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Smooth toric Fano five-folds of index two
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Abstract: In this paper, we classify smooth toric Fano 5-folds of index 2. There exist exactly
10 smooth toric Fano 5-folds of index 2 up to isomorphisms.
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1. Introduction. For a smooth Fano d-fold
X , the index iX of X is defined as follows:

iX := max {m ∈ Z≥1 | −KX = mH for a divisor H } .

There is a famous result of [KO] which says 1 ≤ iX ≤
d + 1 and a smooth Fano d-fold of index d + 1 or d

is isomorphic to Pd or Qd, respectively, where Qd

is the d-dimensional quadric. We remark that Q2 ∼=
P1×P1 is the only case where a quadric hypersurface
is isomorphic to a toric variety (see e.g. [Fjn]). A
smooth Fano d-fold of index d− 1 or d− 2 is called a
del Pezzo manifold or a Mukai manifold, respectively,
and there are classifications for these manifolds (see
[Fjt, Me, Mu]).

So, the next problem is the classification of
smooth Fano d-folds of index d − 3. If d ≥ 6 and
the Picard number is greater than 1, there is the
classification (see [W]). For the case d = 5, there are
some partial classifications (see [CO, NO]). Toward
the general classification, in this paper, we classify
smooth toric Fano 5-folds of index 2. We show that
there exist exactly 10 smooth toric Fano 5-folds of
index 2 (see Theorem 3.6). We remark that since a
smooth complete toric d-fold of Picard number 1 is
isomorphic to Pd, this result completes the classifi-
cation of smooth toric Fano d-folds of index d − 3.

The content of this paper is as follows: Section
2. is a section for preparation. We review the Mori
theory for smooth toric varieties. In Section 3., we
consider the classification of smooth toric Fano 5-
folds of index 2. Section 4. is devoted to constructing
examples of toric Fano manifolds of index 2 which
have no projective space bundle structure.

2. Preliminaries. In this section, we ex-
plain some basic facts of the toric geometry. See
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[Ba1, Ba2, FS, Fl, O, S1] for the detail.
Let Σ be a nonsingular complete fan in N := Zd,

M := HomZ(N,Z) and X = XΣ the associated
smooth complete toric d-fold over an algebraically
closed field k. Let G(Σ) be the set of primitive
generators of 1-dimensional cones in Σ. A subset
P ⊂ G(Σ) is called a primitive collection if P does
not generate a cone in Σ, while any proper subset
of P generates a cone in Σ. We denote by PC(Σ)
the set of primitive collections of Σ. For a primitive
collection P = {x1, . . . , xm}, there exists the unique
cone σ(P ) in Σ such that x1 + · · ·+ xm is contained
in its relative interior since Σ is complete. So, we
obtain an equality

(1) x1 + · · · + xm = b1y1 + · · · + bnyn,

where y1, . . . , yn are the generators of σ(P ), that is,
σ(P ) ∩ G(Σ) = {y1, . . . , yn}, and b1, . . . , bn are pos-
itive integers. We call this equality the primitive
relation of P . By the standard exact sequence

0 → M → ZG(Σ) → Pic(X) → 0

for a smooth toric variety, we have

A1(X) � HomZ(Pic(X),Z) � HomZ(ZG(Σ)/M,Z)

� M⊥ ⊂ HomZ(ZG(Σ),Z),

where A1(X) is the group of 1-cycles on S modulo
rational equivalences, and hence

A1(X) �
(bx)x∈G(Σ) ∈ HomZ(ZG(Σ),Z)

∣∣∣∣∣∣
∑

x∈G(Σ)

bxx = 0


 .

Thus, by the equality x1 + · · · + xm − (b1y1 + · · · +
bnyn) = 0, we obtain an element r(P ) in A1(X) for
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each primitive collection P ∈ PC(Σ). We define the
degree of P as deg P := (−KX · r(P )) = m − (b1 +
· · · + bn).

Proposition 2.1 ([Ba1, C, R]). Let X =
XΣ be a smooth projective toric variety. Then, the
Mori cone of X is described as

NE(X) =
∑

P∈PC(Σ)

R≥0r(P ) ⊂ A1(X) ⊗ R.

A primitive collection P is said to be extremal
if r(P ) is contained in an extremal ray of NE(X).

