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Abstract: We characterize the weighted weak type inequalities with variable exponents for
the modified Hardy operators and the Hardy-Littlewood maximal operators.
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1. Introduction. Let (X,M, µ) and (Y,N , ν)
be measure spaces and let T be a sublinear opera-
tor that transforms M-measurable functions in N -
measurable functions. We say that T is of weak type
(p, p), p ≥ 1, if there exists K > 0 such that the
inequality

ν{y ∈ Y : |Tf(y)| > λ} ≤ K

λp

∫
X

|f |pdµ

holds for all f and all λ > 0.
The weak type inequalities are of interest in in-

terpolation theory and play a fundamental role in
the study of the almost everywhere convergence of
sequences of sublinear operators [6].

In 1972, B. Muckenhoupt [12] proved an impor-
tant result about the weak type inequalities for the
Hardy-Littlewood maximal operator in R, which is
defined by

Mf(x) = sup
s,h>0

1
s + h

∫ x+h

x−s

|f(t)|dt.

Muckenhoupt showed that if u and v are non-
negative measurable functions (weights), then the
weighted weak type inequality∫

{x∈R:Mf(x)>λ}
u ≤ K

λp

∫
R

|f(x)|pv(x)dx

holds for all f and all λ > 0 with a constant K > 0
independent of f and λ if and only if (u, v) verifies
the condition Ap, which means that

sup
a<b

1
b − a

(
∫ b

a

u)(ess sup
x∈(a,b)

v−1(x)) < ∞
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if p = 1 and

sup
a<b

1
b − a

(
∫ b

a

u)
1
p (
∫ b

a

v1−p′
)

1
p′ < ∞

if p > 1, where p′ = p
p−1 .

The theory of weighted weak type inequalities
was subsequently extended by considering inequali-
ties of the form

(1)
∫
{x∈R:Tf(x)>λ}

u ≤ K

Φ(λ)

∫
R

Φ(|f(x)|)v(x)dx,

where Φ is a Young function (see [7]). The charac-
terizations of the pairs of weights (u, v) such that the
inequality (1) holds for the Hardy-Littlewood maxi-
mal operator and other operators as singular or frac-
tional integrals can be found in [7] and in the refer-
ences therein.

In last years, stimulated by some problems in
fluid dynamics and in differential equations, a great
interest has arised in the spaces Lp with variable ex-
ponents (see [8] for the definitions) and in the ex-
tension of the results of classical Harmonic Analysis
to the variable exponent setting. In particular, the
boundedness of the Hardy-Littlewood maximal oper-
ator in spaces Lp with variable exponents has been
studied by several authors ([2, 3, 13]).

In this setting, it is natural to consider the
weighted weak type inequalities with variable expo-
nents, as a new extension of the theory of classical
weighted weak type inequalities.

By a weighted weak type inequality with vari-
able exponent for an operator T in a subset A of R

we understand an inequality of the form

(2)
∫
{x∈A:Tf(x)>λ}

u ≤
∫

A

(
K|f(x)|

λ

)p(x)

v(x)dx,
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where p(·) is a measurable function such that p(x) ≥
1 for all x ∈ A. These inequalities are generalizations
of the classical weighted weak type inequalities.

D. Cruz-Uribe, A. Fiorenza and C. J. Neuge-
bauer [2] seem to be the first authors that have stud-
ied a weak type inequality with variable exponent, al-
though with a different position of the constant with
respect to the inequality (2) and without weights.
They have shown that the Hardy-Littlewood maxi-
mal operator verifies the inequality

|{x ∈ R : Mf(x) > λ}| ≤ K

∫
R

( |f(x)|
λ

)p(x)

dx

if there exists K > 0 such that for all bounded inter-
vals I,

1
p(x)

≤ K

|I|
∫

I

1
p(y)

dy a.e. x ∈ I.

We will characterize the pairs of weights (u, v)
such that the Hardy-Littlewood maximal operator
verifies the inequality (2), obtaining a generaliza-
tion of the classical Muckhenhoupt’s Theorem [12].
We will also see that the unweighted weak type in-
equality with exponent p(·) for the Hardy-Littlewood
maximal operator holds without any restrictions on
the function p.

As previous steps, with independent interest, we
will characterize the weighted weak type inequalities
with variable exponents for the modified Hardy oper-
ators and the one-sided Hardy-Littlewood maximal
operators. The work about the Hardy type opera-
tor will be done in section 2, while section 3 will be
devoted to the maximal operators.

Throughout the paper, the letter K will design
a positive constant, not necessarily the same at each
occurrence.

2. The modified Hardy operator. Let
−∞ ≤ a < b ≤ ∞ and let g be a positive non-
increasing function on (a, b). The modified Hardy
operator T is defined for nonnegative functions f on
(a, b) by Tf(x) = g(x)

∫ x

a
f .

