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Abstract: The Lascoux-Leclerc-Thibon conjecture, reformulated and solved by S. Ariki,
asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic
to the algebra of functions on the maximal unipotent subgroup of the group associated with a
Lie algebra g where g is gl∞ or the affine Lie algebra A

(1)
� , and the irreducible representations

correspond to the upper global bases. In this note, we formulate analogous conjectures for certain
classes of irreducible representations of affine Hecke algebras of type B.
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1. Introduction. The purpose of this note
is to formulate and explain conjectures on certain
classes of irreducible representations of affine Hecke
algebras of type B analogous to the Lascoux-Leclerc-
Thibon conjecture ([3]), reformulated and solved by
S. Ariki, on affine Hecke algebras of type A.

Let us begin by recalling the Lascoux-Leclerc-
Thibon conjecture solved by S. Ariki ([1]). Let
HA

n be the affine Hecke algebra of type A of de-
gree n. Let KA

n be the Grothendieck group of the
abelian category of finite-dimensional HA

n -modules,
and KA = ⊕n≥0 KA

n . Then it has a structure of
Hopf algebra by the restriction and the induction
(cf. §3.3). The set I = C∗ may be regarded as a
Dynkin diagram with I as the set of vertices and
with edges between a ∈ I and ap2

1 (see (7)). Here p1

is the parameter of the affine Hecke algebra usually
denoted by q. Let gI be the associated Lie algebra,
and g−I the unipotent Lie subalgebra. Hence gI is
isomorphic to a direct sum of copies of A(1)

� if p2
1 is

a primitive �-th root of unity and to a direct sum
of copies of gl∞ if p1 has an infinite order. Let UI

be the group associated to g−I . Then C ⊗ KA is iso-
morphic to the algebra �(UI) of regular functions on
UI . Let Uq(gI) be the associated quantized envelop-
ing algebra. Then U−

q (gI) has an upper global basis
{Gup(b)}b∈B(∞). By specializing

⊕
C[q, q−1]Gup(b)

at q = 1, we obtain �(UI). Then the LLT-conjecture
says that the elements associated to irreducible HA-
modules corresponds to the image of the upper global
basis.
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In this note, we shall formulate analogous con-
jectures for affine Hecke algebras of type B. In the
type B case, we have to replace U−

q (gI) and its up-
per global basis with a new object, the symmetric
crystals (see § 2). It is roughly stated as follows.
Let HB

n be the affine Hecke algebra of type B of de-
gree n. Let KB

n be the Grothendieck group of the
abelian category of finite-dimensional modules over
HB

n , and KB = ⊕n≥0 KB
n . Then KB has a structure

of a Hopf bimodule over KA. The group UI has an
involution θ induced by the involution a �→ a−1 of
I = C∗. Let Uθ

I be the θ-fixed point set of UI . Then
�(Uθ

I ) is a quotient ring of �(UI). The action of
�(UI) � C⊗KA on C⊗KB, in fact, descends to the
action of �(Uθ

I ).
We introduce Vθ(λ) (see § 2), a kind of the q-

analogue of �(Uθ
I ). Our conjecture is then:

(i) Vθ(λ) has a crystal basis and a global basis.

(ii) KB is isomorphic to a specialization of Vθ(λ) at
q = 1 as an �(UI)-module, and the irreducible
representations correspond to the upper global
basis of Vθ(λ) at q = 1.

We exclude the representations of HB
n such that Xi

have an eigenvalue ±1 (see § 3).
2. Symmetric crystals. In this section, we

shall introduce crystals associated with quantum
groups with an involution.

2.1. Quantized universal enveloping al-
gebras. We shall recall the quantized universal en-
veloping algebra Uq(g). Let I be an index set (for
simple roots), and Q the free Z-module with a basis
{αi}i∈I . Let ( • , • ) : Q×Q→ Z be a symmetric bi-
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linear form such that (αi, αi)/2 ∈ Z>0 for any i and
(α∨

i , αj) ∈ Z≤0 for i �= j where α∨
i := 2αi/(αi, αi).

Let q be an indeterminate and set K := Q(q). We
define its subrings A0, A∞ and A as follows:

A0 = {f/g ; f(q), g(q) ∈ Q[q], g(0) �= 0} ,
A∞ = {f/g ; f(q−1), g(q−1) ∈ Q[q−1],

g(q−1)|q−1=0 �= 0},
A = Q[q, q−1].

