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�-adic properties of certain modular forms

By Hyunsuk Moon ∗) and Yuichiro Taguchi ∗∗)

(Communicated by Shigefumi Mori, m.j.a., Sept. 12, 2006)

Abstract: Nilpotence modulo powers of 3, 5 and 7 is proved for Hecke operators on the
space of certain modular forms, and is applied to the arithemtic of quadratic forms and Fourier
coefficients of modular forms.
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In this paper, we prove the nilpotence modulo
powers of 3, 5 and 7 of the action of the Hecke al-
gebra on the space of certain modular forms. This
extends Theorems 1.1 and 1.2 of [11], in which the
nilpotence was proved modulo powers of 2. For a
subring O of the complex number field C, we denote
by Mk(Γ0(M), ε;O) (resp. Sk(Γ0(M), ε;O)) the O-
module of modular forms (resp. cusp forms) of inte-
ger weight k and Nebentypus character ε : (Z/MZ)×

→ O× whose Fourier coefficients lie in O. Let
q = e2π

√−1z. Our main result is:

Theorem 1. Let k ≥ 1 be a positive integer.
Let (�,N) be a pair of integers which is either (3, 4),
(5, 2) or (7, 1), and a ≥ 0 a non-negative integer. Let
ε : (Z/�aNZ)× → C× be a Dirichlet character. Let
L be an algebraic number field of finite degree over
Q, with ring of integers OL. Let λ be a prime ideal of
OL lying above �, and denote by OL,λ the localization
of OL at λ. Then there exist integers c ≥ 0 and
e ≥ 1, depending only on k, �, N , a, ε, L and λ, such
that for any modular form f(z) =

∑∞
n=0 a(n)qn ∈

Mk(Γ0(�aN), ε;OL,λ), any integer t ≥ 1, and any
c + et primes p1, p2, · · · , pc+et ≡ −1 (mod �N), we
have

f(z)|Tp1|Tp2 | · · · |Tpc+et ≡ 0 (mod λt).(1)

Furthermore, if the primes p1, p2, · · · , pc+et are dis-
tinct, then for any positive integer m coprime to
p1, p2, · · · , pc+et, we have

a(p1p2 · · · pc+etm) ≡ 0 (mod λt).(2)
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The constant e can be taken to be 1 if L is so large
that the actions of the Hecke operators Tp on
Mk(Γ0(�aN), ε;L) for all p � �N are diagonalizable.

Remark. The last condition on L is satisfied
if it contains all the Fourier coefficients of the Eisen-
stein series in Mk(Γ0(�aN), ε;C) and the newforms
in Sk(Γ0(M), ε;C) for all divisors M of �aN which
are divisible by the conductor of ε. Note also that
the Fourier coefficients of the Eisenstein series in
Mk(Γ0(�aN), ε;C) are contained in a cyclotomic
field.

In the case of � = 2 ([11]), K. Ono and the
second author derived such a theorem from the non-
existence of certain 2-dimensional mod 2 representa-
tions of the absolute Galois group GQ of the rational
number field Q. In the case of � ≥ 3, however, we
may appeal instead to the proved part of Serre’s ε-
Conjecture. Stated in the form we need, it is:

Theorem 2. (cf. Th. 1.12 of [5]). Let � be an
odd prime, and let ρ : GQ → GL2(F�) be a con-
tinuous, odd and irreducible representation. If ρ is
modular of some type (�aN, k, ε)Q with N prime to
�, and if we assume further that N > 1 when � = 3,
then it is isomorphic to a representation of the form
χα ⊗ ρ′, where χ is the mod � cyclotomic character,
0 ≤ α < �− 1, and ρ′ is modular of type (N ′, k′, ε′)Q
with N ′|N , 2 ≤ k′ ≤ �+ 1, and ε′ is the “prime-to-�
part” of ε.

Here, we say that a representation ρ : GQ →
GL2(F�) is modular of type (N, k, ε)Q if it comes
(by Deligne’s construction [4]) from an eigenform in
Sk(Γ0(N), ε;Q) (In other words, if it comes from a
mod � eigenform over F� of type (N, k, ε) in the sense
of Serre [13]). Note that this theorem is often stated
(as in [5]) with mod � modular forms in the sense
of Katz ([7]), but when the weight is ≥ 2 and either
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� > 3 or N > 1, there is no distinction between mod
� modular forms in Serre’s sense and Katz’s sense
([5], Lemma 1.9).

