In [11], Hua gave the explicit
formulas of the Poisson kernel functions and the
Cauchy kernel functions on classical domains. In
the editor’s foreword of the book [11], Graev says :
“In carrying out his investigations by direct compu-
tation the author unfortunately does not make use
of the possibilities of the group-theoretic aspect of
the problems. Yet this group-theoretic aspect would
have made possible a clearer understanding of many
of the results, and would sometimes have simplified
their proofs. Let R be one of the domains considered
in the book, and C its characteristic manifold. Let z
be a point in R and Cz the group of those analytic
automorphisms of R which leave z invariant. It can
be shown that the group Cz is transitive on C, i.e.,
transforms any point of C into any other point. The
measure on C which is invariant under the transfor-
mations in Cz is then simply equal to the Poisson
kernel”.

About ten years ago this statement by Graev
came to our notice. Then we started again the in-
vestigation of our “Poisson transforms” defined in
[17] (see Section 2). In our previous paper [18],
considering only classical domains and line bundles,
we succeeded in computing explicitly the “Poisson
transforms” and obtained the explicit formulas of
the kernel functions which include, as special cases,
not only Poisson kernel functions but also Cauchy
kernel functions. In [18], we named these ker-
nel functions the generalized Poisson-Cauchy kernel
functions and “Poisson transforms” the generalized
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Poisson-Cauchy transforms.
In [11], Hua gave also the explicit formula of the

Laplace-Beltrami operator for the Type I classical
domain.

In this paper, we develop a group-theoretic
method of obtaining a notion of “generalized Lapla-
cians” which include, as a special case, the Laplace-
Beltrami operator. And we show that the general-
ized Poisson-Cauchy transforms (defined in [18]) give
us eigenfunctions of the generalized Laplacian.

In this paper, we follow the notation in [3, 6, 9,
16, 18, 23].

1. Harish-Chandra’s realization of her-
mitian symmetric spaces as bounded domains.
Let G/K be a hermitian symmetric space, where G
is a non-compact semi-simple Lie group admitting
a finite dimensional faithful representation and K a
maximal compact subgroup of G. We denote by g

and k the Lie algebra of G and K, respectively. Then
we have the Cartan decomposition

g = k + p, k ∩ p = {0}, [p, p] ⊂ k, [k, p] ⊂ p.

Let gc be the complexification of g. For any subset
m of gc we denote by mc the complex subspace of gc

spanned by m. Since G/K is hermitian symmetric,
there exist abelian subalgebras p+ and p− of gc such
that

pc = p+ + p−, p+ ∩ p− = {0}, p+ = p−,

[kc, p+] ⊂ p+, [kc, p−] ⊂ p−.

Let Gc be the complexification of G with the Lie al-
gebra gc. We denote by Kc, P+ and P− the complex
analytic subgroup of Gc corresponding to kc, p+ and
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p−, respectively. Then P+KcP− is an open subset of
Gc and any point w ∈ P+KcP− is uniquely expressed
as w = p+kcp− (p+ ∈ P+, kc ∈ Kc, p− ∈ P−). This
is called the Harish-Chandra decomposition. Put
U = KcP−. Then U is a complex analytic subgroup
of Gc and P− a normal subgroup of U . Consider the
complex homogeneous space Gc/U . Then G/K can
be canonically identified with the open submanifold
GU/U of Gc/U which is the G-orbit of the point U
in Gc/U . Let B denote the Killing form of the Lie
algebra g. Then B is positive definite on p. We intro-
duce an inner product on the complex vector space
p+ by

(z1, z2) = B(z1,−θ(z2)) (z1, z2 ∈ p+),

where θ denotes the Cartan involution. One can
show that GU ⊂ P+U and that there exists the
unique bounded domain D in p+ such that GU =
(exp D)U . For any w in GU , we denote by z(w) and
u(w) the unique element of p+ and U , respectively
such that w = (exp z(w))u(w). For any g ∈ G and
z ∈ D, we denote by g[z] the unique element of D

such that g(exp z)U = (exp g[z])U .
2. Homogeneous vector bundles and

Poisson transforms. In this section, we would
like to explain how we reached our concept of “Pois-
son transforms”.

