A condition of quasiconformal extendability

By Yasuhiro Gotof ${ }^{*)}$ and Masahiko Taniguchi**
(Communicated by Shigefumi Mori, M. J. A., April 12, 1999)

Recently, Heinonen and Koskela showed, as a corollary of their deep result, the following extension theorem.

Proposition 1 ([3], 4.2 Theorem). Suppose that f is a quasiconformal map of the complement of a closed set E in \mathbf{R}^{n} into $\mathbf{R}^{n}, n \geq 2$, and suppose that each point $x \in E$ has the following property: there is a sequence of radii $r_{j}, r_{j} \rightarrow 0$ as $j \rightarrow \infty$, such that the annular region $B\left(x, a r_{j}\right)-B\left(x, r_{j} / a\right)$ does not meet E for some $a>1$ independent of j. Then f has a quasiconformal extension to $\hat{\mathbf{R}}^{n}=\mathbf{R}^{n} \cup\{\infty\}$. Moreover, the dilatation of the extension agrees with the dilataiton of f.

There, they remarked that this result may be new even for conformal maps in the plane. So it is noteworthy to give a different proof of a more general extension theorem on 2-dimensional quasiconformal maps of the plane based on some classical results in the function theory.

We begin with the following definition, which weakens the condition in the above theorem to a conformally invariant one.

Definition. We say that a closed set E in the complex plane is annularly coarse if each point $x \in E$ has the following property: there is a sequence of mutually disjoint nested annuli $\left\{R_{k}\right\}_{k=1}^{\infty}, R_{k} \cap E=\phi$, such that the modulus $m\left(R_{k}\right)$ of R_{k} satisfies

$$
m\left(R_{k}\right) \geq c
$$

with a positive c. Here we say that a sequence of annuli $\left\{R_{k}\right\}_{k=1}^{\infty}$ is nested if every $R_{k}(k>1)$ separates R_{k-1} from x.

Also note that the positive constant c can depend on x.

Now we will prove the following
Theorem 2. Suppose that f is a quasiconformal map of the complement of a closed set E in the complex plane \mathbf{C} into \mathbf{C} and suppose that E is an-

[^0]nularly coarse. Then f has a quasiconformal extension to $\hat{\mathbf{C}}$. Moreover, the dilatation of the extension agrees with the dilataiton of f.

1. Known facts and basic lemmas. In 2dimensional case, we have the following

Proposition 3. Let E be a compact set in \mathbf{C}. Then the following conditions are mutually equivalent.

1) Every conformal map of $D=\mathbf{C}-E$ is the restriction of a Möbius transformaiton.
2) Every quasiconformal map of $D=\hat{\mathbf{C}}-E$ has a quasiconformal extension to the whole $\hat{\mathbf{C}}$.
3) For every relatively compact neighborhood U of E, every quasiconformal map of $U-E$ has a quasiconformal extension to U.
Proof . First assume the condition 1) and take any quasiconformal map f of $D=\mathbf{C}-E$. Here we may assume that $f(\infty)=\infty$. Let μ be the Beltrami coefficient of f^{-1} on $f(\mathbf{C}-E)$. Set $\mu=0$ on \mathbf{C} -$f(\mathbf{C}-E)$, and we have a quasiconformal map g of $\hat{\mathbf{C}}$ with the complex dilatation μ (cf. [2] and [4]). Then, $g \circ f$ has vanishing complex dilatation on \mathbf{C} E, and hence the assumption implies that it is a Möbius transformation T. Thus f can be extended a quasiconformal map $g^{-1} \circ T$ of the whole $\hat{\mathbf{C}}$.

Next assume the condition 2) and take a relatively compact neighborhood U of E and a quasiconformal map f of $U-E$ arbitrarily. Since E is compact, the famous extention theorem ([6] II Theorem 8.1) gives a neighborhood V of E in U and a quasiconformal map g of $\hat{\mathbf{C}}-E$ which coincides with f on $V-E$. Then the assumption implies that g can be extended to a quasiconformal map of $\hat{\mathbf{C}}$, which clearly gives a quasiconformal extension of f to U.

Finally, assume the condition 3) and take any conformal map f of $D=\mathbf{C}-E$. Then f can be extended to a quasiconformal map g of \mathbf{C}. Hence if E has vanishing area, then this g is actually conformal, and hence is a Möbius transformation. If not, consider the extremal (horizontal) slit map h of $\mathbf{C}-E$. Then h should be extended a quasiconformal map of \mathbf{C}. But this is impossible, for $\mathbf{C}-f(\mathbf{C}-E)$ has
vanishing area by Koebe's uniformization theorem.

Remark. Koebe's uniformization theorem asserts that every planar domain Ω can map conformally onto the complement of some union of horizontal slits and points whose total area vanishes. And an example of such univalent holomorphic maps are the extremal slit maps (See for instance, [5]).

As a condition which assures these extension properties, we know the following; we say that a compact set E has absolutely vanishing area if $\mathbf{C}-g(\mathbf{C}-E)$ has vanishing area for every univalent holomorphic map g of $\mathbf{C}-E$.

Actually, the following fact is classically wellknown.

