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Valuation of default swap with affine-type hazard rate
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1. Introduction. The aim in this paper is
to give implements applicable to valuing “default
swap”, a kind of financial commodity called credit
derivative. Davis and Marvoidis [2], under the as-
sumption that the hazard rate is a Gaussian and
independent of the riskless spot rate, evaluated the
value of the swap by using forward measure approach
and the integral approximation. The Gaussian haz-
ard rate model has, however, an undesirable property
that it may become negative, hence, the probability
of not-default at some time may be over one. So
the author is motivated by the idea that CIR term
structure model, for example, must be effective for
modeling hazard rate.

The main result concerns the formula which
computes the expectation of the special functional
of the hazard rate, under the assumption that the
hazard rate process follows the so-called affine type
model including CIR model. It is proved by using
Itô formula and usual calculus.

2. The result. Let (Ω,F , P ) be a probabil-
ity space.

Denote by B a one dimensional standard Brow-
nian motion on the above space.

Theorem 1. Let T ∈ (0,∞).
Let ht satisfy the following stochastic differential

equation (called the affine-type model) on [0, T ].

dht = m(ht, t)dt+ σ(ht, t)dBt, h0 > 0,(1)

where m and σ are deterministic functions of the
following form:

m(x, t)=m1(t)+m2(t)x, σ(x, t)2 =σ1(t)+σ2(t)x

for deterministic functions mi(t), σi(t) (i = 1, 2)
with σ2 6= 0 and

m1(t)−m2(t)σ1(t)σ2(t)−1 ≥ 0, t ∈ [0, T ].(2)

Let β be a nonnegative real number and κ(t) be
a strictly positive deterministic continuously differ-
entiable function.

∗) The author thanks Prof. Dr. S. Kusuoka, Mr. K.
Aonuma and Dr. J. Sekine much for useful comments.

Then the following equality holds: for t ∈ [0, T ],

E[exp(−
∫ t

0

κ(s)hsds− βht)ht] = Φ(t)
G(t) + J(t)h0

K(t)

where

Φ(t) = exp(−a(t)− b(t)h0),

G(t) = −1
2
σ1(t)b(t)2 + (b(t)− β)m1(t),

J(t) = −1
2
σ2(t)b(t)2 +m2(t)b(t)+ κ(t),

K(t) = κ(t) + βm2(t)−
1
2
β2σ2(t),

and a(t), b(t) are solutions to the following differen-
tial equations:

b′(t) = − 1
2σ2(t)b(t)2 +m2(t)b(t) + κ(t)

a′(t) = − 1
2σ1(t)b(t)2 +m1(t)b(t)

a(0) = 0, b(0) = β.

(3)

Remark. The condition (2) guarantees the ex-
istence of a solution h to the SDE (1) with ht ≥
−σ1(t)σ2(t)−1 for all t ∈ [0, T ]. (See Duffie [3].) In
particular, by assuming σ1 = 0, the positive solution
is achieved.

To begin with, we state the following crucial
proposition without proof.

Proposition 2. Assume ht satisfies (1) in
Theorem 1.

For any non-negative β and strictly positive
function κ(t), we have

E[exp(−βht −
∫ t

0

κ(s)hsds)]

= exp(−a(t)− b(t)h0),

where a(t) and b(t) are solutions of (3).
It goes without saying that if a(t) and b(t) have

an explicit form as a function of β (see Example 3),
the result in the theorem can be easily achieved by
differentiating exp(−a(t)−b(t)h0) in β. Now we give
the proof of Theorem 1 applicable to other general
cases.

Proof . Let a and b be solutions to (3). Now
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we define Φ(t) by

Φ(t) = E[exp(−
∫ t

0

κ(s)hsds− βht)]

= exp(−a(t)− b(t)h0),

Thanks to Itô’s formula and usual calculus,Z T

0

(1 +
1

κ(t)
[βm2(t)−

1

2
β2σ2(t)])I(t)dt

=
e−β(0)h0

κ(0)
− 1

κ(T )
Φ(T )

+

Z T

0

1

κ(t)2
[κ(t){1

2
β2σ1(t)−βm1(t)}−κ′(t)]Φ(t)dt,

where I(t) = E[exp(−
∫ t

0

κ(s)hsds − βht)ht]. By

differentiating the both sides in T and noting that
Φ′(t) = Φ(t)(−a′(t)−b′(t)h0), we complete the proof.

