
No. 8] Proc. Japan Acad., 82, Ser. A (2006) 141

Remarks on zeta functions and K-theory over F1
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Abstract: We show that the notion of zeta functions over the field of one element F1, as
given in special cases by Soulé, extends naturally to all F1-schemes as defined by the author in
an earlier paper. We further give two constructions of K-theory for affine schemes or F1-rings, we
show that these coincide in the group case, but not in general.
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Introduction. Soulé [10], inspired by
Manin [7], gave a definition of zeta functions over
the field of one element F1. We describe this
definition as follows. Let X be a scheme of finite
type over Z. For a prime number p one sets after
Weil,

ZX(p, T ) def= exp

( ∞∑
n=1

T n

n
#X(Fpn)

)
,

where Fpn denotes the field of pn elements. This is
the local zeta function over p, and the global zeta
function of X is given as

ζX|Z(s) def=
∏
p

ZX(p, p−s)−1.

Soulé considered in [10] the following condition:
Suppose there exists a polynomial N(x) with integer
coefficients such that #X(Fpn) = N(pn) for every
prime p and every n ∈ N. Then ZX(p, p−s)−1 is a
rational function in p and p−s. The vanishing order
at p = 1 is N(1). One may thus define

ζX|F1(s) = lim
p→1

ZX(p, p−s)−1

(p − 1)N(1)
.

One computes that if N(x) = a0 + a1x + · · ·+ anxn,
then

ζX|F1(s) = sa0(s − 1)a1 · · · (s − n)an .

In the paper [1] there is given a definition of
a scheme over F1 as well as an ascent functor · ⊗ Z
from F1-schemes to Z-schemes. An affine F1-scheme
is given by a commutative monoid and its lift to Z
is given by the corresponding monoidal ring. This
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procedure extends to general schemes as it respects
gluing. We say that a Z-scheme is defined over F1,
if it comes by ascent from a scheme over F1. The
natural question arising is whether schemes defined
over F1 satisfy Soulé’s condition.

Simple examples show that this is not the case.
However, schemes defined over F1 satisfy a slightly
weaker condition which serves the purpose of defin-
ing F1-zeta functions as well, and which we give in
the following theorem.

Theorem 1. Let X be a Z-scheme of finite type
defined over F1. Then there exists a natural num-
ber e and a polynomial N(x) with integer coefficients
such that for every prime power q one has

(q − 1, e) = 1 ⇒ #X(Fq) = N(q).

This condition determines the polynomial N uniquely
(independent of the choice of e). We call it the zeta-
polynomial of X.

With this theorem, we can define the zeta func-
tion of an arbitrary F1-scheme X as

ζX|F1(s) = sa0(s − 1)a1 · · · (s − n)an ,

if NX(x) = a0+a1x+· · · anxn is its zeta-polynomial.
We also define its Euler characteristic as

χ(X) = NX(1) = a1 + · · · + an.

This definition is due to Soulé [10]. We repeat the
justification given in [6], which is based on the Weil
conjectures.

Suppose that X/Fp = XZ ×Z Fp is a smooth
projective variety over the finite field Fp. Then the
Weil conjectures, as proven by Deligne, say that

ZXZ(p, T ) =
m∏

l=0

Pl(T )(−1)l+1
,
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with

Pl(T ) =
bl∏

j=1

(1 − αl,jT ),

satisfying |αl,j | = pl/2, where bl is the l-th Betti-
number.

On the other hand, suppose that #X(Fpn) =
N(pn) holds for every n ∈ N, where N(x) = a0 +
a1x+· · ·+anxn is the zeta-polynomial, then one gets

ZXZ(p, T ) =
n∏

k=0

(1 − pkT )−ak .

Comparing these two expressions, one gets

bl =

{
al/2 l even,

0 l odd.

So
∑n

k=0 ak =
∑m

l=0(−1)lbl is the Euler characteris-
tic.

For explicit computations of zeta functions and
Euler numbers over F1 as defined above, see [6],
where there are given examples of varieties satisfy-
ing Soulé’s condition. Not all of them, though, come
from F1.

Next for K-theory. Based on the idea of Tits,
that GLn(F1) should be the permutation group
Per(n), Soulé also suggested that

Ki(F1) = πi(B(Per(∞))+),

which is known to coincide with the stable homotopy
group of the spheres, πs

i = limk→∞ πi+k(Sk). (The
+ refers to Quillen’s + construction.) More gener-
ally, for a monoid A, or an F1-ring FA, one has

GLn(A) = GLn(FA) = (A×)n
� Per(n),

where A× is the group of units in A. Setting
GL(A) = limn→∞ GLn(A), one lets

K+
i (A) = πi(BGL(A)+).