Definition 2.1. The quantized universal en-
veloping algebra Uq(g) is the K-algebra generated by
the elements ei, fi and invertible elements ti (i ∈ I)
with the following defining relations.

(i) The ti’s commute with each other.
(ii) tjei t

−1
j = q(αj ,αi) ei and tjfit

−1
j =

q−(αj ,αi)fi for any i, j ∈ I.

(iii) [ei, fj ] = δij
ti − t−1

i

qi − q−1
i

for i, j ∈ I. Here qi :=

q(αi,αi)/2.
(iv) (Serre relation) For i �= j,

b∑
k=0

(−1)ke
(k)
i eje

(b−k)
i = 0,

b∑
k=0

(−1)kf
(k)
i fjf

(b−k)
i = 0.

Here b = 1 − (α∨
i , αj) and

e
(k)
i = ek

i /[k]i! , f
(k)
i = fk

i /[k]i! ,

[k]i = (qk
i − q−k

i )/(qi − q−1
i ) ,

[k]i! = [1]i · · · [k]i .
Let us denote by U−

q (g) (resp. U+
q (g)) the subal-

gebra of Uq(g) generated by the fi’s (resp. the ei’s).
Let us recall the crystal theory of U−

q (g) ([4]). Let
e′i and e∗i be the operators on U−

q (g) defined by

[ei, a] =
(e∗i a)ti − t−1

i e′ia
qi − q−1

i

(a ∈ U−
q (g)).

Then these operators satisfy the following formula
similar to derivations:

e′i(ab) = e′i(a)b+ (Ad(ti)a)e′ib,

e∗i (ab) = ae∗i b+ (e∗i a)(Ad(ti)b).

Then U−
q (g) has a unique symmetric bilinear form

( • , • ) such that (1, 1) = 1 and

(e′ia, b) = (a, fib) for any a, b ∈ U−
q (g).

It is non-degenerate and satisfies (e∗i a, b) = (a, bfi).
The left multiplication of fj and e′i have the commu-
tation relation

e′ifj = q−(αi,αj)fje
′
i + δij ,

and both the e′i’s and the fi’s satisfy the Serre re-
lations. Since e′i and fi satisfy the q-boson relation,
any element a ∈ U−

q (g) can be written uniquely as

a =
∑
n≥0

f
(n)
i an with e′ian = 0.

We define the modified root operators by

ẽia =
∑

n≥1 f
(n−1)
i an and

f̃ia =
∑

n≥0 f
(n+1)
i an.

(1)

Let L(∞) be the A0-submodule of U−
q (g)

generated by the f̃i1 · · · f̃i�
1’s (� ≥ 0,

i1, . . . , i� ∈ I ). Let B(∞) be the subset{
f̃i1 · · · f̃i�

1 mod qL(∞) ; � ≥ 0, i1, . . . , i� ∈ I
}

of L(∞)/qL(∞). Then we have
Theorem 2.2. (i) f̃iL(∞) ⊂ L(∞) and
ẽiL(∞) ⊂ L(∞),

(ii) B(∞) is a basis of L(∞)/qL(∞),
(iii) f̃iB(∞) ⊂ B(∞) and ẽiB(∞) ⊂ B(∞) � {0}.

2.2. Global bases. Let − be the automor-
phism of K sending q to q−1. Then A0 coincides
with A∞. Let V be a vector space over K, L0 an
A-submodule of V , L∞ an A∞- submodule, and VA

an A-submodule. Set E := L0 ∩ L∞ ∩ VA.

Definition 2.3 ([4]). We say that (L0, L∞,
VA) is balanced if each of L0, L∞ and VA generates
V as a K-vector space, and if one of the following
equivalent conditions is satisfied.

(i) E → L0/qL0 is an isomorphism,
(ii) E → L∞/q−1L∞ is an isomorphism,
(iii) (L0∩VA)⊕ (q−1L∞∩VA) → VA is an isomor-

phism.
(iv) A0 ⊗Q E → L0, A∞ ⊗Q E → L∞, A⊗Q E →

VA and K ⊗Q E → V are isomorphisms.

Let − be the ring automorphism of Uq(g) send-
ing q, ti, ei, fi to q−1, t−1

i , ei, fi.
Let Uq(g)A be the A-subalgebra of Uq(g) gen-

erated by e
(n)
i , f (n)

i and ti. Similarly we define
U−

q (g)A.