Example 3. For a financial application, we
give as an example the CIR type:

dht = (a− bht)dt+ σ
√
htdBt, h0 > 0.

Let β be a nonnegative real number and κ be a con-
stant with 0 < κ < 1.

Since, in this case, the equations (3) have ex-
plicit analytic solutions, it follows that

E[exp(−
∫ t

0

κhsds− β(t)ht)] = Φ(t),

E[exp(−
∫ t

0

κhsds− β(t)ht)ht]

= Φ(t)
(2a(eγκt − 1)

Ψ(t)
+

4h0γ
2
κe

γκt

Ψ(t)2
)
,

where

Φ(t)=exp(−aφ(t)− h0ψ(t)),

φ(t)=− 2
σ2

log
2γκe

γκ+b
2 t

Ψ(t)
,

ψ(t)=
β(t)(γκ+b+eγκt(γκ−b))+2κ(eγκt−1)

Ψ(t)
,

Ψ(t)=σ2β(t)(eγκt − 1)+γκ−b+eγκt(γκ+b),

γκ=
√
b2 + 2σ2κ.

3. Default swap valuation.
3.1. Mathematical model. Let

(Ω,F , P ) be a probability space. Let 0 < T <∞ be
a finite time horizon.

In view of finance, we regard P as a risk neutral
measure, meaning that all the discounted asset prices
are martingales under the probability measure P .

Let (Gt)t∈[0,T ] be a two dimensional Brownian
filtration.

We fix 2-dimentional (P, (Gt)t∈[0,T ])-Brownian
motion (B, B̃), that is, (Gt)t∈[0,T ] is the smallest
complete, right-continuous filtration to which both
B and B̃ are adapted.

Denote by τ : Ω −→ [0,∞] a random time with
continuous distribution. We will regard it as the de-
fault time of the issuer of the underlying bond for a
swap.

Set Ft =
⋂

s>t(Gs ∨ σ{τ ∧ s}).
Then (Ft) is a right-continuous filtration and τ

is an (Ft)-stopping time.
Let r be a nonnegative (Gt)- progressively mea-

surable process.
We assume that r is independent of B, that is,

r depends upon only B̃. r is considered as riskless
spot rate process. Then for t, s ∈ [0, T ] with t ≤ s,

Z(t, s) = E[exp(−
∫ s

t

rudu)|Gt]

is regarded as the price at time t of s-maturity risk-
less zero-coupon bond.

We assume that there is a nonnegative (Gt)- pro-
gressively measurable process h that makes

Mt = 1{t≥τ} −
∫ t

0

hs1{τ>s}ds

a (P, (Ft))-martingale. We call this process h the
hazard rate process.

Set H(t) = exp(−
∫ t

0

hsds).

Furthermore we assume that each
(P, (Gt)t∈[0,T ])-martingale is also (P, (Ft)t∈[0,T ])-
martingale.

Under the above settings, Duffie et al.([4]) and
Kusuoka([6]) show that the following result holds.

Proposition 4. If 0 ≤ t < s ≤ T and Z is a
Gs-measurable bounded random variable, then

E[Z1{τ>s}|Ft] = 1{τ>t}E[Z exp(−
∫ s

t

hudu)|Gt].

We will also utilize the next corollaries of the
last proposition.

Corollary 5. For all t ∈ [0, T ],

P (τ > t) = E[H(t)].

Corollary 6. For any bounded (G)[0,T ]-



No. 3] Valuation of default swap with affine-type hazard rate 45

predictable process Z,

E[Zτ1{τ≤T}] = E[
∫ T

0

ZthtH(t)dt],

Moreover we suppose that ht satisfies the affine
type SDE (1): h0 > 0 and

dht = m(ht, t)dt+ σ(ht, t)dBt,

where B is the Brownian motion independent of B̃,
fixed before.

Remark. We immediately see that r and h are
independent.

3.2. Formal definition of a default swap.
Now we consider the valuation of default swap follow-
ing the scheme proposed by Davis and Mavroidis [2].

