Explicit representations of classes of some binary quadratic forms of discriminants $4 q^{2}+1$

By Ryūta Hashimoto
Graduate school of Human Informatics, Nagoya University, Furou-cho, Chikusa-ku, Nagoya 464-8601
(Communicated by Shokichi Iyanaga, m.J.a., Jan. 12, 1999)

Let K be the quadratic field over \mathbf{Q} of a given discriminant D. We denote the ideal class group of K by $H(D)$ and the class number of K by $h(D)$. In this paper, we give explicit representations of some reduced binary quadratic forms of discriminant $4 q^{2}+$ 1 , which will be applied to obtain some informations on $H\left(4 q^{2}+1\right)$ and $h\left(4 q^{2}+1\right)$.

1. Notations and preliminaries. For details on this section, see [3] and [4, Chap. 5].

To investigate $H(D)$, we consider the binary quadratic forms $a X^{2}+b X Y+c Y^{2} \in \mathbf{Z}[X, Y]$ of discriminant $D=b^{2}-4 a c$. Let $F(D)$ be the set of such forms. We denote $f(X, Y)=a X^{2}+b X Y+c Y^{2}$ simply by $f=[a, b, c]$, or $[a, b, *]$ since $*$ is easily calculated from a, b, and D. We say that two forms $f=[a, b, c]$ and $f^{\prime}=\left[a^{\prime}, b^{\prime}, c^{\prime}\right]$ in $F(D)$ are equivalent (denoted by $f \sim f^{\prime}$) if there exists $A \in \mathrm{SL}_{2}(\mathbf{Z})$ such that $f(X, Y)=f^{\prime}\left(X^{\prime}, Y^{\prime}\right)$, where $\binom{X}{Y}=A\binom{X^{\prime}}{Y^{\prime}}$.

We define the binary operation \circ of two forms $f_{1}=\left[a_{1}, b_{1}, c_{1}\right]$ and $f_{2}=\left[a_{2}, b_{2}, c_{2}\right]$ in $F(D)$ as follows:

$$
\begin{aligned}
f_{1} \circ f_{2} & =\left[a_{3}, b_{3}, c_{3}\right] \\
a_{3} & =\frac{a_{1} a_{2}}{e^{2}} \\
b_{3} & =b_{2}+\frac{2 a_{2}}{e}\left(v\left(s-b_{2}\right)-w c_{2}\right) \\
c_{3} & =\frac{b_{3}^{2}-D}{4 a_{3}}
\end{aligned}
$$

where $s=\left(b_{1}+b_{2}\right) / 2, e=\operatorname{gcd}\left(a_{1}, a_{2}, s\right)$, and u, v, $w \in \mathbf{Z}$ satisfy $a_{1} u+a_{2} v+s w=e$. The operation \circ is well-defined as that on $F(D) / \sim$. And we have the following Proposition:

Proposition 1. (1) $F(D) / \sim$, with \circ, is isomorphic to the ideal class group of $\mathbf{Q}(\sqrt{D})$ in the narrow sense. In particular, if $D=4 q^{2}+1$ and D is square-free, then $F(D) / \sim$ is isomorphic to $H(D)$.
(2) The forms of type $[1, *, *]$ and $[*, *, 1]$ belong to
the unit class in $F(D) / \sim$.
(3) $\left[a_{1}, b, a_{2} c\right] \circ\left[a_{2}, b, a_{1} c\right] \sim\left[a_{1} a_{2}, b, c\right]$.
$[a, b, c]$ of discriminant D is called reduced if $0<$ $b<\sqrt{D}$ and $\sqrt{D}-b<2|a|<\sqrt{D}+b$. Every class has at least one reduced form, and all the reduced forms in a class make exactly one "cycle" (For details on cycle, see [3, §3.1]).
2. Explicit representations of reduced binary quadratic forms. We have
$4 q^{2}+1=(2 q-(2 l-1))^{2}+4((2 l-1) q-l(l-1))$
for any positive integers l. So, for a positive divisor λ of $(2 l-1) q-l(l-1)$, let $C_{(2 l-1)}(\lambda)$ be an equivalence class in $F\left(4 q^{2}+1\right)$ including the form $[\lambda, 2 q-(2 l-$ $1),-\mu]$, where $\mu=((2 l-1) q-l(l-1)) / \lambda$.

