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Remarks on modification of Helgason’s support theorem. II
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Abstract: In this paper, we discuss modification of Helgason’s support theorem for the
Radon transform. It is essential in this theorem to assume that the function decays rapidly towards
infinity. We restrict this condition to an open cone.
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1. Introduction. In this paper, we study
unique solvability of the exterior problem for the
Radon transform. For a function f defined on Rn,
its Radon transform Rf is defined by

Rf(θ, s) :=
∫
θ⊥
f(sθ + y)dy,(1.1)

where θ ∈ Sn−1, s ∈ R, θ⊥ := {x ∈ Rn ; x ⊥ θ},
y ∈ θ⊥. (θ, s) is identified with the hyperplane

ξ = ξ(θ, s) = {x ∈ Rn ; x · θ = s}.(1.2)

Uniqueness of the exterior problem was first
studied by S. Helgason, who established the support
theorem in 1965.

Theorem 1.1 (cf. [He]). Let K be a compact
convex set in Rn and f ∈ C(Rn \K). Assume that
Rf(ξ) = 0 for ξ ∩K = ∅ and that

|x|kf(x) → 0 as |x| → ∞, for ∀k ∈ N.(1.3)

Then f(x) = 0 for x /∈ K.
In this theorem, the condition (1.3) of rapid de-

cay is indispensable. There is a famous counterex-
ample also by S. Helgason [He]. Let n = 2 and

f(x1, x2) :=
1

(x1 + ix2)α
,(1.4)

where α > 1. Change the values of f in a small
neighborhood K of the origin so that f is smooth in
R2. Consider the integrals along lines which do not
intersect K, whose values are zero by Cauchy’s in-
tegral theorem. By this argument, we conclude that
the condition (1.3) is essential for Theorem 1.1 to
hold. It is interesting to consider the case where the
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rapid decay condition is restricted to some subset of
Rn. In 1993, J. Boman [B2] tried this modification.

Claim (cf. Cor. 4 in [B2]). Let f ∈ C(Rn\K),
K be a compact convex set in Rn, Γ be an open con-
vex cone in Rn and

KΓ :=
⋂
x∈K

(x+ (Γ ∪ (−Γ))).(1.5)

Assume that

Rf(ξ) = 0 for ∀ξ ∩K = ∅,(1.6)

|x|kf(x) → 0 uniformly as |x| → ∞ in Γ,(1.7)

for ∀k ∈ N,

and that

f decays enough at infinity(1.8)

to be integrable on hyperplanes,

for instance, f(x) = O(|x|−n) as |x| → ∞. Then
f(x) = 0 in KΓ.

Though the condition (1.8) is assumed in this
claim, in Boman’s argument [B2], the condition uti-
lized was that Rf(ξ) converges absolutely and is 0
for ξ ∩K = ∅. The author [T] proved that this con-
dition is not sufficient for f(x) = 0 in KΓ. He also
modified Boman’s claim and proved it.

Theorem 1.2 (cf. [T]). Let f ∈ C(Rn \K), K
be a compact convex set in Rn and Γ be an open
convex cone in Rn. Assume (1.7),

Rf(ξ) = 0 for ∀ξ ∩KΓ 6= ∅ and(1.9)

f(x) = o(|x|−n) uniformly in x as |x| → ∞.(1.10)

Then f(x) = 0 in KΓ.
In this paper, we give a counterexample for the

condition (1.8), which shows that this condition is
not correct for Boman’s claim. We also make some
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remarks on Theorem 1.2.
2. A counterexample. In this section, we

construct an entire function f 6≡ 0 on C satisfy-
ing the following conditions. f(z) decays rapidly uni-
formly outside {1/4< (Rez)2− (Imz)2<4, Rez <0,
Imz > 0}, as |z| → ∞. The Radon transform Rf(l)
of f converges absolutely for any line l in C and
Rf(l) = 0 for any line l. Let n = 2 and we regard
R2 ∼= C. We construct an entire function g(z) 6≡ 0
defined on C satisfying the following conditions.∫

l

|g′(z)||dz| <∞, for ∀l,(2.1)

(2.2)

|z|kg(z) → 0 uniformly in z as |z| → ∞, ∀k > 0,

for z ∈ C \
{

1
4
< (Re z)2 − (Im z)2 < 4,

Re z < 0, Im z > 0
}
.

