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£-adic properties of certain modular forms

By Hyunsuk MooN *) and Yuichiro TAGUCHI **)

(Communicated by Shigefumi MORI, M.J.A., Sept. 12, 2006)

Abstract:

Nilpotence modulo powers of 3, 5 and 7 is proved for Hecke operators on the

space of certain modular forms, and is applied to the arithemtic of quadratic forms and Fourier

coefficients of modular forms.
Key words:

Conjecture.

In this paper, we prove the nilpotence modulo
powers of 3, 5 and 7 of the action of the Hecke al-
gebra on the space of certain modular forms. This
extends Theorems 1.1 and 1.2 of [11], in which the
nilpotence was proved modulo powers of 2. For a
subring O of the complex number field C, we denote
by My(To(M),e;0) (resp. Sk(To(M),e;0)) the O-
module of modular forms (resp. cusp forms) of inte-
ger weight k and Nebentypus character ¢ : (Z/MZ)*
— O* whose Fourier coefficients lie in O. Let
¢ = 2™V~ Our main result is:

Theorem 1. Let k > 1 be a positive integer.
Let (£, N) be a pair of integers which is either (3,4),
(5,2) or (7,1), and a > 0 a non-negative integer. Let
€:(Z/*NZ)* — C* be a Dirichlet character. Let
L be an algebraic number field of finite degree over
Q, with ring of integers Or. Let A be a prime ideal of
Or, lying above ¢, and denote by Of, 5 the localization
of O at \. Then there exist integers ¢ > 0 and
e > 1, depending only on 'k, ¢, N, a, €, L and )\, such
that for any modular form f(z) = >~ ja(n)q" €
Mp(To(£*N),e; 0 »), any integer t > 1, and any
¢+ et primes p1,p2, - ,Peret = —1 (mod ¢N), we
have
1) fENTp|Tpal [Ty =0 (mod X°).
Furthermore, if the primes p1,p2, -+ ,Petet are dis-
tinct, then for any positive integer m coprime to

P1,D2, s Petet, We have

(2) a(p1p2 o 'pc+etm) =0 (mod )\t)
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The constant e can be taken to be 1 if L is so large
that the actions of the Hecke operators T, on
Mp(To(¢*N),e; L) for all pt ¢N are diagonalizable.

Remark. The last condition on L is satisfied
if it contains all the Fourier coefficients of the Eisen-
stein series in My(Io(¢*N),e; C) and the newforms
in Sk(Fo(M),e; C) for all divisors M of £*N which
are divisible by the conductor of €. Note also that
the Fourier coefficients of the Eisenstein series in
Mp(To(¢*N),e;C) are contained in a cyclotomic
field.

In the case of £ = 2 ([11]), K. Ono and the
second author derived such a theorem from the non-
existence of certain 2-dimensional mod 2 representa-
tions of the absolute Galois group Gq of the rational
number field Q. In the case of £ > 3, however, we
may appeal instead to the proved part of Serre’s e-
Conjecture. Stated in the form we need, it is:

(cf. Th. 1.12 of [5]). Let £ be an
odd prime, and let p : Gq — GLa(F,) be a con-
tinuous, odd and irreducible representation. If p is
modular of some type (€“N,k,5)6 with N prime to
¢, and if we assume further that N > 1 when ¢ = 3,
then it is isomorphic to a representation of the form
X* ® p’, where x is the mod £ cyclotomic character,
0<a<{—1,andp" is modular of type (N', k', &")q
with N'|N, 2 <k <041, and &' is the “prime-to-¢
part” of €.

Theorem 2.

Here, we say that a representation p : Gq —
GLy(F) is modular of type (N, k,e)g if it comes
(by Deligne’s construction [4]) from an eigenform in
S (To(N),e;Q) (In other words, if it comes from a
mod ¢ eigenform over F, of type (N, k, €) in the sense
of Serre [13]). Note that this theorem is often stated
(as in [5]) with mod ¢ modular forms in the sense
of Katz ([7]), but when the weight is > 2 and either
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¢ >3 or N > 1, there is no distinction between mod
¢ modular forms in Serre’s sense and Katz’s sense
([5], Lemma 1.9).