Using these notations throughout this paper, we can get the cycles of reduced forms in $C_{(2 l-1)}(\lambda)$ where $l=1$ or 2 as follows.

Theorem 1. In case $l=1$, put $\mu=q / \lambda$.
$C_{1}(\lambda)$ has the following cycle of reduced forms of period 6 :

$$
\begin{aligned}
& {[\lambda, 2 q-1,-\mu] \sim\left[-\mu, b_{1}, c_{1}\right]} \\
& \sim\left[c_{1}, b_{2},-\lambda\right] \sim[-\lambda, 2 q-1, \mu] \\
& \sim\left[\mu, b_{1},-c_{1}\right] \sim\left[-c_{1}, b_{2}, \lambda\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{1}=2 q+1-2 \mu \\
& c_{1}=2 q+1-\lambda-\mu \\
& b_{2}=2 q+1-2 \lambda
\end{aligned}
$$

Theorem 2. In case $l=2$, put $\mu=(3 q-$ 2) $/ \lambda$.
(1) When $\lambda \equiv 1(\bmod 3)$ and $1<\lambda<3 q-2$, $C_{3}(\lambda)$ has the following cycle of reduced forms of period 10 :

$$
\begin{aligned}
& {[\lambda, 2 q-3,-\mu] \sim\left[-\mu, b_{1}, c_{1}\right]} \\
& \sim\left[c_{1}, b_{2},-c_{2}\right] \sim\left[-c_{2}, b_{3}, c_{3}\right] \\
& \sim\left[c_{3}, b_{4},-\lambda\right] \sim[-\lambda, 2 q-3, \mu] \\
& \sim\left[\mu, b_{1},-c_{1}\right] \sim\left[-c_{1}, b_{2}, c_{2}\right]
\end{aligned}
$$

$$
\sim\left[c_{2}, b_{3},-c_{3}\right] \sim\left[-c_{3}, b_{4}, \lambda\right]
$$

where

$$
\begin{aligned}
& b_{1}=2 q-(4 \mu-1) / 3, \\
& c_{1}=1+(\lambda-1)(4 \mu-1) / 9, \\
& b_{2}=2 q-1-2(\lambda-1)(2 \mu+1) / 9, \\
& c_{2}=q-(\lambda-1)(\mu-1) / 9, \\
& b_{3}=2 q-1-2(2 \lambda+1)(\mu-1) / 9, \\
& c_{3}=1+(4 \lambda-1)(\mu-1) / 9, \\
& b_{4}=2 q-(4 \lambda-1) / 3 .
\end{aligned}
$$

(2) When $\lambda \equiv 2(\bmod 3)$ and $2<\lambda<(3 q-2) / 2$, $C_{3}(\lambda)$ has the following cycle of reduced forms of period 6 :

$$
\begin{aligned}
& {[\lambda, 2 q-3,-\mu] \sim\left[-\mu, b_{1}, c_{1}\right]} \\
& \sim\left[c_{1}, b_{2},-\lambda\right] \sim[-\lambda, 2 q-3, \mu] \\
& \sim\left[\mu, b_{1},-c_{1}\right] \sim\left[-c_{1}, b_{2}, \lambda\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{1}=2 q-(2 \mu-1) / 3 \\
& c_{1}=q-(\lambda+1)(\mu+1) / 9 \\
& b_{2}=2 q-(2 \lambda-1) / 3
\end{aligned}
$$

(3) When $\lambda \in\{1,2,(3 q-2) / 2,3 q-2\}, C_{3}(\lambda)$ coincides with $C_{1}(*)$ as follows:

$$
\begin{gathered}
C_{3}(1)=C_{3}(3 q-2)=C_{1}(1), \\
C_{3}(2)=C_{1}(q / 2) \\
C_{3}((3 q-2) / 2)=C_{1}(2)
\end{gathered}
$$

We can also get the cycle in case $l=3$, i.e. in $C_{5}(\lambda)$, as follows.