Theorem 2.4. (L(∞), L(∞)−, U−
q (g)A) is bal-

anced.
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Let

G : L(∞)/qL(∞) ∼−→E := L(∞) ∩ L(∞)− ∩ U−
q (g)A

be the inverse of E
∼−→L(∞)/qL(∞). Then

{G(b) ; b ∈ B(∞)} forms a basis of U−
q (g). We

call it a (lower) global basis. It is first introduced by
G. Lusztig ([5]) under the name of “canonical basis”
for the A,D,E cases.

2.3. Symmetry. Let θ be an automor-
phism of I such that θ2 = id and (αθ(i), αθ(j)) =
(αi, αj). Hence it extends to an automorphism of
the root lattice Q by θ(αi) = αθ(i), and induces an
automorphism of Uq(g).

Let Bθ(g) be the K-algebra generated by Ei,
Fi, and invertible elements Ti (i ∈ I) satisfying the
followin gdefining relations:

(i) the Ti’s commute with each other,

(ii) Tθ(i) = Ti for any i,

(iii) TiEjT
−1
i = q(αi+αθ(i),αj)Ej and TiFjT

−1
i

= q(αi+αθ(i),−αj)Fj for i, j ∈ I,

(iv) EiFj = q−(αi,αj)FjEi + (δi,j + δθ(i),jTi) for i,
j ∈ I,

(v) the Ei’s and the Fi’s satisfy the Serre relations.

Hence Bθ(g) � U−
q (g) ⊗K[T±1

i ; i ∈ I] ⊗ U+
q (g). We

set E(n)
i = En

i /[n]i! and F (n)
i = Fn

i /[n]i!.
Let λ ∈ P+ := {λ ∈ Hom(Q,Q) ; 〈α∨

i , λ〉 ∈ Z≥0

for any i ∈ I } be a dominant integral weight such
that θ(λ) = λ.

Proposition 2.5. (i) There exists a Bθ(g)-
module Vθ(λ) generated by a vector φλ such that

(a) Eiφλ = 0 for any i ∈ I,

(b) Tiφλ = q(αi,λ)φλ for any i ∈ I,

(c) {u ∈ Vθ(λ) ;Eiu = 0 for any i ∈ I}
= Kφλ.

Moreover such a Vθ(λ) is irreducible and unique
up to an isomorphism.

(ii) there exists a unique symmetric bilinear form
( • , • ) on Vθ(λ) such that (φλ, φλ) = 1 and
(Eiu, v) = (u, Fiv) for any i ∈ I and u, v ∈
Vθ(λ), and it is non-degenerate.

The pair (Bθ(g), Vθ(λ)) is an analogue of (B, U−
q (g)).

Such a Vθ(λ) is constructed as follows. Let U−
q (g)φ′λ

and U−
q (g)φ′′λ be a copy of a free U−

q (g)-module. We
give the structure of a Bθ(g)-module on them as fol-
lows: for any i ∈ I and a ∈ U−

q (g)




Ti(aφ′λ) = q(αi,λ)(Ad(titθ(i))a)φ′λ,

Ei(aφ′λ) =
(
e′ia+q(αi,λ) Ad(ti)(e∗θ(i)a)

)
φ′λ,

Fi(aφ′λ) = (fia)φ′λ

(2)

and 


Ti(aφ′′λ) = q(αi,λ)(Ad(titθ(i))a)φ′′λ,

Ei(aφ′′λ) = (e′ia)φ
′′
λ,

Fi(aφ′′λ) =
(
fia+q(αi,λ)(Ad(ti)a)fθ(i)

)
φ′′λ.

(3)

Then there exists a unique Bθ(g)-linear morphism
ψ : U−

q (g)φ′λ → U−
q (g)φ′′λ sending φ′λ to φ′′λ. Its image

ψ(U−
q (g)φ′λ) is Vθ(λ).
Hereafter we assume further that

there is no i ∈ I such that θ(i) = i.(4)

We conjecture that Vθ(λ) has a crystal basis. This
means the following. We define the modified root
operators similarly to (1):

Ẽi(u) =
∑
n≥1

F
(n−1)
i un and F̃i(u) =

∑
n≥0

F
(n+1)
i un

when writing u =
∑

n≥0 F
(n)
i un with Eiun = 0.