Let τ be a finite dimensional representation of
K on a vector space V . Then τ is uniquely extended
to a holomorphic representation of U which is trivial
on P−. We regard the complex Lie group Gc as the
principal fiber bundle over the complex homogeneous
space Gc/U with the structure group U . We denote
by Ẽτ the holomorphic vector bundle over Gc/U as-
sociated to τ . We denote by Eτ the restriction of Ẽτ

to the open submanifold GU/U (∼= G/K) of Gc/U .
Let C0,q(Eτ ) be the space of C∞-differential forms
of type (0, q) with coefficients in Eτ . Then we have
the ∂-complex

· · · → C0,q(Eτ ) ∂→ C0,q+1(Eτ ) → · · · .

Let H0,q(Eτ ) denote the space of harmonic forms in
C0,q(Eτ ).

In [16], we obtained an anologue of the Borel-
Weil-Bott theorem. In course of investigation, we
found the following interesting facts. In a certain sit-
uation it happens that the Harish-Chandra’s “Eisen-
stein integral” transforms K-finite sections of vec-
tor bundles on the “boundary” into harmonic forms

on the bounded domain realized by Harish-Chandra.
Here, the “boundary” means simply a homogeneous
space G/P , where P is a parabolic subgroup of G.
At this point, our purpose of the investigation was
to find out a method of obtaining harmonic forms,
namely eigenforms with zero-eigenvalue of the Lapla-
cian �̃q for the ∂-cohomology.

The problem was how to relate two spaces of
C∞-sections of different vector bundles.

Inspired by the Helgason’s paper [7], we ob-
tained an answer to this problem which is explained
as follows (see [17]). Put Vq = V ⊗ ∧qp−. Then we
have the representaion τq of K by putting τq(k) =
τ(k) ⊗ ∧qAd(k)|p− (k ∈ K). Let ξ be a represen-
tation of P on Vq such that ξ(m) = τq(m) for all
m ∈ K ∩ P . Let C∞(G, Vq) denote the set of all
Vq-valued C∞-functions on G. We denote by Lξ

the vector bundle over G/P associated to ξ. Let
C∞(G, Vq)ξ be the set of all φ ∈ C∞(G, Vq) such
that

φ(gp) = ξ(p)−1φ(g) (g ∈ G, p ∈ P ).

Then the space of all C∞-sections of Lξ is canon-
ically identified with C∞(G, Vq)ξ. Let C∞(G, Vq)τ

be the set of all f ∈ C∞(G, Vq) such that

f(gk) = τq(k)−1f(g) (g ∈ G, k ∈ K).

Then the space of all C∞-sections of C0,q(Eτ ) is
canonically identified with C∞(G, Vq)τ .

Thus we realized two spaces of C∞-sections of
different vector bundles Lξ and Eτ ⊗ ∧qT ∗(D) as
subspaces of the same vector space C∞(G, Vq).

Remark that G acts on both spaces C∞(G, Vq)ξ

and C∞(G, Vq)τ by the induced action of the left
translation of g−1 (g ∈ G). Thus we obtain
two representations of G on spaces C∞(G, Vq)ξ and
C∞(G, Vq)τ .

Now the easiest way to get an intertwining op-
erator is given by considering an integral operator

P τq,ξ : C∞(G, Vq)ξ � φ 	−→ f ∈ C∞(G, Vq)τ

defined by

f(g) =
∫

K

τq(k)φ(gk)dk (g ∈ G).

In [17], we called this the “Poisson transform”. Com-
puting explicitly P τq,ξ, we found many examples
where P τq,ξ gives us not only harmonic forms but
also eigenforms (with non-zero eigenvalues in gen-
eral) of the Laplacian �̃q. Since then we have oc-
casionally tried to find out suitable conditions that
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P τq,ξ produces eigenforms of �̃q (cf. examples in
[5, 17]), but could not get any satisfactory result.

Here we like to remark that the “Poisson trans-
form” can be defined in the most general way as fol-
lows. Starting with an arbitrary symmetric space
G/K and a parabolic subgroup P of G, we can de-
fine the “Poisson transform” by the above integral
operator, replacing τq with an arbitrary finite dimen-
sional representation of K. We remind the reader
that the Euclidean space is one of the simplest sym-
metric spaces. We dealt with the case of the Eu-
clidean space in [4, 15] and an affine symmetric space
in [10].