Theorem 3. Put $\mu=(5 q-6) / \lambda$.
(1) When $\lambda \equiv 1(\bmod 5)$ and $1<\lambda<(5 q-6) / 4$, $C_{5}(\lambda)$ has the following cycle of period 10 :

$$
\begin{aligned}
& {[\lambda, 2 q-5,-\mu] \sim\left[-\mu, b_{1}, c_{1}\right]} \\
& \sim\left[c_{1}, b_{2},-c_{2}\right] \sim\left[-c_{2}, b_{3}, c_{3}\right] \\
& \sim\left[c_{3}, b_{4},-\lambda\right] \sim[-\lambda, 2 q-5, \mu] \\
& \sim\left[\mu, b_{1},-c_{1}\right] \sim\left[-c_{1}, b_{2}, c_{2}\right] \\
& \sim\left[c_{2}, b_{3},-c_{3}\right] \sim\left[-c_{3}, b_{4}, \lambda\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{1}=2 q-(4 \mu-1) / 5, \\
& c_{1}=1+(\lambda-1)(4 \mu-1) / 25, \\
& b_{2}=2 q-1-4(\lambda-1)(\mu+1) / 25, \\
& c_{2}=1+(4 \lambda+1)(\mu+1) / 25,
\end{aligned}
$$

$$
\begin{aligned}
b_{3} & =2 q-2-(4 \lambda+1)(2 \mu-3) / 25, \\
c_{3} & =q+(\lambda-1)(\mu-9) / 25, \\
b_{4} & =2 q-(6 \lambda-1) / 5 .
\end{aligned}
$$

(2) When $\lambda \equiv 2(\bmod 5)$ and $2<\lambda<(5 q-6) / 2$, $C_{5}(\lambda)$ has the following cycle of period 10 :

$$
\begin{aligned}
& {[\lambda, 2 q-5,-\mu] \sim\left[-\mu, b_{1}, c_{1}\right]} \\
& \sim\left[c_{1}, b_{2},-c_{2}\right] \sim\left[-c_{2}, b_{3}, c_{3}\right] \\
& \sim\left[c_{3}, b_{4},-\lambda\right] \sim[-\lambda, 2 q-5, \mu] \\
& \sim\left[\mu, b_{1},-c_{1}\right] \sim\left[-c_{1}, b_{2}, c_{2}\right] \\
& \sim\left[c_{2}, b_{3},-c_{3}\right] \sim\left[-c_{3}, b_{4}, \lambda\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{1}=2 q+(1-8 \mu) / 5, \\
& c_{1}=2+(\lambda-2)(8 \mu-1) / 25, \\
& b_{2}=2 q-1-2(\lambda-2)(2 \mu+1) / 25, \\
& c_{2}=(2 \lambda \mu+\lambda+\mu+13) / 25, \\
& b_{3}=2 q-1-2(2 \lambda+1)(\mu-2) / 25, \\
& c_{3}=2+(8 \lambda-1)(\mu-2) / 25, \\
& b_{4}=2 q+(1-8 \lambda) / 5 .
\end{aligned}
$$

(3) When $\lambda \equiv 3(\bmod 5), C_{5}(\lambda)$ has the following cycle of period 6 :

$$
\begin{aligned}
& {[\lambda, 2 q-5,-\mu] \sim\left[-\mu, b_{1}, c_{1}\right]} \\
& \sim\left[c_{1}, b_{2},-\lambda\right] \sim[-\lambda, 2 q-5, \mu] \\
& \sim\left[\mu, b_{1},-c_{1}\right] \sim\left[-c_{1}, b_{2}, \lambda\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{1}=2 q+(1-2 \mu) / 5, \\
& c_{1}=(2 \lambda \mu-\lambda-\mu+13) / 25, \\
& b_{2}=2 q+(1-2 \lambda) / 5 .
\end{aligned}
$$