On the other hand, one considers the category P of
all finitely generated projective modules over A and
defines

KQ
i (A) = πi+1(BQP),

where Q means Quillen’s Q-construction. It turns
out that π1(BQP) coincides with the Grothendieck
group K0(P) of P . If A is a group, these two defini-
tions of K-theory agree, but not in general.

A calculation shows, that if A is an abelian
group, then

Ki(A) =

{
Z × A i = 0,

πs
i i > 0.

So, for general A, since one has K+(A) = K+(A×),
this identity completely computes K+. Further-
more, for every A one has a canonical homomor-
phism K+

i (A) → KQ
i (A).

I thank Jeff Lagarias for his remarks on an ear-
lier version of this paper.

1. F1-schemes. For basics on F1-schemes
we refer to [1].

In this paper, a ring will always be commutative
with unit and a monoid will always be commutative.
An ideal a of a monoid A is a subset with Aa ⊂ a. A
prime ideal is an ideal p such that Sp = A � p is a
submonoid of A. For a prime ideal p let Ap = S−1

p A

be the localisation at p. The spectrum of a monoid A

is the set of all prime ideals with the obvious Zariski-
topology (see [1]). Similar to the theory of rings,
one defines a structure sheaf OX on X = spec(A),
and one defines a scheme over F1 to be a topolog-
ical space together with a sheaf of monoids, locally
isomorphic to spectra of monoids.

A F1-scheme X is of finite type, if it has a finite
covering by affine schemes Ui = spec(Ai) such that
each Ai is finitely generated.

For a monoid A we let A ⊗ Z be the monoidal
ring Z[A]. This defines a functor from monoids to
rings which is left adjoint to the forgetful functor
that sends a ring R to the multiplicative monoid
(R,×). This construction is compatible with glu-
ing, so one gets a functor X �→ XZ from F1-schemes
to Z-schemes.

Lemma 2. X is of finite type if and only if XZ

is a Z-scheme of finite type.
Proof. If X is of finite type, it is covered by

finitely many affines spec(Ai), where Ai is finitely
generated, hence Z[Ai] is finitely generated as a Z-
algebra and so it follows that XZ is of finite type.

Now suppose that XZ is of finite type. Con-
sider a covering of X by open sets of the form
Ui = spec(Ai). then one gets an open covering of
XZ by sets of the form spec(Z[Ai]), with the spec-
trum in the ring-sense. Since XZ is compact, we may
assume this covering finite. As XZ is of finite type,
each Z[Ai] is a finitely generated Z-algebra. Let S

be a generating set of Ai. Then it generates Z[Ai],
and hence it contains a finite generating set T of
Z[Ai]. Then T also generates Ai as a monoid, so Ai

is finitely generated. �
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2. Proof of Theorem 1. We will show un-
iqueness first.

Lemma 3. For every natural number e there
are infinitely many prime powers q with (q−1, e) = 1.

Proof. Write e = 2km where m is odd. Let
n ∈ N. The number 2n is a unit modulo m and
hence there are infinitely many n such that 2n ≡ 1
modulo m. Replacing n by n + 1 we see that there
are infinitely many n such that 2n ≡ 2 modulo m

and hence 2n − 1 ≡ 1 modulo m. As 2n − 1 is odd,
it follows (2n − 1, e) = 1 for every such n. �

Now for the uniqueness of N . Suppose that the
pairs (e, N) and (e′, N ′) both satisfy the theorem.
Then for every prime power q one has

(q − 1, ee′) = 1 ⇒ N(q) = #X(Fq) = N ′(q).

As there are infinitely many such prime powers q, it
follows that N(x) = N ′(x), as claimed.

We start on the existence of N . For a finite
abelian group E define its exponent m = exp(E) to
be the smallest number m such that xm = 1 for every
x ∈ G. The exponent is the least common multiple
of the orders of elements of G. A finitely generated
abelian group G is of the form Zr × E for a finite
group E. Then r is called the rank of G and the
exponent of E is called the exponent of G.

For a finitely generated monoid A we denote by
Quot(A) its quotient group. This group comes about
by inverting every element in A. It has a natural
morphism A → Quot(A) and the universal property
that every morphism from A to a group factorizes
uniquely over A → Quot(A). In the language of [1],
Quot(A) coincides with the stalk Oη = Aη at the
generic point η of spec(A).