Remark 2.2. If x1 + · · · + xm = b1y1 + · · · +
bnyn is an extremal primitive relation, then m+n ≤
d + 1, because r(P ) corresponds to an irreducible
torus invariant curve.

Corollary 2.3. Let X = XΣ be a smooth pro-
jective toric variety. Then, X is Fano if and only
if deg P > 0 for any extremal primitive collection
P ∈ PC(Σ).

For extremal primitive relations, we need the
following propositons and definition for the classifi-
cation.

Proposition 2.4 ([C, S1]). Let X = XΣ be
a smooth projective toric variety and P an extremal
primitive collection. Then, for any P ′ ∈ PC(Σ)\{P}
such that P ∩ P ′ 
= ∅,

(P \ P ′) ∪ (σ(P ) ∩ G(Σ))

contains a primitive collection.

Proposition 2.5 ([C, Proposition 4.3]). Let
X = XΣ be a toric Fano manifold and P a primitive
collection. If deg P ≤ deg P ′ for any primitive
collection P ′ ∈ PC(Σ), then P is extremal.

Definition 2.6 ([Ba1]). Let X = XΣ be a
smooth projective toric variety. Then, Σ is a split-
ting fan if P ∩ P ′ = ∅ for any P, P ′ ∈ PC(Σ) such
that P 
= P ′.

If Σ is a splitting fan, then there exists a se-
quence of smooth complete toric varieties

X = XΣ =: Xs
ϕs→ Xs−1

ϕs−1→ · · · ϕ3→ X2
ϕ2→ X1 � Pl,

where Xi
ϕi→ Xi−1 is a toric projective space bundle

and l ∈ Z≥1. We remark that s is the Picard number
of X . The number of the primitive collections of Σ
is also s.

3. Classification. We start the classifica-
tion.

Let X = XΣ be a smooth toric fano 5-fold of
index 2. In this case, deg P is an even number for
any P ∈ PC(Σ). Then, by Remark 2.2 and Corollary
2.3, the type of any extremal primitive relation is one
of the following:
(1) x1 + x2 + x3 + x4 + x5 + x6 = 0,

(2) x1 + x2 + x3 + x4 + x5 = y1,

(3) x1 + x2 + x3 + x4 + x5 = 3y1,

(4) x1 + x2 + x3 + x4 = 0,

(5) x1 + x2 + x3 + x4 = 2y1,

(6) x1 + x2 + x3 + x4 = y1 + y2,

(7) x1 + x2 + x3 = y1 and

(8) x1 + x2 = 0,

where {x1, x2, x3, x4, x5, x6, y1, y2} ⊂ G(Σ).
First of all, the existence of an extremal primi-

tive relation of type (1) imply that X ∼= P5, but P5

is of index 6. So, there does not exist an extremal
primitive relation of type (1).

Proposition 3.1. Let X = XΣ be a smooth
toric Fano 5-fold of index 2. If X has an extremal
primitive relation of type (2) or (3), then X is iso-
morphic to either

PP4 (OP4 ⊕OP4(1)) or PP4 (OP4 ⊕OP4(3)) .

Proof . In this case, X has a divisorial contrac-
tion whose image of the exceptional divisor is a point.
So, all we have to do is to check the classified list in
[Bo].

Proposition 3.2. Let X = XΣ be a smooth
toric Fano 5-fold of index 2. If X has an extremal
primitive relation of type (4), then X is isomorphic
to either

P1×P1×P3 or PP2 (OP2 ⊕OP2 ⊕OP2 ⊕OP2(1)) .

Proof . In this case, X is a P3-bundle over a
toric del Pezzo surface. By checking the classifica-
tion of toric del Pezzo surfaces, we can prove this
proposition.

Proposition 3.3. Let X = XΣ be a smooth
toric Fano 5-fold of index 2. If X has an extremal
primitive relation of type (5), then X is isomorphic
to

P1 × PP3 (OP3 ⊕OP3(2)) .



108 H. Sato [Vol. 82(A),

Proof . In this case, X has a divisorial contrac-
tion whose image of the exceptional divisor is a curve.
So, all we have to do is to check the classified list in
[S3].

Proposition 3.4. Let X = XΣ be a smooth
toric Fano 5-fold of index 2. If X has an extremal
primitive relation of type (8), then X has a P1-
bundle structure. In this case, there exist exactly 9
such smooth toric Fano 5-folds of index 2 (see The-
orem 3.6).