Let Lθ(λ) be the A0-submodule of Vθ(λ)
generated by F̃i1 · · · F̃i�

φλ (� ≥ 0 and
i1, . . . , i� ∈ I ), and let Bθ(λ) be the subset{
F̃i1 · · · F̃i�

φλ mod qLθ(λ) ; � ≥ 0, i1, . . . , i� ∈ I
}

of
Lθ(λ)/qLθ(λ).

Conjecture 2.6. (i) F̃iLθ(λ) ⊂ Lθ(λ) and
ẼiLθ(λ) ⊂ Lθ(λ),

(ii) Bθ(λ) is a basis of Lθ(λ)/qLθ(λ),
(iii) F̃iBθ(λ) ⊂ Bθ(λ), and ẼiBθ(λ) ⊂ Bθ(λ)� {0}.
Moreover we conjecture that Vθ(λ) has a global crys-
tal basis. Namely, let − be the bar-operator of Vθ(λ)
given by − : aφλ → āφλ (a ∈ U−

q (g)) (such an oper-
ator exists).

Conjecture 2.7. (Lθ(λ), Lθ(λ)−, U−
q (g)Aφλ)

is balanced.
Assume that this conjecture is true. Let
Glow : Lθ(λ)/qLθ(λ) ∼−→E := Lθ(λ) ∩ Lθ(λ)− ∩
U−

q (g)Aφλ be the inverse of E
∼−→Lθ(λ)/qLθ(λ).

Then
{
Glow(b) ; b ∈ Bθ(λ)

}
forms a basis of Vθ(λ).

We call this basis the lower global basis of Vθ(λ).
Let {Gup(b) ; b ∈ Bθ(λ)} be the dual basis to{
Glow(b) ; b ∈ Bθ(λ)

}
with respect to the inner prod-

uct of Vθ(λ). We call it the upper global basis of
Vθ(λ).
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We can prove the conjectures in the gl∞-case:

· · · · · · ◦ ��

θ

��◦ �� ��◦
�� ��

◦ ◦ ◦ · · · · · · .

−5 −3 −1 1 3 5

Theorem 2.8. Let I be the set Zodd of odd in-
tegers. Define

(αi, αj) =




2 if i = j,
−1 if i = j ± 2,
0 otherwise,

and θ(i) = −i. Then, for λ = 0, Vθ(λ) has a crystal
basis and a global basis.

Note that
{
a ∈ U−

q (g) ; aφλ = 0
}

=
∑

i U
−
q (g)(fi −

fθ(i)) in this case.
The proof is by using a kind of PBW basis, sim-

ilarly to [5]. The details will appear elsewhere.
The following diagram is the part of the crystal

graph of Bθ(λ) that concerns only the 1-arrows and
the (−1)-arrows.

◦ 1 ��
−1

�� ◦ · · ·
◦ 1 ��

−1
�� ◦

1 �������
−1

��
		��

φλ

1 ��
−1

�� ◦
1 

�����

−1 		����� ◦ 1 ��
−1

�� ◦ · · ·
◦ 1 ��

−1
�� ◦ 1��



��

−1
�������
◦ 1 ��

−1
�� ◦ · · ·

Here is the part of the crystal graph of Bθ(λ) that
concerns only the n-arrows and the (−n)-arrows for
an odd integer n ≥ 3:

φλ

n ��
−n

�� ◦ n ��
−n

�� ◦ n ��
−n

�� ◦ n ��
−n

�� ◦ · · ·

3. Affine Hecke algebra of type B.
3.1. Definition. For p0, p1 ∈ C∗ and n ∈

Z≥0, the affine Hecke algebra HB
n of type Bn is the

C-algebra generated by Ti (0 ≤ i < n) and invert-
ible elements Xi (1 ≤ i ≤ n) satisfying the defining
relations:

(i) the Xi’s commute with each other,

(ii) the Ti’s satisfy the braid relation: T0T1T0T1 =
T1T0T1T0, TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i < n−
1), TiTj = TjTi (|i− j| > 1),

(iii) (T0−p0)(T0+p−1
0 ) = 0 and (Ti−p1)(Ti+p−1

1 ) =
0 (1 ≤ i < n),

(iv) T0X
−1
1 T0 = X1, TiXiTi = Xi+1 (1 ≤ i < n),

and TiXj = XjTi if j �= i, i+ 1.