The weighted weak type inequalities for T were
characterized in [1, 5, 11]. Several papers have been
written about the boundedness of Hardy type op-
erators in variable Lp spaces with weights (see, for
instance, [4]). However, as far as we know, there are
no papers in the literature about weighted weak type
inequalities with variable exponents for Hardy type
operators. In this section, we will characterize the
pairs of weights (u, v) such that the inequality

(3)
∫
{x∈(a,b):Tf(x)>λ}

u ≤
∫ b

a

(
Kf(x)

λ

)p(x)

v(x)dx

holds for all f ≥ 0 and all λ > 0 with a constant
K > 0 independent of f and λ.

In the proof of our Theorem, the Young’s in-
equality will play a fundamental role. It establishes
that if r > 1 and r′ = r

r−1 , then st ≤ sr

r + tr′

r′ for all
s, t ≥ 0.

The result is the following one.

Theorem 1. Let p : (a, b) → [1,∞). Let
P1 = {x ∈ (a, b) : p(x) = 1} and P2 = {x ∈ (a, b) :
p(x) > 1}. Let u, v be positive measurable functions
on (a, b). The following statements are equivalent:
(i) There exists K > 0 such that (3) holds for all

f ≥ 0 and all λ > 0.

(ii) There exists K > 0 such that if a < t < β < b,
then

g(β−)

(
ess sup

x∈P1∩(a,t)

v−1(x)

)∫ β

t

u ≤ K(4)

and

(5)∫
P2∩(a,t)

(
g(β−)

K

)p′(x)
(∫ β

t
u

v(x)

)p′(x)−1

dx ≤ 1,

where p′(y) = p(y)
p(y)−1 .

Moreover, if (i) holds with constant K, then (ii)
holds with the same constant K and if (ii) holds with
constant K, then (i) holds with constant 8K.

Proof . (i)⇒(ii) Let a < t < β < b. Let us prove
(4). If P1 ∩ (a, t) has measure 0 or g(β−) = 0, there
is nothing to prove. Suppose that P1 ∩ (a, t) has
positive measure and g(β−) > 0. Let ρ > 0 and let
F be a measurable subset of P1 ∩ (a, t) with positive
measure such that v(x) ≤ ρ + ess inf

y∈P1∩(a,t)
v(y) for all

x ∈ F .
Let f = 1+ρ

|F |g(β−)χF . If x ∈ (t, β), then Tf(x) ≥
g(x) 1+ρ

|F |g(β−) |F | ≥ 1+ρ > 1. The weak type inequal-

ity gives g(β−)
∫ β

t u ≤ K(1 + ρ)(ρ + ess inf
y∈P1∩(a,t)

v(y)),

and letting ρ tend to 0, we get (4).
In order to prove (5), let {an} be a strictly

decreasing sequence with limit a, ρ > 0, n nat-
ural and vn = v + 1

n . Let, for each natural k,
P k

2 = P2 ∩ {x : p(x) > 1 + 1
k}. Then, since p′ is

bounded above in P k
2 and vn is bounded below, the

integral
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ϕ(ε) =
∫

P k
2 ∩(an,t)

(
ε

vn(y)

)p′(y)−1

g(β−)p′(y)dy

is finite for all ε ≥ 0 and defines a continuous
increasing function ϕ such that ϕ(0) = 0 and
limε→∞ ϕ(ε) = ∞. By continuity, there exists ε0 > 0
such that ϕ(ε0) = (1+ρ)K, where K is the constant
in the inequality (3).

Let f(y) = 1
K

(
ε0g(β−)

vn(y)

)p′(y)−1

χP k
2 ∩(an,t)(y).

Let x ∈ (t, β). Since g is a nonincreasing function,

Tf(x) = g(x)
∫

P k
2 ∩(an,t)

1
K

(
ε0g(β−)
vn(y)

)p′(y)−1

dy

≥
∫

P k
2 ∩(an,t)

1
K

(
ε0

vn(y)

)p′(y)−1

g(β−)p′(y)dy

= 1 + ρ > 1.

Applying the weak type inequality to the func-
tion f with λ = 1 and taking into account that
v ≤ vn, we obtain

∫ β

t

u ≤
∫

P k
2 ∩(an,t)

(
ε0g(β−)
vn(y)

)(p′(y)−1)p(y)

v(y)dy

≤
∫

P k
2 ∩(an,t)

(
ε0g(β−)
vn(y)

)p′(y)

vn(y)dy

= (1 + ρ)Kε0.