Proof . By the classified list of smooth toric
Fano 4-folds (see [Ba2, S2]), we have exactly 8
smooth toric Fano 4-folds whose indices are at least
2. It is an easy exercise to construct toric P1-bundles
which are smooth toric Fano 5-folds of index 2 over
them.

Thus, we may assume that every extremal prim-
itive relation of X is of type (6) or (7). However,
there is no such variety as follows:

Lemma 3.5. Let X = XΣ be a smooth toric
Fano 5-fold of index 2. Then, X has a primitive
relation of type other than (6) and (7).

Proof . Suppose that every extremal primitive
relation of X is of type (6) or (7). If the Picard num-
ber ρ(X) of X is 2, then X has a Fano contraction
(see [Kl]). So, we may assume ρ(X) ≥ 3.

First of all, we claim that there is no primitive
collection P ∈ PC(Σ) such that #P = 2. This is
obvious because P has to be an extremal primitive
collection by Proposition 2.5. Namely, its primitive
relation is of type (8).

Suppose that there exists an extremal primitive
relation x1 +x2 +x3 +x4 = y1 + y2. Since ρ(X) ≥ 3,
there exist two distinct elements z1, z2 ∈ G(Σ) \
{x1, x2, x3, x4, y1, y2}. {y1, z1}, {y2, z1}, {y1, z2} and
{y2, z2} are not primitive collections. Thus, we have
two extremal primitive relations

y1 + y2 + z1 = w1 and y1 + y2 + z2 = w2,

where w1, w2 ∈ G(Σ). However, Proposition 2.4
says that {z1, w2} and {z2, w1} are primitive collec-
tions, and this is a contradiction.

Finally, we may assume that every extremal
primitive relation of X is of type (7).

As in the argument of the case where there ex-
ists an extremal primitive relation of type (6), for
any distinct extremal primitive collections P1, P2 ∈
PC(Σ) such that #P1 = #P2 = 3, we have

#(P1 ∩ P2) 
= 2. So, let #(P1 ∩ P2) = 1, and let
x1 + x2 + x3 = y1 and x1 + x4 + x5 = y2 be the
corresponding primitive relations. Then, Propositon
2.4 imply that {x2, x3, y2} is a primitive collection.
This primitive collection is extremal. So, the corre-
sponding primitive relation is x2 + x3 + y2 = z for
some z ∈ G(Σ). By applying Proposition 2.4 again,
{x1, z} is a primitive collection. This is a contradic-
tion. Therefore, P1 ∩ P2 = ∅.

Since the Picard number of X is at least 3,
there exist at least three extremal primitive collec-
tions P1, P2 and P3. Thus, # G(Σ) ≥ 9 and the
Picard number of X is at least 4. So, we have a new
extremal primitive collection P4 and #G(Σ) ≥ 12.
We can continue this process endlessly. This is im-
possible.

By Propositions 3.1, 3.2, 3.3, 3.4 and Lemma
3.5, we complete the classification:

Theorem 3.6. Let X = XΣ be a smooth toric
Fano 5-folds of index 2. Then, X is one of the
follwing:
(1) PP2 (OP2 ⊕OP2 ⊕OP2 ⊕OP2(1)).

(2) PP4 (OP4 ⊕OP4(1)).

(3) PP4 (OP4 ⊕OP4(3)).

(4) P1 × P1 × P3.

(5) P1 × PP3 (OP3 ⊕OP3(2)).

(6) P1-bundle over PP2 (OP2 ⊕OP2 ⊕OP2(2))
whose primitive relations are x1 +x2 +x3 = x4,
x4 + x5 + x6 = x7 and x7 + x8 = 0, where
G(Σ) = {x1, . . . , x8}.

(7) P1-bundle over P2 × P2 whose primitive rela-
tions are x1 + x2 + x3 = x7, x4 + x5 + x6 = x7

and x7 + x8 = 0, where G(Σ) = {x1, . . . , x8}.
(8) P1-bundle over P2 × P2 whose primitive rela-

tions are x1 + x2 + x3 = x7, x4 + x5 + x6 = x8

and x7 + x8 = 0, where G(Σ) = {x1, . . . , x8}.
(9) P1 × P1 × PP2 (OP2 ⊕OP2(1)).