Assume that we obtain an entire function g satisfying
(2.1) and (2.2). Let f(z) := g′(z). By (2.1),

∫
l
f(z)dz

converges absolutely for any l. By (2.2) and Cauchy’s
integral theorem we obtain∫

l

f(z)dz = 0, for any l.(2.3)

Let, for example,

Γ :=
{
π

3
< arg z <

2π
3

}
,(2.4)

then f decreases rapidly in Γ, but f does not vanish
in KΓ. Therefore, what we have to do is the con-
struction of an entire function g satisfying (2.1) and
(2.2). Let

K :=
{
z ∈ C ; |z| < 5

}
,(2.5)

S :=
{

1
4
< (Re z)2 − (Im z)2 < 4,(2.6)

Re z < 0, Im z > 0
}
,

M := C \ (K ∪ S).(2.7)

Note that M is a closed subset in C and Ĉ \M is
connected and arcwise connected at infinity, where
Ĉ is the one-point compactification of C. We put

ϕ(z) := iz2 − i.(2.8)

Note that we can define 0 < argϕ(z) < 4π on M

and that logϕ(z) is defined as a single-valued holo-
morphic function on M . Consider

h(z) :=
1

ϕ(z)logϕ(z)
(2.9)

= e−(logϕ(z))2 ∈ C(M) ∩ A(M int),

ε(t) :=
1

(t2 − 1)log(t2−1)
.(2.10)

Lemma 2.1 (cf. [A], [F]). Let M be such a
closed set in C that Ĉ \M is connected and arcwise
connected at infinity in Ĉ. Assume that ε(t) ≥ 0 is
a decreasing function in t satisfying∫ ∞

1

log ε(t)
t3/2

dt > −∞.(2.11)

Then for any h(z) ∈ C(M) ∩ A(M int) there exists
such an entire function g(z) that

|h(z)− g(z)| < ε(|z|), for ∀z ∈M.(2.12)

M , h and ε defined by (2.7), (2.9) and (2.10)
satisfy the assumption of Lemma 2.1, therefore there
exists an entire function g(z) satisfying∣∣∣ 1

ϕ(z)logϕ(z)
− g(z)

∣∣∣(2.13)

<
1

(|z|2 − 1)log(|z|2−1)
for z ∈M.

Since ∣∣∣ 1
ϕ(z)logϕ(z)

∣∣∣ = e(argϕ(z))2

|ϕ(z)|log |ϕ(z)| ,(2.14)

we have g(z) 6≡ 0. In fact, assume g ≡ 0. Taking
z ∈ R yields contradiction. Also by (2.14) we have

|g(z)| ≤ e16π
2
+ 1

|ϕ(z)|log |ϕ(z)| for z ∈M.(2.15)

Therefore g(z) is rapidly decreasing in M , which im-
plies (2.2). Let z ∈M int and

d = d(z) :=
1
2

dist(z, ∂M),(2.16)

where ∂M is the boundary of M . Put L(z) :=
max|ζ−z|=d |g(ζ)| then we have

1
2
|z| ≤ |z| − d ≤ |ζ|, for |ζ − z| = d,(2.17)

since d(z) ≤ (1/2)|z|. Hence it holds by (2.15), (2.17)
and |z| ≥ 5 that

L(z) ≤ max
|ζ−z|=d

e16π
2
+ 1

(|ζ|2 − 1)log(|ζ|2−1)
(2.18)

≤ (e16π
2
+ 1)e−(log(|z|2/4−1))2
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Cauchy’s integral formula yields

|g′(z)| ≤ L(z)
d(z)

≤ e16π
2
+ 1

d(z)
e−(log(|z|2/4−1))2 .(2.19)

Since d(z) = O(1/|z|) on the most critical line
{Im z = −Re z} as −Re z = Im z → ∞, |g′(z)| is
integrable on all lines in C by (2.19). Thus we have
(2.1). Therefore, we have proved the following the-
orem, which proves that Claim in Section 1 is not
true.

Theorem 2.2. There exists an analytic func-
tion f 6≡ 0 on R2 satisfying (1.6), (1.7) and (1.8).