(4) When $\lambda \equiv 4(\bmod 5), C_{5}(\lambda)$ has the following cycle of period 10 :

$$
\begin{aligned}
& {[\lambda, 2 q-5,-\mu] \sim\left[-\mu, b_{1}, c_{1}\right]} \\
& \sim\left[c_{1}, b_{2},-c_{2}\right] \sim\left[-c_{2}, b_{3}, c_{3}\right] \\
& \sim\left[c_{3}, b_{4},-\lambda\right] \sim[-\lambda, 2 q-5, \mu] \\
& \sim\left[\mu, b_{1},-c_{1}\right] \sim\left[-c_{1}, b_{2}, c_{2}\right] \\
& \sim\left[c_{2}, b_{3},-c_{3}\right] \sim\left[-c_{3}, b_{4}, \lambda\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{1}=2 q-(6 \mu-1) / 5, \\
& c_{1}=q+(\lambda-9)(\mu-1) / 25, \\
& b_{2}=2 q-2-(2 \lambda-3)(4 \mu+1) / 25,
\end{aligned}
$$

$$
\begin{aligned}
c_{2} & =1+(\lambda+1)(4 \mu+1) / 25, \\
b_{3} & =2 q-1-4(\lambda+1)(\mu-1) / 25, \\
c_{3} & =1+(4 \lambda-1)(\mu-1) / 25, \\
b_{4} & =2 q-(4 \lambda-1) / 5 .
\end{aligned}
$$

(5) When $\lambda \in\{1,2,4,(5 q-6) / 4,(5 q-6) / 2,5 q-6\}$, $C_{5}(\lambda)$ coincides with $C_{1}(*)$ or $C_{3}(*)$ as follows:

$$
\begin{gathered}
C_{5}(1)=C_{5}(5 q-6)=C_{1}(1), \\
C_{5}(2)=C_{1}(2), \\
C_{5}((5 q-6) / 2)=C_{1}(q / 2), \\
C_{5}(4)=C_{3}((3 q-2) / 4), \\
C_{5}((5 q-6) / 4)=C_{3}(4) .
\end{gathered}
$$

In comparing these reduced forms, we obtain the following results.

Theorem 4. (1) $C_{1}(\lambda) \neq C_{1}\left(\lambda^{\prime}\right)$ for $\lambda \neq \lambda^{\prime}$, except that $C_{1}(1)=C_{1}(q)$.
(2) $C_{3}(\lambda) \neq C_{3}\left(\lambda^{\prime}\right)$ for $\lambda \neq \lambda^{\prime}$, except for $C_{3}(1)=$ $C_{3}(3 q-2)$ and $C_{3}(5)=C_{3}((3 q-2) / 5)$.
(3) $C_{5}(\lambda) \neq C_{5}\left(\lambda^{\prime}\right)$ for $\lambda \neq \lambda^{\prime}$, except for $C_{5}(1)=$ $C_{5}(5 q-6)$ and $C_{5}(13)=C_{5}((5 q-6) / 13)$.
Theorem 5. (1) $C_{3}(*)$ does not coincide with $C_{1}(*)$, except for

$$
\begin{gathered}
C_{3}(1)=C_{3}(3 q-2)=C_{1}(1), \\
C_{3}(2)=C_{1}(q / 2) \\
C_{3}((3 q-2) / 2)=C_{1}(2)
\end{gathered}
$$

(2) $C_{5}(*)$ coincides with neither $C_{1}(*)$ nor $C_{3}(*)$, except for

$$
\begin{gathered}
C_{5}(1)=C_{5}(5 q-6)=C_{1}(1), \\
C_{5}(2)=C_{1}(2), \\
C_{5}((5 q-6) / 2)=C_{1}(q / 2), \\
C_{5}(3)=C_{1}(q / 3), \\
C_{5}((5 q-6) / 3)=C_{1}(3), \\
C_{5}(4)=C_{3}((3 q-2) / 4), \\
C_{5}((5 q-6) / 4)=C_{3}(4), \\
C_{5}(8)=C_{3}((3 q-2) / 8), \\
C_{5}((5 q-6) / 8)=C_{3}(8) .
\end{gathered}
$$