We assume that p0, p1 ∈ C∗ satisfy
p2
0 �= 1, p2

1 �= 1.(5)
Let us denote by Poln the Laurent polynomial ring
C[X±1

1 , . . . , X±1
n ], and by P̃oln its quotient field

C(X1, . . . , Xn). Then HB
n is isomorphic to the tensor

product of Poln and the subalgebra generated by the
Ti’s that is isomorphic to the Hecke algebra of type
Bn. We have

Tia = (sia)Ti + (pi − p−1
i )

a− sia

1 −X−α∨
i

for a ∈ Poln.

Here pi = p1 (1 < i < n), and X−α∨
i = X−2

1

(i = 0) and X−α∨
i = XiX

−1
i+1 (1 ≤ i < n).

The si’s are the Weyl group action on Poln:
(sia)(X1, . . . , Xn) = a(X−1

1 , X2, . . . , Xn)
for i = 0 and (sia)(X1, . . . , Xn) =
a(X1, . . . , Xi+1, Xi, . . . , Xn) for 1 ≤ i < n.

Note that HB
n = C for n = 0.

3.2. Intertwiner. The algebra HB
n acts

faithfully on HB
n/

∑
i HB

n (Ti − pi) � Poln. Set

ϕi = (1 − X−α∨
i )Ti − (pi − p−1

i ) ∈ HB
n and ϕ̃i =

(p−1
i −piX

−α∨
i )−1ϕi ∈ P̃oln ⊗Poln HB

n . Then the ac-
tion of ϕ̃i on Poln coincides with si. They are called
intertwiners.

3.3. Affine Hecke algebra of type A. We
will review the LLT conjecture, reformulated and
solved by S. Ariki, on the affine Hecke algebras of
type A.

The affine Hecke algebra HA
n of type An is iso-

morphic to the subalgebra of HB
n generated by Ti

(1 ≤ i < n) and X±1
i (1 ≤ i ≤ n). For a finite-

dimensional HA
n -module M let us decompose
M =

⊕
a∈(C∗)n

Ma(6)

where Ma = {u ∈ M ; (Xi − ai)Nu = 0 for any i

and N � 0 } for a = (a1, . . . , an) ∈ (C∗)n. For a
subset I ⊂ C∗, we say that M is of type I if all the
eigenvalues of Xi belong to I. The group Z acts on
C∗ by Z � n : a �→ ap2n

1 .
Lemma 3.1. Let I and J be Z-invariant sub-

sets in C∗ such that I ∩ J = ∅.
(i) If M is an irreducible HA

m-module of type I and
N is an irreducible HA

n -module of type J , then

Ind
HA

m+n

HA
m⊗HA

n
(M ⊗N) is irreducible of type I ∪ J .

(ii) Conversely if L is an irreducible HA
n -module of

type I ∪ J , then there exist m (0 ≤ m ≤ n),
an irreducible HA

m-module M of type I and an
irreducible HA

n−m-module N of type J such that

L is isomorphic to IndHA
n

HA
m⊗HA

n−m

(M ⊗N).
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Hence in order to study the irreducible modules over
the affine Hecke algebras of type A, it is enough to
treat the irreducible modules of type I for an or-
bit I with respect to the Z-action on C∗. Let KA

I,n

be the Grothendieck group of the abelian category
of finite-dimensional HA

n -modules of type I. We set
KA

I =
⊕

n≥0 KA
I,n. Then KA

I has a structure of Hopf
algebra where the product and the coproduct

µ : KA
I,m ⊗KA

I,n → KA
I,m+n,

∆: KA
I,n → ⊕

i+j=n

KA
I,i ⊗KA

I,j

are given by M ⊗ N �→ Ind
HA

m+n

HA
m⊗HA

n
(M ⊗ N) and by

M �→ ResH
A
n

HA
i ⊗HA

j

M . Let gI be the Lie algebra as-
sociated to the Dynkin diagram with I as the set of
vertices and with edges between a and ap2

1 (a ∈ I).
It means

(αi, αj) = 2δi,j − δi,p2
1j − δp2

1i,j for i, j ∈ I.(7)

Let UI be the unipotent group associated with the
Lie subalgebra g−I of gI generated by the fi’s. Then
we have