3. Realizations of a classical domain and
the Shilov boundary as various homogeneous
spaces. From now on, we focus our attention to the
case that the symmetric space is a classical domain
and that the representation of K is of one dimension.

There are four types of classical domains. Let D

be one of such domains. Then D is a homogeneous
space of a simple Lie group G which admits a finite
dimensional faithful representation. Let K be the
isotropy subgroup of G at the origin. Then K is a
maximal compact subgroup of G.

The key point of our group-theoretic method is
to redefine D by realizingG/K as a bounded domain
(which we denote by the same notation D) in p+

realized by Harich-Chandra which we described in
Section 1.

G acts on G/K ∼= GU/U ∼= D by the following
commutative diagram.

G/K ∼= GU/U ∼= D
∪ ∪ ∪
gK 	−→ gU 	−→ g[0] = z
↓ ↓ ↓

g1g/K 	−→ g1g/U 	−→ g1g[0] = g1[z]
∩ ∩ ∩

G/K ∼= GU/U ∼= D,

g1 being any element of G.
We fix a point µU ∈ Gc/U such that µU belongs

to the boundary ofGU/U and that the G-orbit of µU
is compact. Then the isotropy subgroup of G at the
point µU of Gc/U is a maximal parabolic subgroup
of G which we denote by P . Put u0 = z(µ) and µ0 =
expu0. Then clearly we get µU = µ0U = (expu0)U
which implies that G ∩ µUµ−1 = G ∩ µ0Uµ

−1
0 = P .

Put

Š = {u ∈ p+ ; (expu)U ∈ Gµ0U/U} .
Then Š is the Shilov boundary of D. For any g ∈ G

and u ∈ Š, we denote by g[u] the unique element
of Š such that g(expu)U = (exp g[u])U . G acts on
G/P ∼= Gµ0U/U ∼= Š by the following commutative
diagram.

G/P ∼= Gµ0U/U ∼= Š
∪ ∪ ∪
g/P 	−→ gµ0/U 	−→ g[u0] = u
↓ ↓ ↓

g1g/P 	−→ g1gµ0/U 	−→ g1g[u0] = g1[u]
∩ ∩ ∩

G/P ∼= Gµ0U/U ∼= Š,

g1 being any element of G.
4. Homogeneous line bundles and onto-

isomorphisms between spaces of C∞-sections.
Let τ be a character of K. We define Ẽτ and Eτ in
the same way as in Section 2. Let C∞(Ẽτ ) be the
set of all h ∈ C∞(Gc) such that

h(wu) = τ(u)−1h(w) (w ∈ Gc, u ∈ U).

Then the space of all C∞-sections of Ẽτ is identified
with C∞(Ẽτ ). Let C∞(Eτ ) be the set of all h ∈
C∞(GU) such that

h(wu) = τ(u)−1h(w) (w ∈ GU, u ∈ U).

Then the space of all C∞-sections of Eτ is identified
with C∞(Eτ ). Let η be a C∞-character of U such
that the restriction of η to K coincides with τ . We
denote by L̃η the C∞-line bundle on Gc/U associ-
ated to η. Let C∞(L̃η) be the set of all ψ ∈ C∞(Gc)
such that

ψ(wu) = η(u)−1ψ(w) (w ∈ Gc, u ∈ U).

Then the space of all C∞-sections of L̃η is identified
with C∞(L̃η). We denote by Lη the restriction of
L̃η to the compact submanifold Gµ0U/U of Gc/U .
Let C∞(Lη) be the set of all ψ ∈ C∞(Gµ0U) such
that

ψ(wu) = η(u)−1ψ(w) (w ∈ Gµ0U, u ∈ U).

Then the space of all C∞-sections of Lη is identified
with C∞(Lη). We define a C∞-character ξ of P by

ξ(p) = η(µ−1
0 pµ0) (p ∈ P ).

Let C∞(G)τ and C∞(G)ξ be the set of all f ∈
C∞(G) and φ ∈ C∞(G) such that

f(gk) = τ(k)−1f(g) (g ∈ G, k ∈ K)

and
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φ(gp) = ξ(p)−1φ(g) (g ∈ G, p ∈ P ),

respectively. Then we obtain the following four onto-
isomorphisms.