In Theorem 2, that one can take ρ′ to be of
Serre weight k′ ≤ � + 1 follows from Theorem 3.4
of [6]. That one may assume k′ ≥ 2 is because if
ρ′ comes from an eigenform f of weight 1, then it
also comes from fE�−1 (mod �), where E�−1 is the
Eisenstein series of weight � − 1, which has Fourier
expansion E�−1 ≡ 1 (mod �).

Proof of Theorem 1. In proving the theo-
rem, we may replace (L, λ) by a finite extension
(L′, λ′), at the expense of multiplying the constant e
by the ramification index. Thus we may assume L is
so large that the actions of the Hecke operators Tp on
Mk(Γ0(�aN), ε;L) for all p � �N are diagonalizable.

Suppose first that f ∈ Mk(Γ0(�aN), ε;OL,λ) is
a Hecke eigenform with Tp-eigenvalue a(p);

f |Tp = a(p)f,

for each prime p � �N . To prove (1) with e = 1 (and
with c = 0 in this case), it is enough to show that

a(p) ≡ 0 (mod λ) if p ≡ −1 (mod �N).

By Hecke (cf. Chap. 7 of [9]) and Deligne ([4]), there
exists a continuous representation

ρf,λ : GQ → GL2(κ(λ)) ↪→ GL2(F�)

such that

Tr(ρf,λ(Frobp)) ≡ a(p) (mod λ)(3)

for each prime p � �N , where κ(λ) denotes the residue
field of λ and Frobp denotes a Frobenius element at
p. If ρf,λ is irreducible (so in particular f is not an
Eisenstein series), then by Theorem 2 it is of the form
χα⊗ρ′, where ρ′ is modular of some type (N ′, k′, ε′)Q
with N ′|N and 2 ≤ k′ ≤ � + 1. But for (�,N) =
(3, 4), (5, 2), (7, 1), there are no cusp forms of level
N and weight 2 ≤ k′ ≤ � + 1. Hence ρf,λ must be
reducible;

ρf,λ ∼

ψ1 ∗

ψ2


 .

The character ψi : GQ → F
×
� factors through the

group (Z/�bNZ)× for some b ≥ 1 (cf. [3, 8]) and,
further, through the quotient (Z/�NZ)× since F

×
�

has no elements of order divisible by �. Since ρf,λ is
odd, if c ∈ GQ is a complex conjugation, we have

det(ρf,λ(c)) = (ψ1ψ2)(c) = (ψ1ψ
−1
2 )(c) = −1.

Since c and Frobp for p ≡ −1 (mod �N) are both
mapped to −1 in (Z/�NZ)× by the canonical map
GQ → Gal(Q(ζ�N )/Q) 	 (Z/�NZ)×, we have

(ψ1ψ
−1
2 )(Frobp) = −1

for p ≡ −1 (mod �N). On the other hand, for any
σ ∈ GQ, we have

Tr(ρf,λ(σ)) = ψ1(σ) + ψ2(σ)

= ψ2(σ)((ψ1ψ
−1
2 )(σ) + 1).

Then it follows that, for any p ≡ −1 (mod �N), we
have

Tr(ρf,λ(Frobp)) = 0,

and hence by (3),

a(p) ≡ 0 (mod λ).

To prove (1) with e = 1 for a general f in
Mk(Γ0(�aN), ε;OL,λ), let f1, . . . , fr be a set of Hecke
eigenforms which forms a basis of the L-vector space
Mk(Γ0(�aN), ε;L) (cf. [1]). Then since the OL,λ-
module

∑r
i=1 OL,λ · fi is of finite index in

Mk(Γ0(�aN), ε;OL,λ), there is an integer c ≥ 0 such
that λcMk(Γ0(�aN), ε;OL,λ) ⊂ ∑r

i=1 OL,λ ·fi. Thus
for any f ∈Mk(Γ0(�aN), ε;OL,λ), if we write

f = a1f1 + · · · + arfr with ai ∈ L,

then we have ordλ(ai) ≥ −c for all i = 1, . . . , r. Now
the congruence (1) follows from the case of eigen-
forms.