We define the rank and exponent to be the rank
and exponent of Quot(A). Note that for a finitely
generated monoid A the spectrum spec(A) is a finite
set. Hence the underlying space of a scheme X over
F1 of finite type is a finite set. We then define the
exponent of X to be the least common multiple of the
numbers exp(Op), where p runs through the finite set
X .

Let X be a scheme over F1 of finite type. We
may assume that X is connected. Let e be its ex-
ponent. Let q be a prime power and let Dq be the
monoid (Fq,×). Then #XZ(Fq) = #X(Dq), where
X(D) = Hom(D, X) as usual. For an integer k ≥ 2
let Ck−1 denote the cyclic group of k − 1 elements
and let Dk be the monoid Ck−1∪{0}, where x·0 = 0.

Note that if q is a prime power, then Dq
∼= (Fq,×),

where Fq is the field of q elements.
Fix a covering of X by affines Ui = specAi.

Since spec(Dk) consists of two points, the generic,
which always maps to the generic point and the
closed point, it follows that

X(spec(Dk)) =
⋃
i

Ui(spec(Dk)),

and thus the cardinality of the right hand side may
be written as an alternating sum of terms of the form

#Ui1 ∩ · · · ∩ Uis(spec(Dk)).

Now Ui1 ∩ · · · ∩ Uis is itself a union of affines and
so this term again becomes an alternating sum of
similar terms. This process stops as X is a finite set.
Therefore, to prove the theorem, it suffices to assume
that X is affine.

So we assume that X = spec(A) for a finitely
generated monoid A. In this case X(spec(Dk)) =
Hom(A, Dk). For a given monoid morphism ϕ : A →
Dk we have that ϕ−1({0}) is a prime ideal in A,
call it p. Then ϕ maps Sp = A � p to the group
Ck−1. So Hom(A, Dk) may be identified with the dis-
joint union of the sets Hom(Sp, Ck−1) where p ranges
over spec(A). Now Ck−1 is a group, so every homo-
morphism from Sp to Ck−1 factorises over the quo-
tient group Quot(Sp) and one gets Hom(Sp, Ck−1) =
Hom(Quot(Sp), Ck−1). Note that Quot(Sp) is the
group of units in the stalk OX,p of the structure
sheaf, therefore does not depend on the choice of
the affine neighbourhood. The group Quot(Sp) is a
finitely generated abelian group. Let r be its rank
and e its exponent. If e is coprime to k − 1, then
there is no non-trivial homomorphism from the tor-
sion part of Quot(Sp) to Ck−1 and so in that case
#Hom(Sp, Ck−1) = (k − 1)r. This proves the exis-
tence of e and N and finishes the proof of Theorem
1. �

Remark 1. We have indeed proved more than
Theorem 1. For an F1-scheme X of finite type we
define X(Fq) = Hom(spec(Fq), X), where the Hom
takes place in the category of F1-schemes, and Fq

stands for the multiplicative monoid of the finite
field. It follows that

X(Fq) ∼= XZ(Fq).

Further, for k ∈ N one sets Fk = Dk then this nota-
tion is consistent and we have proved above,

(k − 1, e) = 1 ⇒ #X(Fk) = N(k),
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where e now is a well defined number, the exponent
of X . Further it follows from the proof, that the
degree of N is at most equal to the rank of X , which
is defined as the maximum of the ranks of the local
monoids Op, for p ∈ X .

Remark 2. As the proof of Theorem 1 shows,
the zeta-polynomial NX of X , does actually not de-
pend on the structure sheaf OX , but on the subsheaf
of units O×

X , where for every open set U in X the set
O×

X(U) is defined to be the set of sections s ∈ OX(U)
such that s(p) lies in O×

X,p for every p ∈ U . We there-
fore call O×

X the zeta sheaf of X .
3. K-theory. In this section we give two

definitions of K-theory over F1 and we show that
they do coincide for groups, but not in general. This
approach follows Quillen [9].

3.1. The +-construction. Let A be a
monoid. Recall from [1] that GLn(A) is the group of
all n × n matrices with exactly one non-zero entry
in each row and each column, and this entry being
an element of the unit group A×. We also write A×

as the stalk Ac at the closed point c of spec(A). In
other words, we have

GLn(A) ∼= An
c � Per(n),

where Per(n) is the permutation group in n letters,
acting on An

c by permuting the co-ordinates.
There is a natural embedding GLn(A) ↪→

GLn+1(A) by setting the last co-ordinate equal to
1. We define the group

GL(A) def= lim
−→
n

GLn(A).