Then,

∫
P k

2 ∩(an,t)

(
g(β−)

K(1 + ρ)

)p′(y)
( ∫ β

t u

vn(y)

)p′(y)−1

dy

≤
∫

P k
2 ∩(an,t)

(
g(β−)

K(1 + ρ)

)p′(y)(
K(1 + ρ)ε0

vn(y)

)p′(y)−1

dy

= 1.

Letting k tend to infinity, ρ to 0 and n to infinity,
we obtain (5).

(ii)⇒(i) We may assume that f(x) > 0 for
all x ∈ (a, b) and

∫ b

a
f < ∞. Let x0 = b and,

given xk, let xk+1 be the unique point such that∫ xk+1

a
f = 1

2

∫ xk

a
f . In this way, we construct a se-

quence {xk} which decreases, has limit a and verifies∫ xk

a f = 4
∫ xk+1

xk+2
f for all k. Let Oλ = {x ∈ (a, b) :

Tf(x) > λ} and Ek = (xk+1, xk) ∩ Oλ.
If, for a fixed k, Ek = ∅, then its contribution

to the integral
∫

Oλ
u is null. Assume, therefore, that

k is a nonnegative integer such that Ek 	= ∅. If x ∈

Ek, λ < g(x)
∫ x

a
f ≤ 4g(x)

∫ xk+1

xk+2
f . Since this holds

for all x ∈ Ek, we have λ ≤ 4g(β−
k )
∫ xk+1

xk+2
f , where

βk = sup Ek. Then,
(6)

2
∫ βk

xk+1

u ≤
∫ xk+1

xk+2

8f(x)
1
λ

g(β−
k )

(∫ βk

xk+1

u

)
dx

=
∫

P1,k

+
∫

P2,k

= I + II,

where P1,k = P1 ∩ (xk+2, xk+1) and P2,k = P2 ∩
(xk+2, xk+1).

For the estimation of I, we apply (4) and obtain
immediately
(7)

I =
∫

P1,k

8Kf(x)
λ

v(x)g(β−
k )v−1(x)
K

(∫ βk

xk+1

u

)
dx

≤
∫

P1,k

(
8Kf(x)

λ

)
v(x)dx.

On the other hand, Young’s inequality and (5)
yield

(8)

II =
∫

P2,k

8Kf(x)
λ

g(β−
k )
∫ βk

xk+1
u

Kv(x)p(x)
v(x)p(x)dx

≤
∫

P2,k

(
8Kf(x)

λ

)p(x)

v(x)dx

+
∫

P2,k


g(β−

k )
∫ βk

xk+1
u

Kv(x)p(x)




p′(x)

v(x)p(x)
p′(x)

dx

≤
∫

P2,k

(
8Kf(x)

λ

)p(x)

v(x)dx

+
∫

P2,k

(
g(β−)

K

)p′(x)

(∫ βk

xk+1
u
)p′(x)

v(x)p′(x)−1
dx

≤
∫

P2,k

(
8Kf(x)

λ

)p(x)

v(x)dx +
∫ βk

xk+1

u.

Transporting the estimations (7) and (8) to (6),
we obtain∫ βk

xk+1

u ≤
∫ xk+1

xk+2

(
8Kf(x)

λ

)p(x)

v(x)dx,

and summing up in k, we get the inequality (3).
3. The Hardy-Littlewood maximal op-

erators. Let us consider the one-sided Hardy-
Littlewood maximal operator M− defined by

M−f(x) = sup
h>0

1
h

∫ x

x−h

|f(t)|dt.
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The weighted weak type inequalities for M−

were characterized by E. Sawyer [14], F. J. Mart́ın-
Reyes, P. Ortega and A. de la Torre [10] and F. J.
Mart́ın-Reyes [9]. They all showed that if r ≥ 1, then
the weighted weak type (r, r) inequality for M− with
weights u and v holds if and only if (u, v) verifies the
condition A−

r , which means that

sup
a<b<c

1
c − a

(
∫ c

b

u)
1
r (
∫ b

a

v1−r′
)

1
r′ < ∞

if r > 1 and

sup
a<b<c

1
c − a

(
∫ c

b

u)(ess sup
x∈(a,b)

v−1(x)) < ∞

if r = 1.
We will apply Theorem 1 in order to characterize

the pairs of weights (u, v) such that the inequality
(9)∫

{x∈R:M−f(x)>λ}
u ≤

∫
R

(
K|f(x)|

λ

)p(x)

v(x)dx

holds with a constant K independent of f and λ.
The result reads as follows:

Theorem 2. Let p : R → [1,∞). Let P1 =
{x ∈ R : p(x) = 1} and P2 = {x ∈ R : p(x) > 1}.
Let u, v be positive measurable functions on R. The
following statements are equivalent:
(i) There exists K > 0 such that (9) holds for all f

and all λ > 0.