Lemma 3.2. Let I be a Z-invariant set. Then
C ⊗ KA

I is isomorphic to the algebra �(UI) of the
regular functions on UI as a Hopf algebra.
Here, for a ∈ I, fa corresponds to the one-
dimensional HA

1 -module Ca on which X1 acts by
a. Let {Gup(b)}b∈B(∞) be the upper global ba-
sis of U−

q (g). Then
( ⊕

C[q, q−1]Gup(b)
)
/
(
(q −

1)
⊕

C[q, q−1]Gup(b)
)

is isomorphic to �(UI). The
following theorem is conjectured for Hecke algebras
of type A by Lascoux-Leclerc-Thibon ([3]) and refor-
mulated and proved by S. Ariki ([1]) for affine Hecke
algebras of type A.

Theorem 3.3. The elements of KA associated
to irreducible HA-modules correspond to the upper
global basis Gup(b) by the isomorphism above.

Hence the irreducible modules are parametrized
by B(∞). Grojnowski ([2]) constructed the oper-
ators ẽa and f̃a on B(∞) in terms of irreducible
modules. The operator ẽa sends an irreducible HA

n

module M to a unique irreducible submodule of
the HA

n−1-module {u ∈M ; (Xn − a)u = 0}. The op-
erator f̃a sends an irreducible HA

n module M to
a unique irreducible quotient of the HA

n+1-module

Ind
HA

n+1

HA
n⊗HA

1
(M ⊗ Ca).

3.4. Representations of affine Hecke
algebras of type B. For n,m ≥ 0,

set Fn,m:= C[X±1
1 , . . . , X±1

n+m, D
−1] where

D :=
∏

1≤i≤n<j≤n+m

(Xi − p2
1Xj)(Xi − p−2

1 Xj)(Xi −
p2
1X

−1
j )(Xi − p−2

1 X−1
j )(Xi − Xj). Then we can

embed HB
m into HB

n+m ⊗Poln+m Fn,m by

T0 �→ ϕ̃n · · · ϕ̃1T0ϕ̃1 · · · ϕ̃n,

Ti �→ Ti+n (1 ≤ i < m), Xi �→ Xi+n (1 ≤ i ≤ m).

Its image commute with HB
n ⊂ HB

n+m. Hence
HB

n+m ⊗Poln+m Fn,m is a right HB
n ⊗ HB

m-module.
Lemma 3.4. HA

n+m ⊗
HA

n⊗HA
m

(
HB

n ⊗ HB
m

) ⊗Poln+m

Fn,m
∼−→HB

n+m ⊗Poln+m Fn,m.

For a finite-dimensional HB
n -module M , we de-

compose M as in (6). The semidirect product group
Z2×Z = {1,−1}×Z acts on C∗ by (ε, n) : a �→ aεp2n

1 .
Let I and J be Z2 × Z-invariant subsets of C∗

such that I ∩ J = ∅. Then for an HB
n -module N of

type I and HB
m-module M of type J , the action of

Poln+m on N⊗M extends to an action of Fn,m. We
set

N �M :=(HB
n+m⊗Poln+m Fn,m) ⊗

(HB
n ⊗ HB

m) ⊗Poln+m Fn,m

(N⊗M).

By the lemma above, N � M is isomorphic to

Ind
HA

n+m

HA
n⊗HA

m
(N ⊗M) as an HA

n+m-module.

Lemma 3.5. (i) Let N be an irreducible HB
n -

module of type I and M an irreducible HB
m-

module of type J . Then N �M is an irreducible
HB

n+m-module of type I ∪ J .
(ii) Conversely if L is an irreducible HB

n -module of
type I ∪ J , then there exist an integer m (0 ≤
m ≤ n), an irreducible HB

m-module N of type I
and an irreducible HB

n−m-module M of type J
such that L � N �M .

(iii) Assume that a Z2 × Z-orbit I decomposes into
I = I+ � I− where I± are Z-orbits and I− =
(I+)−1. Assume that ±1,±p �∈ I. Then for
any irreducible HB

n -module L of type I, there
exists an irreducible HA

n -module M such that

L � IndHB
n

HA
n
M .

Hence in order to study HB-modules, it is
enough to study irreducible modules of type I for
a Z2 × Z-orbit I in C∗ such that I is a Z-orbit or I
contains one of ±1,±p.

In this note, we don’t treat the case when I con-
tains 1 or −1.