(10) P1 × P1 × P1 × P1 × P1.

Remark 3.7. There is another paper [BCDD]
in which toric Fano manifolds of higher indices are
studied. We remark that there is no explicit classi-
fied list of smooth toric Fano 5-folds of index 2 in
[BCDD].

Remark 3.8. As in Theorem 3.6, the fan of
every smooth toric Fano 5-fold of index 2 is a split-
ting fan. Moreover, if d ≤ 5 and p ≥ 2, then the fan
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of every smooth toric Fano d-fold of index p is a split-
ting fan. In section 4., we show higher dimensional
examples of toric Fano manifolds of higher indicies
which admit no projective space bundle structure.

4. Examples. In this section, we give ex-
amples of toric Fano manifolds of index 2 which ad-
mit no projective space bundle structure.

Let X = XΣ be a smooth complete toric d-fold.
For any x ∈ G(Σ) and p ∈ Z≥2, we construct a new
toric manifold H(x,p)(X) as follows:

Put N := N ⊕ Zp−1 and let
{e1, . . . , ed, ed+1, . . . , ed+p−1} be the standard
basis for N . Put z1 := ed+1, . . . , zp−1 := ed+p−1

and zp := x − (z1 + · · · + zp−1). We define a
fan Σ in N as follows: The maximal cones of Σ
are σ + R≥0zi1 + · · · + R≥0zip−1 , where σ is any
maximal cone in Σ and 1 ≤ i1 < · · · < ip−1 ≤ p.
Then, obviously, we have an extremal primitive
relation z1 + · · · + zp = x of XΣ. So, we obtain a
smooth complete toric (d + p − 1)-fold H(x,p)(X)
by the corresponding blow-down. It is obvious
that the Picard number of H(x,p)(X) is same as X .
Moreover, H(x,p)(X) has the following property:

Proposition 4.1. The primitive collections of
H(x,p)(X) are
(1) P ∈ PC(Σ), where x 
∈ P , and

(2) (P \ {x}) ∪ {z1, . . . , zp}, where P ∈ PC(Σ) and
x ∈ P .

Moreover, if x + x1 + · · · + xm = b1y1 + · · · + bnyn

is a primitive relation of X, then z1 + · · · + zp +
x1 + · · · + xm = b1y1 + · · · + bnyn is a primitive
relation of H(x,p)(X), while if x1 + · · · + xm = bx +
b1y1 + · · · + bnyn is a primitive relation of X, then
x1 + · · ·+ xm = bz1 + · · ·+ bzp + b1y1 + · · ·+ bnyn is
a primitive relation of H(x,p)(X).

Proof . The primitive collections of Σ are the
primitive collections of Σ and {z1, . . . , zp}. Then, we
can calculate the primitive collections of H(x,p)(X)
easily (see [S1, Corollary 4.9]).

Now, we can describe an example of a toric Fano
manifold of index 2 which admits no projective space
bundle structure.

Example 4.2. Let X = XΣ be the del Pezzo
surface of degree 7. The primitive relations of Σ are
x1 +x3 = x2, x1 +x4 = 0, x2 +x4 = x3, x2 +x5 = x1

and x3 + x5 = 0, where G(Σ) = {x1, x2, x3, x4, x5}.
Put

Y = Y
�Σ :=

H(x1,2)

(H(x2,2)

(H(x3,2)

(H(x4,2)

(H(x5,2) (X)
))))

.

Then, the primitive relations of Σ̃ are

x1 + x′
1 + x3 + x′

3 = x2 + x′
2, x1 + x′

1 + x4 + x′
4 = 0,

x2+x′
2+x4+x′

4 = x3+x′
3, x2+x′

2+x5+x′
5 = x1+x′

1 and

x3 + x′
3 + x5 + x′

5 = 0,

where G(Σ̃) = {x1, x2, x3, x4, x5, x
′
1, x

′
2, x

′
3, x

′
4, x

′
5}.

We remark that Y is a smooth toric Fano 7-fold of
index 2, the Picard number of Y is 3 and Y has no
projective space bundle structure.

Remark 4.3. Similarly as in Example 4.2, for
any p ∈ Z≥2, we can construct a toric Fano mani-
fold of index p which has no projective space bundle
structure.