3. Conclusion and remarks. In this sec-
tion, we make several remarks on Theorem 1.2 and
on our counterexample established in Section 2.
First, note that our counterexample is stronger than
the one established in [T]. Our counterexample also
suggests that uniqueness of the Radon transform
does not hold without any global decay condition
even if integrals along any hyperplanes absolutely
converge. This fact was first proved by L. Zalcman
[Z]. Our argument in Section 2 is a modification of
Zalcman’s argument in [Z]. For uniqueness to hold,
it is sufficient to assume that f ∈ L1 ∩ C, which
was also mentioned in [Z]. It is interesting that simi-
lar situation arises when we study uniqueness of the
exterior problem.

Let us consider the global decay condition
(1.10).

Definition 3.1. We imbed Rn in Sn/2 by

I : x→
(

x√
1 + |x|2

,
1√

1 + |x|2

)
,(3.1)

where x ∈ Rn. By this imbedding, a function f(x)
defined on Rn is regarded as the one F (s) defined
on Sn/2, that is,

F (s) := f(I−1(s)), s = I(x) ∈ Sn/2.(3.2)

We extend F defined on Sn/2 to a function de-
fined on Sn by identifying the antipodal points; i.e.,
F (s) = F (−s), except on the equator {sn+1 = 0},
where s = (s1, . . . , sn+1) is the coordinate for Sn.
We define n− 1 form dµ(I(ξ), s) on I(ξ) by

Rf(ξ) = 2
∫
x∈ξ

F (I(x))dµ(I(ξ), I(x)),(3.3)

for f for which Rf(ξ) is well-defined.
Let ξt = {xn = t} then

Rf(ξt) = 2
∫
I(ξt)

F (s)
1

snn+1

ds,(3.4)

where ds is the n−1-dimensional surface measure on
I(ξt) ∪ (−I(ξt)). By (3.4), the measure dµ(I(ξ), s)
has singularity of the type 1/snn+1 at sn+1 = 0 for
any I(ξ).

Proposition 3.2. Assume that f(x) defined
on Rn satisfy (1.10) then

lim
sn+1→0

F (s)
snn+1

= 0.(3.5)

The proof is obtained by easy calculation. Take
f satisfying (1.10) and we have F (s) = F1(s)snn+1

with F1 ∈ C(Sn/2). Since snn+1dµ(I(ξ), s) is an an-
alytic measure in (I(ξ), s) we have∫

s∈{sn+1=0}
F (s)dµ({sn+1 = 0}, s) = 0(3.6)

and

Rf(ξ) =
∫
s∈Sξ

F (s)dµ(Sξ, s),(3.7)

where Sξ = I(ξ) ∪ (−I(ξ)). Note that we identified
dµ(I(ξ), s) = dµ(−I(ξ),−s). The condition (1.10)
implies that F (s) is not singular on {sn+1 = 0},
which gives a sufficient condition for Theorem 1.2 to
hold.

J. Boman claimed that f(x) = O(|x|−n), as
|x| → ∞, would be sufficient for Theorem 1.2 (cf.
Claim in Section 1), however, we are not able to
judge whether it is true by our argument in this pa-
per.

In Theorem 1.2, we have assumed that Γ is an
open convex cone, however, this assumption of con-
vexity is not necessary. More precisely, the following
theorem holds.

Theorem 3.3. Let f ∈ C(Rn \ K), K be a
compact convex set in Rn and Γ is an open cone in
Rn. Assume (1.7), (1.9) and (1.10). Then f(x) = 0
in KΓ̂, where Γ̂ is the convex hull of Γ.

By Theorem 1.2, f(x) = 0 in KΓ. (1.9) and
Holmgren’s uniqueness theorem [Hö] yields that
f(x) = 0 in KΓ̂ by the sweeping out method.

Theorem 1.1 accompanies Theorem 1.2, more-
over, by virtue of Theorem 1.2, it is sufficient to as-
sume (1.3) in an open cone whose convex hull is the
whole space.

Theorem 3.4. Assume that Γ be an open cone
whose convex hull Γ̂ = Rn. Let K be a compact
convex set in Rn, f ∈ C(Rn \ K). If (1.7), (1.10)
and Rf(ξ) = 0 for ξ ∩K = ∅ hold then f(x) = 0 for
x /∈ K.
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This is a generalization of Helgason’s support
theorem.

Theorem 1.1 is extended for any singular func-
tions [TK], however, we have to assume f ∈ C for
Theorems 1.2 and 3.3. If we assume (1.7) in Γ∪(−Γ),
not in Γ, then Theorems 1.2 and 3.3 also extends for
functions with singularities with a little modification
(cf. Theorem 3.6 below). We study the relation be-
tween the regularity of functions and the sufficient
decay condition for uniqueness of the exterior prob-
lem. This relation is closely related to uniqueness of
functions with microlocal analyticity.