3. Subgroups of $\boldsymbol{H}\left(4 q^{2}+1\right)$. The foregoing results have the following corollaries:

Corollary 1. Let q be a positive integer. Assume that $4 q^{2}+1$ is square-free.
(1) Assume that $q>1$. If q is an n-th power of some integer $(n \geq 2)$, then $H\left(4 q^{2}+1\right)$ has a cyclic subgroup of order n.
(2) Assume that $q>2$. If $3 q-2$ is an n-th power of some integer $(n \geq 2)$, then $H\left(4 q^{2}+1\right)$ has a cyclic subgroup of order n.
(3) Assume that $q>3$. If $5 q-6$ is an n-th power of some integer $(n \geq 2)$, then $H\left(4 q^{2}+1\right)$ has a cyclic subgroup of order n.
To prove Corollary 1 (1), put $q=m^{n} . C_{1}\left(m^{i}\right)=$ $C_{1}(m)^{i}$ holds by Proposition 1 (3). And $C_{1}(m)^{n}=$ $C_{1}(q)$ is a unit in $F\left(4 q^{2}+1\right) / \sim$ by Proposition $1(2)$. Moreover, $C_{1}\left(m^{i}\right) \neq C_{1}\left(m^{j}\right)$ for $0 \leq i<j<n$ by Theorem 4 (1). From Proposition 1 (1), Corollary 1 (1) is proved. Corollaries 1 (2) and 1 (3) are proved likewise.

Note: Corollary 1 (1) is a special case of the fact in [6], which says that $H\left(a^{2 n}+4 b^{2 n}\right)$ has a cyclic subgroup of order n, where $a^{2 n}+4 b^{2 n}$ is a square-free positive integer.

4. Lower bounds of $h\left(4 q^{2}+1\right)$.

Corollary 2. Let q be a positive integer such that $4 q^{2}+1$ is square-free. Assume that q is big enough (say, $q \geq 30$). Then we have

$$
\begin{aligned}
h\left(4 q^{2}+1\right) \geq & (\tau(q)-1) \\
& +\left(\tau(3 q-2)-c_{3}\right) \\
& +\left(\tau(5 q-6)-c_{5}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
c_{3}= & 2+2 \delta_{2}(3 q-2)+\delta_{5}(3 q-2), \\
c_{5}= & 2+2 \delta_{2}(5 q-6) \\
& +2 \delta_{4}(5 q-6)+2 \delta_{8}(5 q-6) \\
& +2 \delta_{3}(5 q-6)+\delta_{13}(5 q-6),
\end{aligned}
$$

$\tau(q)$ is the divisor function of q, and

$$
\delta_{n}(Q)=1 \text { if } n \mid Q ; 0 \text { if } n \nmid Q .
$$

Corollary 2 follows easily from Theorems 4 and 5.

Corollary 2 is concerned with Chowla's conjecture, which says that there exist exactly $6 q$'s such that $h\left(4 q^{2}+1\right)=1$. In particular, the last inequality gives a better lower bound than the formulas given in [5] and [2].
5. Remark. One can obtain the same results as in this paper also using Amara's method in [1].

References

[1] H. Amara: Cycles canoniques d'idéaux reduits et nombre des classes de certains corps quadratique
reels. Nagoya Math. J., 103, 127-132 (1986).
[2] H. Amara: Lower bounds for the class number and the caliber of certain real quadratic fields. Tokyo J. Math., 18 no.2, 437-441 (1995).
[3] D.A. Buell: Binary Quadratic Forms: Classical Theory and Modern Computations. SpringerVerlag, New York (1990).
[4] H. Cohen: A Course in Computational Algebraic

Number Theory. GTM 138, Springer-Verlag, New York (1993).
[5] R.A. Mollin: On the divisor function and class numbers of real quadratic fields I. Proc. Japan Acad., 66A, 109-111 (1990).
[6] T. Nakahara: On real quadratic fields whose ideal class group have a cyclic p-subgroup. Rep. Fac. Sci. Engin. Saga Univ., 6, 15-26 (1978).