In Theorem 2, that one can take p’ to be of
Serre weight ¥/ < £ + 1 follows from Theorem 3.4
of [6]. That one may assume k' > 2 is because if
p’ comes from an eigenform f of weight 1, then it
also comes from fFy_; (mod ¢), where E;_; is the
Eisenstein series of weight ¢ — 1, which has Fourier
expansion Ey_1 =1 (mod /).

Proof of Theorem 1. In proving the theo-
rem, we may replace (L,\) by a finite extension
(L', \'), at the expense of multiplying the constant e
by the ramification index. Thus we may assume L is
so large that the actions of the Hecke operators T}, on
Mi(To(¢*N),e; L) for all pt£N are diagonalizable.

Suppose first that f € Mp(To({*N),e;Or.») is
a Hecke eigenform with T)-cigenvalue a(p);

[ 1Ty = alp)f,

for each prime p { ¢N. To prove (1) with e =1 (and
with ¢ = 0 in this case), it is enough to show that

a(p)=0 (mod A\) ifp=-1 (mod¥¢N).
By Hecke (cf. Chap. 7 of [9]) and Deligne ([4]), there

exists a continuous representation
PfA - GQ — GLQ(K(/\)) — GLQ(F@)
such that

(3) Tr(pga(Froby)) = a(p) (mod N)

for each prime p 1 N, where k() denotes the residue
field of A and Frob,, denotes a Frobenius element at
p. If pg 2 is irreducible (so in particular f is not an
Eisenstein series), then by Theorem 2 it is of the form
X*®p’, where p' is modular of some type (N', k', )q
with N'|N and 2 < k' < £+ 1. But for ({,N) =
(3,4),(5,2),(7,1), there are no cusp forms of level
N and weight 2 < k/ < £+ 1. Hence pf.a must be
reducible;

P1 *
2

P~

The character 9; : Gq — FZ factors through the
group (Z/{*NZ)* for some b > 1 (cf. [3, 8]) and,
further, through the quotient (Z/¢NZ)* since F,
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has no elements of order divisible by ¢. Since py,y is
odd, if ¢ € Gq is a complex conjugation, we have

det(pya(c)) = (V1) (c) = (¥1¢3 ')(c) = —1.

Since ¢ and Frob, for p = —1 (mod ¢N) are both
mapped to —1 in (Z/¢NZ)* by the canonical map
Gq — Gal(Q(¢n)/Q) ~ (Z/¢NZ)*, we have

(¥193 1) (Frob,) = ~1

for p = —1 (mod ¢N). On the other hand, for any
o € Gq, we have

Tr(pya(0)) = P1(o) +12(0)
= ¥2(0) (Y193 ') (o) + 1)

Then it follows that, for any p = —1 (mod ¢N), we
have
Tr(ps(Froby)) = 0,

and hence by (3),

a(p) =0 (mod \).

To prove (1) with e =1 for a general f in
Mi(To(€*N),e;Or 2), let f1,..., fr be aset of Hecke
eigenforms which forms a basis of the L-vector space
My(To(¢*N),e; L) (cf. [1]). Then since the Op x-
module Y7, Op - f; is of finite index in
My (To(¢*N),e; O, ), there is an integer ¢ > 0 such
that /\CMk(FO(faN), €; OLQ\) C 22:1 Or- fi. Thus
for any f € Mp(To(¢*N),e; O »), if we write

f =

a1f1+---+a-fr witha; €L,

then we have ordy(a;) > —cforalli=1,...,r. Now
the congruence (1) follows from the case of eigen-
forms.