We begin with confirmation of the rule of default
swap. It sounds so complicated, but it is indeed not
so complicated. It is a contract made between two
parties — one is a firm which holds a defaultable
bond (called “A”) and the other is a bank (called
“B”), for example. (We will call “C” the issuer of
the bond held by “A”.)
a) T is the contract termination date. If the de-

fault of “C” occurs before T , the contract is then
stopped.

b) “A” have to pay for “B” a fixed premium ci (i =
1, · · · , n) at each fixed time ti (i = 1, · · · , n, 0 ≤
t1 < · · · < tn ≤ T ). (The fixed side)

c) “B” pays the differential between the notional
(we set 1) and some recovered amount from “C”
for “A” if the default of “C” occurs before T .
Here we define the recovered amount from “C”
by L× (the immediate pre-default value of the
bond), where L is a constant with 0 < L < 1.
(The recovery side)

d) The underlying bond that “A” holds allows a
fixed coupon bj (j = 1, 2, · · · ) at each fixed time
uj (j = 1, 2, · · · , 0 ≤ u1 < u2 < · · · ) unless the
default happens.
Remark. The ways of defining the recovered

amount from the bond issuer are variously consid-
ered. Here we follow the way Duffie et al. uses.

3.3. The value of fixed side. The current
value of the fixed side is defined by

E[
n∑

i=1

ci exp(−
∫ ti

0

rudu)1{ti<τ}].

By using Corollary 5,

E[
n∑

i=1

ci exp(−
∫ ti

0

rudu)1{ti<τ}]

=
n∑

i=1

ciZ(0, ti)E[H(t)].

The expectation in right-hand can be calculated by
using Proposition 2.

3.4. The value of recovery side. We de-
fine

Y (t)=E[
∑
ui≥t

bi exp(−
∫ ui

t

{rs+(1− L)hs}ds)|Ft].

Indeed Y (t) is naturally allowed to be regarded as
the cum-coupon value of the underlying defaultable
bond. It is thought that the fixed side can recover
LY (τ), where τ is seen as the default time of the
bond issuer.

Hence we define the value of the recovery side
by

E[exp(−
Z τ

0

rsds)(1− LY (τ))1{τ≤T}]

= E[exp(−
Z τ

0

rsds)1{τ≤T}]

−LE[exp(−
Z τ

0

rsds)Y (τ)1{τ≤T}].

Using Corollary 6,

E[exp(−
∫ τ

0

rsds)1{τ≤T}]

=
∫ T

0

Z(0, t)E[htH(t)]dt.(4)

On the other hand, using Corollary 6 once again,

E[exp(−
∫ τ

0

rsds)Y (τ)1{τ≤T}]

= E[
∫ T

0

exp(−
∫ t

0

rsds)Y (t)htH(t)dt]

=
∑

j

bjZ(0, uj)
∫ T∧uj

0

F (t, uj)dt,

where F (t, uj) stands for

E[htH(t) exp(−
∫ uj

t

hsds)(1−L)]

= E[htH(t)E[exp(−
∫ uj

t

(1−L)hsds)|Gt]]

= E[htH(t) exp(−ã(uj−t)−b̃(uj−t)ht)].(5)

The second equality is due to the Markov property



46 H. Nakagawa [Vol. 75(A),

of h. ã(t) and b̃(t) are solutions of equations similar
to (3).

When b̃ is positive on [0, T ], it follows that each
expectation part in (4) and (5) can be calculated
along Theorem 1.

As a result, these lead to the explicit formula for
the current values of both the fixed and the recovery
side of the default swap in the sense that it only re-
mains to solve some ordinary differential equations.
We avoid the full description because of its compli-
cation.

References

[ 1 ] K. Aonuma and H. Nakagawa: Valuation of Credit

Default Swap and Parameter Estimation for
Vasicek-type Hazard Rate Model. Working pa-
per, the University of Tokyo (1998).

[ 2 ] M. Davis and T. Mavroidis: Valuation and Poten-
tial Exposure of Default Swaps. Technical NOTE,
Tokyo-Mitsubishi International pk (1997).

[ 3 ] D. Duffie: Dynamic Asset Pricing Theory 2nd ed.
Princeton University Press (1996).

[ 4 ] D. Duffie and K. Singleton: Modeling Term Struc-
tures of Defaultable Bonds. Working paper, Stan-
ford University (1994).

[ 5 ] D. Lamberton and B. Lapeyre: Introduction
to Stochastic Calculus Applied to Finance.
Chapman-Hall (1996).

[ 6 ] S. Kusuoka: A Remark on default risk models
Models. Adv. Math. Econ., 1, 69-82 (1999).