C∞(Eτ ) � h 	−→ f ∈ C∞(G)τ , f(g) = h(g),

C∞(Eτ ) � h 	−→ F ∈ C∞(D), F (z) = h(exp z),

C∞(Lη) � ψ 	−→ φ ∈ C∞(G)ξ, φ(g) = ψ(gµ0),

C∞(Lη) � ψ 	−→ Φ ∈ C∞(Š), Φ(u) = ψ(expu),

where g ∈ G, z ∈ D and u ∈ Š.
5. Generalized Poisson-Cauchy trans-

forms and generalized Laplacians. In [18], we
defined the generalized Poisson-Cauchy transform :

P τ,ξ : C∞(G)ξ � φ 	−→ f ∈ C∞(G)τ

by

f(g) =
∫

K

τ(k)φ(gk)dk (g ∈ G),

where dk is the normalized Haar measure of K.
We define P τ,η in such a way that the following

diagram is commutative.

C∞(Lη) ∼= C∞(G)ξ

P τ,η ↓ ↓ P τ,ξ

C∞(Eτ ) ∼= C∞(G)τ .

We call P τ,η the generalized Poisson-Cauchy trans-
form (with respect to the pair (Lη, Eτ )). For any
g ∈ G, we define

πτ (g) : C∞(Eτ ) � h 	−→ πτ (g)h ∈ C∞(Eτ )

by
(πτ (g)h)(w) = h(g−1w) (w ∈ GU).

For any g ∈ G, we define

πη(g) : C∞(Lη) � ψ 	−→ πη(g)ψ ∈ C∞(Lη)

by

(πη(g)ψ)(w) = ψ(g−1w) (w ∈ Gµ0U).

Then πτ and πη are representations of G on C∞(Eτ )
and C∞(Lη), respectively. Let dπτ and dπη be the
differential of πτ and πη, respectively. Then dπτ and
dπη are representations of g which are canonically
extended to the representations of the universal en-
veloping algebra of gc.

We denote by Ω the Casimir operator (see
[9, 23]). Then dπτ (Ω) is an invariant differential op-
erator on C∞(Eτ ) which we denote by ∆Eτ

. We
call ∆Eτ

the generalized Laplacian (on Eτ ).
We can prove that P τ,η is an intertwining oper-

ator between the representations πτ and πη.

Proposition 1. For any g ∈ G, the following
diagram is commutative.

C∞(Lη)
P τ,η−→ C∞(Eτ )

πη(g) ↓ ↓ πτ (g)

C∞(Lη)
P τ,η−→ C∞(Eτ ).

From this commutative diagram we obtain the
following corollary.

Corollary 1.

P τ,η ◦ dπη(Ω) = dπτ (Ω) ◦ P τ,η.

The crucial point of our method is due to the
fact that dπη(Ω) turns out to be a scalar operator.

Proposition 2. Let IC∞(Lη) be the identity
operator on C∞(Lη). Then there exists the unique
complex number cη such that

dπη(Ω) = cηIC∞(Lη).

We put

C∞(Eτ )cη
= {h ∈ C∞(Eτ ) ; ∆Eτ

h = cηh} .
The next corollary follows immediately from Corol-
lary 1 and Proposition 2 and means that P τ,η gives
us eigenfunctions (eigensections more precisely) of
∆Eτ

.
Corollary 2.

P τ,η(C∞(Lη)) ⊂ C∞(Eτ )cη
.

6. Deduction of Theorem. We normalize
the K-invariant measure on Š such that for any C∞-
function Φ on Š we have∫

K

Φ(k[u0])dk =
∫

Š

Φ(u)du,

where dk is the normalized Haar measure of K.
We define Pτ,η in such a way that the following

diagram is commutative.

C∞(Lη) ∼= C∞(Š)
P τ,η ↓ ↓ Pτ,η

C∞(Eτ ) ∼= C∞(D).

We call Pτ,η the generalized Poisson-Cauchy trans-
form (with respect to the pair (Š, D)).

In [18], we proved the following lemma.
Lemma 1. For any Φ ∈ C∞(Š), we have

(Pτ,η(Φ))(z) =
∫

Š

Kτ,η(z, u)Φ(u)du (z ∈ D),

where Kτ,η(z, u) is the generalized Poisson-Cauchy
kernel function defined in [18].
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(In our proof of this lemma we use our assump-
tion that both τ and η are characters so that for any
u1, u2 ∈ U τ(u1) and η(u2) are commutative.)