The following is a 6-dimensional example of a
toric Fano manifold of index 2 which has no projec-
tive space bundle structure. This Fano manifold can
not be constructed from a lower-dimensional Fano
manifold as in Example 4.2.

Example 4.4. Let X = XΣ be a smooth toric
Fano 6-fold whose primitive relations are x1 + x2 +
x3 +x4 = 0, x5 +x6 +x7 +x8 = 0, x4 +x7 +x8 = x9,
x5+x6+x9 = x4 and x1+x2+x3+x9 = x7+x8, where
G(Σ) = {x1, x2, x3, x4, x5, x6, x7, x8, x9}. This is the
simplest example of a toric Fano manifold of index 2
which has no projective space bundle structure. For
a line L ⊂ P3 and a plane P ⊂ P3, X is obtained by
the blow-up of P3 × P3 along L × P .

Acknowledgments. The author would like to
thank Dr. Ichitaka Suzuno for advice and encour-
agement. He is greatful to Prof. Masa-Nori Ishida
who gave him useful comments for the construction
of Example 4.2. He also would like to thank Prof.
Cinzia Casagrande who told him about the paper
[BCDD], after he wrote the previous version of this
manuscript. Finally, he is greatful to Profs. Shige-
fumi Mori, m.j.a., and Osamu Fujino for advice and
encouragement. He is partly supported by Grant-
in-Aid for Scientific Research for JSPS Fellows, The
Ministry of Education, Science, Sports and Culture
of Japan.

References

[Ba1] V. Batyrev, On the classification of smooth pro-
jective toric varieties, Tohoku Math. J. 43
(1991), 569–585.



110 H. Sato [Vol. 82(A),

[Ba2] V. Batyrev, On the classification of toric Fano
4-folds, Algebraic Geometry, 9, J. Math. Sci.
(New York) 94 (1999), 1021–1050.

[Bo ] L. Bonavero, Toric varieties whose blow-up at a
point is Fano, Tohoku Math. J. 54 (2002), 593–
597.

[BCDD] L. Bonavero, C. Casagrande, O. Debarre and
S. Druel, Sur une conjecture de Mukai, (French)
Comment. Math. Helv. 78 (2003), 601–626.

[ C ] C. Casagrande, Contractible classes in toric vari-
eties, Math. Z. 243 (2003), 99–126.

[CO] E. Chierici and G. Occhetta, Fano five-
folds of index two with blow-up structure,
Math.AG/0607034.

[Fjn] O. Fujino, Toric varieties whose canonical divi-
sors are divisible by their dimensions, Osaka J.
Math. 43 (2006), 275–281.

[FS ] O. Fujino and H. Sato, Introduction to the toric
Mori theory, Mich. Math. J. 52 (2004), 649–
665.

[Fjt] T. Fujita, Classification theory of polarized vari-
eties, London Math. Soc. Lecture Notes Series,
vol. 155, Cambridge Univ. Press, Cambridge,
1990.

[ Fl ] W. Fulton, Introduction to toric varieties, Annals
of Mathematics Studies, 131, The William H.
Roever Lectures in Geometry, Princeton Uni-
versity Press, Princeton, NJ, 1993.

[ Kl ] P. Kleinschmidt, A classification of toric vari-
eties with few generators, Aequationes Math.
35 (1988), 254–266.

[KO] S. Kobayashi and T. Ochiai, Characterization of

complex projective space and hyperquadrics, J.
Math. Kyoto Univ. 13 (1972), 31–47.

[Me] M. Mella, Existence of good divisors on Mukai
varieties, J. Algebr. Geom. 8 (1999), 197–206.

[Mu] S. Mukai, Biregular classification of Fano 3-folds
and Fano manifolds of coindex 3, Proc. Natl.
Acad. Sci. USA 86 (1989), 3000–3002.

[NO] C. Novelli and G. Occhetta, Ruled Fano fivefolds
of index two, Math.AG/0511386.

[ O ] T. Oda, Convex bodies and algebraic geometry,
An introduction to the theory of toric varieties,
Translated from the Japanese, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Re-
sults in Mathematics and Related Areas (3)] 15,
Springer-Verlag, Berlin, 1988.

[ R ] M. Reid, Decomposition of toric morphisms,
in Arithmetic and geometry, Vol.II, 395–418,
Progr. Math., 36, Birkhäuser Boston, Boston,
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