The congruence (2) then follows by using Propo-
sition 6.1 of [11], which we record here for the con-
venience of the reader:

Lemma 3. If a modular form f(z) =∑∞
n=0 a(n)qn ∈Mk(Γ0(M), ε;OL,λ) satisfies

f(z)|Tp1|Tp2 | · · · |Tpc ≡ 0 (mod λt)

for c distinct primes pi � M , then one has

a(p1p2 · · · pcm) ≡ 0 (mod λt)

for any positive integer m coprime to p1p2 . . . pc.
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Next we give some applications of Theorem 1.
The first one is to the Fourier coefficients of �-adic
modular forms. Let C� be the completion of Q with
respect to an extension to Q of the �-adic valuation of
Q, and let OC�

be the valuation ring of C�. For our
purpose, an �-adic modular form f =

∑∞
n=0 a(n)qn

of weight k ∈ Z�, tame level N and character ε :
(Z/�NZ)× → O×

C�
is a power series in OC�

[[q]] such
that, for any integer t ≥ 1, there exists a modular
form ft =

∑∞
n=0 at(n)qn ∈ Mkt(Γ0(�atN), ε;Q) in

the classical sense such that

f ≡ ft (mod �t),

where kt is an integer ≥ 1 with the sequence (kt)t≥1

converging �-adically to k and at is any integer ≥ 0.
Theorem 1 implies:

Corollary 4. Let (�,N) = (3, 4), (5, 2) or
(7, 1). If f =

∑∞
n=0 a(n)qn ∈ OC�

[[q]] is an �-adic
modular form of tame level N , then for any integer
t ≥ 1, there exists an integer c ≥ 0 such that for
any c distinct primes p1, p2, . . . , pc ≡ −1 (mod �N)
and any positive integer m coprime to p1p2 · · · pc, we
have

a(p1p2 · · · pcm) ≡ 0 (mod �t).

Here, we applied Theorem 1 to each ft approx-
imating the �-adic modular form f , and so the con-
stant c depends on f and t.

Let us look at an example coming from the
“modular invariant” j(z) =

∑∞
n=−1 c(n)qn = q−1 +

744+196884q+21493760q2+ · · · , which is a modular
function of weight 0 and level 1. It is known ([12],
Th. 5.2) that the series

j′(z) :=
∞∑

n=0

c(�n)qn and j−(z) :=
∑

(−n
� )=−1

c(n)qn

are �-adic modular forms of weight 0, tame level 1,
and trivial character. Hence Corollary 4 implies:

Corollary 5. Let � = 3, 5 or 7. For any in-
teger t ≥ 1, there exists an integer c ≥ 0 such that
for any c distinct primes p1, p2, . . . , pc ≡ −1 (mod �)
and any positive integer m coprime to p1p2 · · · pc, we
have

c(p1p2 · · · pcm) ≡ 0 (mod �t)

whenever either �|m or

(m
�

)
=

{
(−1)c if � = 3, 7,
−1 if � = 5.

The next application is to the number of rep-
resentations of an integer by quadratic forms. Let
Q(x1, . . . , xk) = 1

2

∑
1≤i,j≤k aijxixj be a positive

definite quadratic form in k variables over Z; thus
the coefficient matrix A = (aij) is positive definite
and is in the set Ek of k×k symmetric matrices (aij)
with aij ∈ Z and aii ∈ 2Z. For any integer n, let
r(Q,n) denote the number of representations of n
by Q;

r(Q,n) := #{(n1, . . . , nk) ∈ Zk| n = Q(n1, . . . , nk)}.

The generating function for the sequence
(r(Q,n))n≥0,

θ(z,Q) :=
∑

(n1,...,nk)∈Zk

qQ(n1,...,nk)

=
∞∑

n=0

r(Q,n)qn,

is called the theta series associated with the
quadratic form Q ([2], Chap. 1, §1, (1.13)). The
level M of the quadratic form Q (or of the coefficient
matrix A) is by definition the smallest positive inte-
ger M such that MA−1 is in Ek ([2], Chap. 1, §3).
It is known ([2], Chap. 2, Th. 2.2) that, if Q is of
k variables and level M , then θ(z,Q) is a modular
form of weight k/2 on Γ0(M) with some quadratic
character εQ. By Theorem 1, we obtain:

Corollary 6. Let (�,N) = (3, 4), (5, 2) or
(7, 1). Suppose Q is a positive definite quadratic form
over Z in an even number of variables and of level
dividing �aN for some a ≥ 0. Then there exist inte-
gers c ≥ 0 and e ≥ 1 such that for any integer t ≥ 1,
any c + et distinct primes p1, p2, . . . , pc+et ≡ −1
(mod �N), and any positive integer m coprime to
p1p2 · · · pc+et, we have

r(Q, p1p2 · · · pc+etm) ≡ 0 (mod �t).

For example, this applies to the quadratic form
Q = x2

1 + x2
2 + · · · + x2

2k, which is of level 4.
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