Similar to the K-theory of rings [9] for j ≥ 0 we
define

K+
j (A) def= πj(BGL(A)+),

where BGL(A) is the classifying space of GL(A), the
+ means the +-construction, and πj is the j-th ho-
motopy group. For instance, K+

j (F1) is the j-th sta-
ble homotopy group of the spheres [8].

3.2. The Q-construction. A category is
called balanced, if every morphism which is epi and
mono, already has an inverse, i.e., is an isomorphism.

Let C be a category. An object I ∈ C is called
injective if for every monomorphism M ↪→ N the
induced map Mor(N, I) → Mor(M, I) is surjective.
Conversely, an object P ∈ C is called projective if
for every epimorphism M →→ N the induced map
Mor(P, M) → Mor(P, N) is surjective. We say that

C has enough injectives if for every A ∈ C there exists
a monomorphism A ↪→ I, where I is an injective ob-
ject. Likewise, we say that C has enough projectives
if for every A ∈ C there is an epimorphism P →→ A

with P projective.
A category C is pointed if it has an object 0

such that for every object X the sets Mor(X, 0) and
Mor(0, X) have exactly one element each. The zero
object is uniquely determined up to unique isomor-
phy. In every set Mor(X, Y ) there exists a unique
morphism which factorises over the zero object, this
is called the zero morphism. In a pointed category it
makes sense to speak of kernels and cokernels. Ker-
nels are always mono and cokernels are always epi-
morphisms. A sequence

0 X Y Z 0�� ��i ��
j

��

is called strong exact, if i is the kernel of j and j is
the cokernel of i. We say that the sequence splits, if
it is isomorphic to the natural sequence

0 → X → X ⊕ Z → Z → 0.

Assume that kernels and cokernels always ex-
ist. Then every kernel is the kernel of its coker-
nel and every cokernel is the cokernel of its kernel.
For a morphism f let im(f) = ker(coker(f)) and
coim(f) = coker(ker(f)). If C has enough projec-
tives, then the canonical map im(f) → coim(f) has
zero kernel and if C has enough injectives, then this
map has zero cokernel.

Let C be a pointed category and E a class of
strong exact sequences. The class E is called closed
under isomorphism, or simply closed if every se-
quence isomorphic to one in E , lies in E . Every
morphism occurring in a sequence in E is called an
E-morphism.

A balanced pointed category C, together with a
closed class E of strong exact sequences is called a
quasi-exact category if
• for any two objects X, Y the natural sequence

0 → X → X ⊕ Y → Y → 0

belongs to E ,
• the class of E-kernels is closed under composi-

tion and base-change by E-cokernels, likewise,
the class of E-cokernels is closed under compo-
sition and base change by E-kernels.
Let (C, E) be a quasi-exact category. We define

the category QC to have the same objects as C, but
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a morphism from X to Y in QC is an isomorphism
class of diagrams of the form

S Y

X,

� � ��

����

where the horizontal map is a E-kernel in C and the
vertical map is a E-cokernel. The composition of two
Q-morphisms

S Y

X,

� � ��

����

T Z

Y,

� � ��

����

is given by the base change S ×Y T as follows:

S ×Y T T Z

S Y

X.

� � ��

����
��
��
��
��

� � ��

����
��
��
��
��

� � ��

����
��
��
��
��

Every E-kernel i : X Y
� � �� gives rise to

a morphism i! in QC, and every E-cokernel
p : Z X�� �� gives rise to a morphism p! : X → Z

in QC. By definition, every morphism in QC fac-
torises as i!p

! uniquely up to isomorphism.
Let (C, E) be a small quasi-exact category. Then

the classifying space BQC is defined. Note that for
every object X in QC there is a morphism from 0 to
X , so that BQC is path-connected. We consider the
fundamental group π1(BQC) as based at a zero 0 of
C.

Theorem 4. The fundamental group π1(BQC)
is canonically isomorphic to the Grothendieck group
K0(C) = K0(C, E).