For a Z2 ×Z-invariant subset I of C∗, we define
KB

I,n and KB
I similarly to the case of A-type. Then
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KB
I is a (right) Hopf KA

I -bimodule by the multipli-
cation and the coproduct

µ : KB
I,n ×KA

I,m → KB
I,n+m and

∆: KB
I,n → ⊕

i+j=n

KB
I,i ⊗KA

I,j

given by L ⊗ M �→ Ind
HB

n+m

HB
n⊗HA

m
(L ⊗ M) and L �→

ResH
B
n

HB
i ⊗HA

j

L. Let θ be the automorphism of I given

by a �→ a−1. Then it induces an automorphism of
UI . Let Uθ

I be the θ-fixed point sets of UI . Then
the action of �(UI) � C ⊗ KA

I on KB
I descends to

an action of �(Uθ
I ), as it follows from the following

lemma.
Lemma 3.6. For an irreducible HB

n -module L

and an irreducible HA
m-module M , we have µ(L ⊗

M) = µ(L ⊗Mθ), where Mθ is the HA
m-module in-

duced from M by the automorphism of HA
m given by

Xi �→ X−1
m+1−i, Ti �→ Tm−i.

Now we take the case

I = {pn
1 ; n ∈ Zodd} .

Assume that any of ±1 and ±p0 is not contained in
I. Let us define an automorphism θ of I by a �→ a−1.
The set I may be regarded as the set of vertices of a
Dynkin diagram by (7). Let gI be the associated Lie
algebra (gI is isomorphic to gl∞ if p1 has an infinite
order, and isomorphic to A(1)

� if p2
1 is a primitive �-

th root of unity). Let Vθ(λ) be as in Proposition 2.5
with λ = 0.

Conjecture 3.7. (i) Vθ(λ) has a crystal ba-
sis and a global basis.

(ii) C ⊗ KB
I is isomorphic to a specialization of

Vθ(λ) at q = 1 as an �(UI)-module, and the
elements of KB

I associated with irreducible rep-
resentations corresponds to the upper global ba-
sis of Vθ(λ) at q = 1.

Note that (i) is nothing but Theorem 2.8 when p1 is
not a root of unity.

Let us take the case

I =
{
p0p

2n
1 ; n ∈ Z

} ∪ {
p−1
0 p2n

1 ; n ∈ Z
}
.

Assume that there exists no integer n such that p2
0 =

p4n
1 . It includes the case where p0 = p1 and p2n

1 �= 1
for any n ∈ Zodd. Let θ be the automorphism of I
given by θ : a �→ a−1. Then θ has no fixed points. We
regard I as the set of vertices of a Dynkin diagram
by (7). Let gI be the associated Lie algebra. It is
isomorphic to either gl∞ ⊕ gl∞, gl∞, A(1)

� ⊕ A
(1)
� or

A
(1)
� . Set λ = Λp0+Λp−1

0
(i.e. (αi, λ) = δi,p0 +δi,p−1

0
).

Conjecture 3.8. (i) Vθ(λ) has a crystal ba-
sis and a global basis.

(ii) C ⊗ KB
I is isomorphic to a specialization of

Vθ(λ) at q = 1 as an �(UI)-module, and the
elements of KB

I associated with irreducible rep-
resentations corresponds to the upper global ba-
sis of Vθ(λ) at q = 1.

In the both cases, we conjecture that, for an
irreducible HB

n -module M corresponding to an up-
per global basis Gup(b), dimMa coincides with the
value of (φλ, Ea1 · · ·EanG

up(b)) at q = 1 for a =
(a1, . . . , an) ∈ In.

Miemietz ([6]) introduced the operators ẽi and
f̃i on the set of isomorphic classes of irreducible mod-
ules, similarly to the A type case, and studied their
properties. We conjecture that they coincide with
the operators Ẽi and F̃i on Bθ(λ).

Remark 3.9. For an HB
n -module N , we have

Res
HB

n+1

HA
n+1

(
Ind

HB
n+1

HB
n⊗HA

1
(N ⊗ Ca)

)
= Ind

HA
n+1

HA
n⊗HA

1
(N ⊗ Ca) + Ind

HA
n+1

HA
1 ⊗HA

n
(Ca−1 ⊗N).

In the right-hand-side, the first term corresponds to
the left multiplication of fa and the last term corre-
sponds to the right multiplication of fa−1 . This leads
the last formula in (3), which is the starting point of
our study.
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