The congruence (2) then follows by using Propo-
sition 6.1 of [11], which we record here for the con-
venience of the reader:

Lemma 3. If a modular form f(z) =
S ga(n)g™ € My(To(M),e; 0 5) satisfies

)Ty Ty |Tp. =0 (mod A1)

for ¢ distinct primes p; t M, then one has
a(pipz---pem) =0 (mod )

for any positive integer m coprime to pips ... Ppec.
O
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Next we give some applications of Theorem 1.
The first one is to the Fourier coefficients of f-adic
modular forms. Let C; be the completion of Q with
respect to an extension to Q of the f-adic valuation of
Q, and let O¢, be the valuation ring of C,. For our
purpose, an f-adic modular form f = > a(n)q”
of weight k € Zy, tame level N and character ¢ :
(Z/ENZ)* — Og, is a power series in Og, [q] such
that, for any integer ¢ > 1, there exists a modular
form fi = 320 ar(n)g" € My, (To(t% N),& Q) in
the classical sense such that

=1

where k; is an integer > 1 with the sequence (k¢)¢>1
converging f-adically to k and a; is any integer > 0.
Theorem 1 implies:

(mod ¢%),

Corollary 4. Let ({,N) = (3,4),(5,2) or
(7,1). If f =30 pa(n)g” € Oc,lq] is an L-adic
modular form of tame level N, then for any integer
t > 1, there exists an integer ¢ > 0 such that for
any c distinct primes p1,p2,...,pc = —1 (mod ¢N)
and any positive integer m coprime to pipz - - - Pe, We
have

a(pipz---pem) =0 (mod £*).

Here, we applied Theorem 1 to each f; approx-
imating the f-adic modular form f, and so the con-
stant ¢ depends on f and ¢.

Let us look at an example coming from the
“modular invariant” j(z) = > >~ c(n)g" = ¢ ' +
7444 196884¢+21493760¢+ - - - , which is a modular
function of weight 0 and level 1. It is known ([12],
Th. 5.2) that the series

> en)g"

(F)=-1

Ji'(2) =3 cltn)q" and j (2):=
n=0

are f-adic modular forms of weight 0, tame level 1,
and trivial character. Hence Corollary 4 implies:

Corollary 5. Let £ = 3,5 or 7. For any in-
teger t > 1, there exists an integer ¢ > 0 such that
for any ¢ distinct primes p1,pa, .. .,pc = —1 (mod ¥)
and any positive integer m coprime to pipz - - - Pe, We
have

c(pip2---pem) =0 (mod ¢*)
whenever either £lm or
(E> — (_1)C Zfﬁ = 37 77
l ~1 if € =5.
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The next application is to the number of rep-
resentations of an integer by quadratic forms. Let
Q(z1,...,x) = %Zlgi,jgk a;jz;x; be a positive
definite quadratic form in k variables over Z; thus
the coefficient matrix A = (a;;) is positive definite
and is in the set Ej, of kxk symmetric matrices (a;;)
with a;; € Z and a;; € 27Z. For any integer n, let
r(Q,n) denote the number of representations of n

by Q;

r(Q,n) = #{(nq,..

ng) €ZF n=Q(n,. ..

’nk)}'

The generating function for the sequence
(r(Q;n))nz0,
JCI R SR
(n1,...,ng)EZ*
(o)
= > r(@n)q",
n=0

is called the theta series associated with the
quadratic form @ ([2], Chap. 1, §1, (1.13)). The
level M of the quadratic form @ (or of the coefficient
matrix A) is by definition the smallest positive inte-
ger M such that M A1 is in E; ([2], Chap. 1, §3).
It is known ([2], Chap. 2, Th. 2.2) that, if @Q is of
k variables and level M, then 0(z,Q) is a modular
form of weight k/2 on I'o(M) with some quadratic
character eg. By Theorem 1, we obtain:

Corollary 6. Let ((,N) = (3,4), (5,2) or
(7,1). Suppose Q is a positive definite quadratic form
over Z in an even number of variables and of level
dividing L*N for some a > 0. Then there exist inte-
gers ¢ > 0 and e > 1 such that for any integer t > 1,
any c + et distinct primes pi1,p2,...,Petet = —1
(mod £N), and any positive integer m coprime to
P1P2 "+ Petet, We have

r(Q,pip2 -+ -Pererm) =0 (mod £1).

For example, this applies to the quadratic form
Q =% + 23+ - + 23, which is of level 4.
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