We define ∆τ in such a way that the following
diagram is commutative.

C∞(Eτ ) ∼= C∞(D)
∆Eτ

↓ ↓ ∆τ

C∞(Eτ ) ∼= C∞(D).

We call ∆τ the generalized Laplacian (on D).
Since D ∼= G/K, the tangent space of D at the

origin is canonically identified with g/k ∼= p. Notice
that the Killing form B is positive definite on p and
that B is invariant by the adjoint action of G. Then
it is easy to see that B defines a G-invariant rieman-
nian metric on D. We denote by ∆ the Laplace-
Beltrami operator defined by this riemannian metric.
Then we can prove the following proposition.

Proposition 3. In case the line bundle Eτ is
trivial, ∆τ coincides with the Laplace-Beltrami oper-
ator ∆.

Using the propositions and the corollaries in the
previous section, from Lemma 1 we can now deduce
the following theorem.

Theorem. For any Φ ∈ C∞(Š), define

F (z) =
∫

Š

Kτ,η(z, u)Φ(u)du (z ∈ D).

Then we have

∆τF (z) = cηF (z) (z ∈ D),

where cη is the complex number given in Proposition
2.

This theorem asserts that for any fixed u ∈
Š the generalized Poisson-Cauchy kernel function
Kτ,η(z, u) is an eigenfunction of the generalized
Laplacian ∆τ .

7. Explicit formulas of generalized
Laplacians and eigenvalues. In [18], we com-
puted the explicit formulas of the generalized
Poisson-Cauchy kernel functions for each type of
classical domains. For example, the generalized
Poisson-Cauchy kernel function (associated with the
characters τ� and η�,s) for Type I is given explicitly
by

Kτ�,η�,s
(z, u)

=
1

det(Im − u∗z)�

(
det(Im − z∗z)

|det(Im − u∗z)|2
)n−(�+s)/2

.

We can compute the generalized Laplacian explicitly

(up to a constant factor and scalar operators)

∆τ�
= Tr(det(Im − z∗z)−�(Im − z∗z)∂z

det(Im − z∗z)� · (In − zz∗) · (∂z)∗),

where the function between two dots “·” should not
be differentiated. We can compute explicitly the
eigenvalue cη�,s

.

∆τ�
Kτ�,η�,s

(z, u)

=
m(s+ 	− 2n)(s− 	)

4
Kτ�,η�,s

(z, u) (u ∈ Š).

We will compute explicitly the eigenvalues cη for each
type of the classical domains in the forthcoming pa-
per [13].

8. Remarks on further development of
the results. We like to mention the possibility of
the further development of our results.

In [2], Graev gave very interesting results where
he computed explicitly the Laplace-Beltrami opera-
tor on the outside of the Type I bounded domain of
complex dimension 2 (which is an affine symmetric
space). One can construct the explicit form of the
analogue of the Poisson-Cauchy kernel function.

In [14], we considered the Martin boundary
(where the isotropy subgroup is minimal parabolic)
and all invariant differential operators on the sym-
metric space. There are still a great deal of works
to be done in the more general cases of boundaries,
symmetric spaces and invariant differential operators
(cf. [1, 8, 10, 12, 20–22]).

In [19], we considered vector bundles instead of
line bundles. For a special choice of a vector bundle
on the classical domain of Type I (m = n = 2),
we computed explicitly a matrix valued “Poisson-
Cauchy kernel function” Kτσ,ηs(z, u) and a matrix
valued invariant differential operator ∆̂z .

Kτσ,ηs(z, u)

=

(
det(I2 − z∗z)

|det(I2 − u∗z)|2
)2−s/2 (

det(I2 − z∗z)
det(I2 − u∗z)

)−2

× (I2 − z∗z)(I2 − u∗z)−1,

∆̂z = (I2 − z∗z)∂z · (I2 − zz∗) · (∂z)∗.

Moreover we showed that

∆̂zKτσ,ηs(z, u) =
s(s− 4)

4
Kτσ,ηs(z, u) (u ∈ Š).

We will discuss the general case of this example else-
where.
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