The unitary part of class \mathcal{F} contractions

By Takashi Yoshino
Mathematical Institute, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578
(Communicated by Heisuke Hironaka, m. J. a., April 12, 1999)

Abstract

We say that a bounded linear operator T on a Hilbert space \mathcal{H} belongs to the class \mathcal{F} if T satisfies the following Fuglede's property that, for a given isometry W on $\mathcal{H}, S W^{*}=T S$ for some bounded linear operator S on \mathcal{H} always implies $S W=T^{*} S$. Such class is wider than the class of paranormal contractions, the class of dominant operators and the class \mathcal{Y} which was introduced in [4]. In this paper, we prove that, for the class \mathcal{F} contraction T on \mathcal{H}, the positive square root $A_{T^{*}}$ of the strong limit of $T^{n} T^{* n}$ is the projection from \mathcal{H} onto $\mathcal{H}_{T}^{(u)}$ on which the unitary part of T acts.

Key words: contraction; unitary part; hyponormal operators; paranormal operators; dominant operators.

1. Introduction. It is known that, for a contraction T (i.e., $\|T\| \leq 1$) on a Hilbert space \mathcal{H},

$$
\begin{aligned}
& \mathcal{H}_{T}^{(u)} \stackrel{\text { def }}{=}\left\{x \in \mathcal{H} ;\left\|T^{k} x\right\|=\|x\|=\left\|T^{* k} x\right\|\right. \\
&\quad \text { for all } k=1,2, \cdots\} \\
&= \cap \\
& k=1
\end{aligned}\left\{x \in \mathcal{H} ; T^{* k} T^{k} x=x=T^{k} T^{* k} x\right\}, ~ l
$$

is the maximal reducing subspace on which its restriction is unitary and that the projection from \mathcal{H} onto $\mathcal{H}_{T}^{(u)}$ belongs to the centre of $\mathcal{R}(T)$, where $\mathcal{R}(T)$ is the von Neumann algebra generated by T. The unitary operator $\left.T\right|_{\mathcal{H}_{T}^{(u)}}$ is called the unitary part of T.

If T is a contraction, then $\left\|T^{n+1} x\right\| \leq\left\|T^{n} x\right\|$ for all $x \in \mathcal{H}$ and the sequence $\left\{T^{* n} T^{n}\right\}$ is monotonically decreasing and hence it converges to a positive contraction $A_{T}{ }^{2}$ strongly and $T^{*} A_{T}{ }^{2} T=A_{T}{ }^{2}$. By using the unique positive square root A_{T} of $A_{T}{ }^{2}$, we can represent $\mathcal{H}_{T}^{(u)}$ as follows:

$$
\begin{aligned}
\mathcal{H}_{T}^{(u)} & =\left\{x \in \mathcal{H} ;\left\|A_{T} x\right\|=\left\|A_{T^{*}} x\right\|=\|x\|\right\} \\
& =\left\{x \in \mathcal{H} ; A_{T}^{2} x=A_{T^{*}}{ }^{2} x=x\right\} \\
& =\mathcal{N}_{I-A_{T}} \cap \mathcal{N}_{I-A_{T^{*}}},
\end{aligned}
$$

where \mathcal{N}_{B} denotes the null space of the operator B.
It is clear that $\mathcal{N}_{A_{T}}=\left\{x \in \mathcal{H}: A_{T} x=0\right\}$ and

$$
\mathcal{N}_{I-A_{T}}=\left\{x \in \mathcal{H}: A_{T} x=x\right\}
$$

[^0]$$
=\left\{x \in \mathcal{H}:\left\|T^{n} x\right\|=\|x\|, n=1,2, \cdots\right\}
$$
are invariant under T and $\left.T\right|_{\mathcal{N}_{I-A_{T}}}$ is an isometry and
$$
\mathcal{N}_{A_{T}-A_{T}{ }^{2}}=\mathcal{N}_{A_{T}} \oplus \mathcal{N}_{I-A_{T}}
$$

In [3], C. R. Putnam proved the following.
Proposition. If T is a hyponormal (i.e., $T^{*} T \geq T T^{*}$) contraction on \mathcal{H}, then $A_{T^{*}}$ is the projection from \mathcal{H} onto $\mathcal{H}_{T}^{(u)}$.