(ii) The pair (u, v) verifies the condition A−
p(·),

which means that there exists K > 0 such that
if a < t < β, then

(10)
1

β − a

(
ess sup

x∈P1∩(a,t)

v−1(x)

)∫ β

t

u ≤ K

and
(11)∫

(a,t)∩P2

(
1

K(β−a)

)p′(x)
(∫ β

t
u

v(x)

)p′(x)−1

dx ≤ 1.

Moreover, if (i) holds with constant K, then (ii)
holds with the same constant K and if (ii) holds with
constant K, then (i) holds with constant 8K.

Proof . (i)⇒(ii) Let a < t < β and let f be a
nonnegative function supported on (a, β). If x ∈
(a, β), then M−f(x) ≥ 1

x−a

∫ x

a f . Since M− verifies
(i), we have

∫
{x∈(a,β): 1

x−a

�
x
a

f>λ}
u ≤

∫
{x∈R:M−f(x)>λ}

u

≤
∫ β

a

(
Kf(x)

λ

)p(x)

v(x)dx.

Hence, the modified Hardy operator Ta,βf(x) =
1

x−a

∫ x

a f , x ∈ (a, β), verifies (i) in Theorem 1 with
a constant independent of a and β. Therefore, by
Theorem 1, (ii) holds.

(ii)⇒(i) We may assume, without loss of gener-
ality, that f has bounded below support. Then, the
set Oλ = {x ∈ R : M−f(x) > λ} is a bounded below
open set. Let {(aj , bj)} be the collection of the con-
nected components of Oλ. It is well known that each
(aj , bj) verifies λ < 1

x−aj

∫ x

aj
f for all x ∈ (aj , bj).

So, applying the condition (ii) and Theorem 1
to each operator Tjf(x) = 1

x−aj

∫ x

aj
f , we obtain

∫
Oλ

u =
∞∑

j=1

∫ bj

aj

u =
∞∑

j=1

∫
{x∈(aj ,bj):

1
x−aj

�
x
aj

f>λ}
u

≤
∞∑

j=1

∫ bj

aj

(
8Kf(x)

λ

)p(x)

v(x)dx

≤
∫
R

(
8Kf(x)

λ

)p(x)

v(x)dx.

It is worth noting that the condition A−
p(·) agrees

with A−
p when p(x) is constant (p(x) ≡ p).

A similar theorem can be proved for the opera-
tor M+ defined obviously. In this case, the charac-
terizing condition is A+

p(·), whose formulation follows
the same pattern as A−

p(·), but with the opposite ori-
entation.

As a consequence of Theorem 2 and the above
observation, we will get the result for the Hardy-
Littlewood maximal operator. It generalizes Muck-
enhoupt’s Theorem [12] and reads as follows:

Theorem 3. Let p, P1, P2, u and v be as in
Theorem 2. The following statements are equivalent:

(i) There exists K > 0 such that the inequality

∫
{x∈R:Mf(x)>λ}

u ≤
∫
R

(
K|f(x)|

λ

)p(x)

v(x)dx

holds for all f and all λ > 0.

(ii) The pair (u, v) verifies the condition Ap(·),
which means that there exists K > 0 such that
if a < b, then
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1
b − a

(
ess sup

x∈P1∩(a,b)

v−1(x)

)∫ b

a

u ≤ K

and

∫
P2∩(a,b)

(
1

K(b−a)

)p′(x)
(∫ b

a
u

v(x)

)p′(x)−1

dx ≤ 1.

(iii) The pair (u, v) verifies the conditions A−
p(·) and

A+
p(·).

Moreover, if (i) holds with constant K, then (ii)
and (iii) hold with constant K and if (ii) or (iii)
holds with constant K, then (i) holds with constant
8K.

Proof . The proof of (i)⇒(ii) is similar to the
corresponding implication in Theorem 1. The impli-
cation (ii)⇒(iii) is trivial and (iii)⇒(i) follows imme-
diately from Theorem 2 and the fact that 1

2 (M+f +
M−f) ≤ Mf ≤ M+f + M−f .

Finally, since the pair (u, v) with u = v = 1 veri-
fies the condition Ap(·), the unweighted weak type in-
equality with exponent p(·) for the Hardy-Littlewood
maximal operator holds.

Corollary 1. Let p : R → [1,∞). Then, there
exists K > 0 such that the inequality

|{x ∈ R : Mf(x) > λ}| ≤
∫
R

(
K|f(x)|

λ

)p(x)

dx

holds for all f and all λ > 0.

This result can also be easily deduced from the
classical weak type (1, 1) inequality for the Hardy-
Littlewood maximal operator.
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