Lemma 4. Let E be a compact set in \mathbf{C} with absolutely vanishing area. Then every conformal map of $D=\mathbf{C}-E$ is the restriciton of a Möbius transformation.

Proof. Ahlfors and Beurling ([2] showed that D belongs to $O_{A D}$ if and only if E has absolutely vanishing area, which is also equivalent the condition 1) in Proposition 3 (Also see [8] VI and [7] I §2).

Now, it is clear from the definition that an annularly coarse compact set is totally disconnected (or even absolutely disconnected). Furthermore, we see the following

Lemma 5. Every annularly coarse compact set E has absolutely vanishing area.

Proof. It suffices to show that E has vanishing area. For this purpose, fix a point $a \in E$ arbitrarily. Then there is a sequence of mutually disjoint nested annuli R_{k} such that $m\left(R_{k}\right) \geq c$ for every k with a positive constant c.

Let d_{k} be the diameter of the bounded component F_{k} of $\mathbf{C}-R_{k}$. Then we can find a positive constant η (depending only on c) such that $R_{k} \cap B\left(a, 2 d_{k}\right)$ contains a ball B_{k} with radius ηd_{k}, where and in the sequel, we set $B(a, r)=\{|z-a| \leq$ $r\}$.

For the sake of convenience, we include a direct proof of this assertion. Let A_{k} be the distance between F_{k} and $F_{k}^{\prime}=\mathbf{C}-\left(F_{k} \cup R_{k}\right)$, and $z_{k} \in F_{k}$ and $z_{k}^{\prime} \in F_{k}^{\prime}$ satisfy $\left|z_{k}-z_{k}^{\prime}\right|=A_{k}$. Also take two points $w_{k}, w_{k}^{\prime} \in F_{k}$ satisfing $\left|w_{k}-w_{k}^{\prime}\right|=d_{k}$. Further we may assume that $\left|w_{k}-z_{k}\right| \geq d_{k} / 2$. Then R_{k} separates w_{k} and z_{k} from z_{k}^{\prime} and ∞, and hence

$$
T_{k}(z)=-\frac{z-z_{k}}{w_{k}-z_{k}}
$$

maps R_{k} onto a region admissible to the extremal problem of Teichmüller (see [2]). Under the notation of [2], we have

$$
\begin{aligned}
c & <M\left(R_{k}\right) \leq \frac{1}{2 \pi} \log \Psi\left(\left|\left(z_{k}-z_{k}^{\prime}\right) /\left(z_{k}-w_{k}\right)\right|\right) \\
& \leq \frac{1}{2 \pi} \log \Psi\left(2 A_{k} / d_{k}\right)
\end{aligned}
$$

and since $\log \Psi(x) \rightarrow 0$ as $x \rightarrow 0$, we can find a positive $\eta=\eta(c)$ such that

$$
A_{k} \geq \eta 2 d_{k}
$$

for every k, which gives the assertion.
Now set $r_{k}=2 d_{k}$ for every k, and we have

$$
\frac{\operatorname{Area}\left(E \cap B\left(a, r_{k}\right)\right)}{\operatorname{Area}\left(B\left(a, r_{k}\right)\right)}<1-\frac{\pi\left(\eta d_{k}\right)^{2}}{\pi r_{k}^{2}}=1-\frac{\eta^{2}}{4}
$$

This implies that a is not a density point of E. Since a is arbitrary, we conclude that the area of E vanishes.
2. Proof of Theorem 2. First fix an annularly coarse closed set E arbitrarily. For every n, set $E_{n}=E \cap B(0, n)$. Then every E_{n} is compact and the assumption implies that there is a neighborhood U_{n} of E_{n} such that the boundary of U_{n} is a comapct set in $D=\mathbf{C}-E$.

Let f be a quasiconformal map of $\mathbf{C}-E$. Then Proposition 3 implies that f can be extended uniquely to a quasiconformal map, say f_{n}, of $\mathbf{C}-E \cap$ $U_{n}{ }^{c}$ and the maximal dilataiton of f_{n} is the same as that of f by Lemma 5 .

Since K-quasiconformal maps are sequencially compact, we conclude that f has a desired extension to the whole \mathbf{C}.

References

[1] L. Ahlfors: Lectures on Quasiconformal Mappings. Van-Nostland (1966).
[2] L. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null-sets. Acta Math., 83, 101-129 (1950).
[3] J. Heinonen and P. Koskela: Definition of quasiconformality. Invent. Math., 120, 61-79 (1995).
[4] Y. Imayoshi and M. Taniguchi: An Introduction to Teichmüller Spaces. Springer-Verlag (1991).
[5] Y. Kusunoki: Theory of Abelian integrals and its applications to conformal mappings. Mem. Coll. Sci. Univ. Kyoto (Math.), 32, 235-258 (1959); 33, 429-433 (1961).
[6] O. Lehto and K. Virtanen: Quasiconformal Mappings in the Plane. Springer-Verlag (1973).
[7] L. Sario and M. Nakai: Classification Theory of Riemann Surfaces. Springer-Verlag (1970).
[8] L. Sario and K. Oikawa: Capacity Functions. Springer-Verlag (1969).

[^0]: *) Department of Mathematics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 2398686.
 **) Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8501.