Proof. This proof is taken from [9], where it
is done for exact categories, we repeat it for the
convenience of the reader. The Grothendieck group
K0(C, E) is the abelian group with one generator [X ]
for each object X of C and a relation [X ] = [Y ][Z]
for every strong exact sequence

0 Y X Z 0�� � � �� �� �� ��

in E . According to Proposition 1 of [9], it suf-
fices to show that for a morphism-inverting functor
F : QC → Sets the group K0(C) acts naturally on
F (0) and that the resulting functor from the cate-
gory F of all such F to K0(C)-sets is an equivalence
of categories.

For X ∈ C let iX denote the zero kernel 0 → X ,
and let jX be the zero cokernel X → 0. Let F ′ be
the full subcategory of F consisting of all F such that
F (X) = F (0) and F (iX!) = idF (0) for every X . Any
F ∈ F is isomorphic to an object of F ′, so it suffices
to show that F ′ is equivalent to K0(C)-sets. So let
F ∈ F ′, for a kernel i : X ↪→ Y we have iiX = iY , so
that F (i!) = idF (0). Given a strong exact sequence

0 X Y Z 0,�� � � ��i �� ��
j

��

we have j!iZ! = i!j
!
X , hence F (j!) = F (j!

X) ∈
Aut(F (0)). Also,

F (j!
Y ) = F (j!j!

Z) = F (j!
X)F (j!

Z).

So by the universal property of K0(C), there is a
unique homomorphism from K0(C) to Aut(F (0))
such that [X ] �→ F (j!

X). So we have a natural ac-
tion of K0(C) on F (0), hence a functor from F ′ to
K0(C)-sets given by F �→ F (0).

The other way around let S be a K0(C)-set,
and let FS : QC → Sets be the functor defined by
FS(X) = S, FS(i!j!) = multiplication by [ker j] on
S. To see that this is indeed a functor, it suffices to
show that FS(j!i!) = FS(j!). It holds j!i! = i1!j

!
1,

where i1 and j1 are given by the cartesian diagram

A X

Z Y.

� � ��
i1

����

j1

����

j

� � ��i

It follows FS(j!i!) = FS(i1!j!
1) = [ker j1]. Using the

cartesian diagram one sees that ker j1 is isomorphic
to ker j. It is easy to verify that the two functors
given are inverse to each other up to isomorphism,
whence the theorem. �

This theorem motivates the following definition,

Ki(C, E) def= πi+1(BQC).

For a monoid A we let P be the category of finitely
generated pointed projective A-modules, or rather a
small category equivalent to it, and we set
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KQ
i (A) def= Ki(P , E),

where E is the class of sequences in P which are
strong exact in the category of all modules. These
sequences all split, which establishes the axioms for
a quasi-exact category.

The two K-theories we have defined, do not co-
incide. For instance for the monoid of one generator
A = {1, a} with a2 = a one has

K+
0 (A) = Z, KQ

0 (A) = Z × Z.

The reason for this discrepancy is that K+
i (A) only

depends on the group of units A×, but KQ
i (A) is

sensible to the whole structure of A. So these two
K-theories are unlikely to coincide except when A is
a group, in which case they do, as the last theorem
of this paper shows,

Theorem 5. If A is an abelian group, then
K+

i (A) = KQ
i (A) for every i ≥ 0.

Proof. For a group each projective module is
free, hence the proof of Grayson [3] of the corre-
sponding fact for rings goes through. �

So, if A is a group, this defines Ki(A) unam-
biguously. In particular, computations of Priddy [8]
show that Ki(F1) = πi

s is the i-th stable homotopy
group of the spheres. If A is a group, then every
projective module is free. Based on this, one can use
the Q-construction to show that if A is an abelian
group, then

Ki(A) =

{
Z × A i = 0,

πs
i i > 0.

This is proved as follows: As A is a group, a mod-
ule over A is projective iff it is free. Therefore the
category P is the product of the category Set0 of
pointed sets and A (considered as a category with
one object). So BQP is the product of BQSet0 and
BQA = BA, the classifying space of the group A.
This implies the above result for Ki(A).

For an arbitrary monoid A we conclude that
K+

i (A) = K+
i (A×) = Ki(A×), which we now can

express in terms of the stable homotopy groups πs
i .

Further, for every A one has a canonical ho-
momorphism K+

i (A) → KQ
i (A) given by the map

KQ(A×) → KQ(A). The latter comes about by the
fact that every projective A×-module is free. Note
that general functoriality under monoid homomor-
phism is granted for K+, but not for KQ. This con-
trasts the situation of rings, and has its reason in the
fact that not every projective is a direct summand
of a free module.
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