First, let us review the proof of Theorem 1.2
(equivalently, the proofs of Theorems 3.3 and 3.4)
shortly. Assume (1.7).

∫
s∈Sξ

F (s)dµ(Sξ, s) = 0 for
any ξ ∩ K = ∅ yields that WFA(F ) ∩ N∗(Sξ) = ∅
for any ξ ∩ K = ∅ (cf. [B2]). By (1.9) and (1.10),
F (s) and its derivatives of all orders along normal
directions to {sn+1 = 0} tend to 0 as sn+1 → +0,
s ∈ I(Γ). Then we apply a local vanishing theorem
for distributions (cf. [B1] and [TT]).

Proposition 3.5. Let S ⊂ Rn be a real ana-
lytic submanifold. Assume that f is a distribution
satisfying

N∗(S) ∩WFA(f) = φ,(3.8)

where WFA(f) is the analytic wave front set of f and
N∗(S) is the conormal bundle of S. Assume also that
the restrictions to S of f and all its derivatives along
the conormal direction to S vanish, that is,

∂αξ f |S = 0 for all α,(3.9)

where (x, ξ) ∈ N∗(S). Then f = 0 in some neigh-
borhood of S.

Remark that when f is continuous, it is suffi-
cient for this proposition to assume that the bound-
ary values from one side to S of f and all its deriva-
tives vanish. Therefore, F vanishes in a neighbor-
hood of {sn+1 = 0} ∩ (I(Γ) ∪ (−I(Γ))). Holmgren’s
uniqueness theorem (cf. [Hö]) gives the theorems.

Note that for hyperfunctions, any decay condi-
tion would not imply that they are regular at infinity.
Hence we have to assume∫

sn+1=0

F (s)
1

snn+1

ds = 0(3.10)

for hyperfunctions.
Theorem 3.6. Assume the same assumptions

on Γ and K as Theorem 3.4. Let f be a Fourier
hyperfunction with defining function of the order

o(|z|−n). Suppose that as a Fourier hyperfunction
on Γ ∪ (−Γ), f decays exponentially. If Rf(ξ) = 0
for ξ∩K = ∅ and (3.10) hold then supp f is contained
in the complement of KΓ̂.

For decay conditions of hyperfunctions, confer
[K2] and [TK]. We introduce the idea of the proof of
Theorem 3.6. Rf(ξ) = 0 for ξ ∩ K = ∅ and (3.10)
imply that F is micro analytic at {sn+1 = 0} in
its conormal directions. Exponential decay of f to-
gether with the fact

WFA(F ) ∩N∗({sn+1 = 0}) = φ

yields that P (D′)F |sn+1=0 = 0, where P (D′) is
any differential operator along conormal direction to
{sn+1 = 0} with constant coefficients, the symbol
of P is an infra-exponential entire function. Hence
uniqueness of hyperfunction with analytic param-
eter [K1] and Kashiwara-Kawai’s theorem (Theo-
rem 4.4.1 in [K2]) prove the theorem. Note that
we have to assume exponential decay on Γ ∪ (−Γ),
which yields the restriction to { sn+1 = 0 } ∩
(I(Γ) ∪ (−I(Γ))) of the derivatives with any local
operator vanish. This condition is very important
for hyperfunctions. For Theorem 3.6, we shall give
details in another paper.

Remark 3.7. i) Since Proposition 3.5 holds
for non-quasi-analytic ultradistributions, Theorem
3.3 is extended for non-quasi-analytic ultradistribu-
tions with the assumptions (1.7) in Γ ∪ (−Γ), (1.9),
(1.10) and (3.10) (cf. [TT]).

ii) Proposition 3.5 does not hold for quasi-
analytic ultradistributions [B3] (then neither for hy-
perfunctions). For hyperfunctions it is sufficient to
assume that f decays exponentially in Γ ∪ (−Γ) be-
cause of the uniqueness of hyperfunctions with ana-
lytic parameters established by A. Kaneko [K1]. This
condition is replaced by the one expressed in the
terms of associated functions when we study quasi-
analytic ultradistributions. It is interesting to study
whether the decay condition in Γ∪ (−Γ) in Theorem
3.6 is weakened, which is left open.
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