This result is generalized in the each case where T is a paranormal (i.e., $\|T x\|^{2} \leq\left\|T^{2} x\right\|\|x\|$ for all $x \in \mathcal{H}$) contraction by K. Ôkubo [2] and where T is a dominant (i.e., $(T-z I) \mathcal{H} \subseteq(T-z I)^{*} \mathcal{H}$ for all $z \in \sigma(T)$, where $\sigma(T)$ denotes the spectrum of T) contraction by [6] respectively.

In this paper we shall show that Proposition is generalized for the more wide class of contractions defined as follows.

Definition 1. If a bounded linear operator T on \mathcal{H} satisfies the following Fuglede's property that, for a given isometry W on $\mathcal{H}, S W^{*}=T S$ for some bounded linear operator S on \mathcal{H} always implies $S W=T^{*} S$, then we say that T belongs to the class \mathcal{F} and denotes $T \in$ the class \mathcal{F}.

It is known that the paranormal contractions and also the dominant operators belong to the class \mathcal{F} by E. Goya and T. Saitô [1] and by [5] respectively.

In [4], we defined the following class of opera-
tors.
Definition 2. For a bounded linear operator T on \mathcal{H}, we say that T belongs to the class \mathcal{Y}_{α} for some $\alpha \geq 1$ if there is a positive number K_{α} such that

$$
\begin{aligned}
&\left|T^{*} T-T T^{*}\right|^{\alpha} \leq K_{\alpha}{ }^{2}(T-z I)^{*}(T-z I) \\
& \text { for all } z \in \mathbf{C}
\end{aligned}
$$

where $|B|$ denotes the absolute value $\left(B^{*} B\right)^{\frac{1}{2}}$ of the operator B and \mathbf{C} denotes the set of all complex numbers. It is known that, for each α, β such as $1 \leq \alpha<\beta, \mathcal{Y}_{\alpha} \subseteq \mathcal{Y}_{\beta}$ and we say that the operator in $\mathcal{Y}=\cup_{\alpha \geq 1} \mathcal{Y}_{\alpha}$ is the class \mathcal{Y} operator.

It is also known that the class \mathcal{Y} operators belong to the class \mathcal{F} by [4]. Each class of operators, that is, the class of paranormal operators, the class of dominant operators and the class \mathcal{Y}, contains the hyponormal operators but these classes are mutually distinct.
2. Preliminaries. Throughout this section, let T be a contraction on \mathcal{H}. Firstly we shall study the general properties of A_{T}.

Lemma 1. For any positive integer n, $\left\|A_{T} T^{n} x\right\|=\left\|A_{T} x\right\| \geq\left\|T^{* n} A_{T} x\right\|$ for all $x \in \mathcal{H}$ and $A_{T} T^{n}$ is hyponormal.

Proof. For any $x \in \mathcal{H}$, we have

$$
\begin{aligned}
\left\|A_{T} T^{n} x\right\|^{2} & =\left\langle T^{* n} A_{T}{ }^{2} T^{n} x, x\right\rangle=\left\langle A_{T}{ }^{2} x, x\right\rangle \\
& =\left\|A_{T} x\right\|^{2} \geq\left\|T^{* n} A_{T} x\right\|^{2} .
\end{aligned}
$$

Let $A_{T} T=V_{T} A_{T}$ be the polar decomposition of $A_{T} T$. Then V_{T} is a partial isometry and $\mathcal{N}_{V_{T}}=$ $\mathcal{N}_{A_{T}}$.

Lemma 2. $\left[A_{T} \mathcal{H}\right]^{\sim}$ reduces V_{T} where" " " denotes the closure. And hence the restriction $\left.V_{T}\right|_{\left[A_{T} \mathcal{H}\right] \sim}$ is an isometry because $\mathcal{N}_{V_{T}}=\mathcal{N}_{A_{T}}$.

Proof. Since $A_{T} T=V_{T} A_{T},\left[A_{T} \mathcal{H}\right]^{\sim}$ is invariant under V_{T} and since $\mathcal{N}_{V_{T}}=\mathcal{N}_{A_{T}}, \mathcal{N}_{A_{T}}$ is invariant under V_{T}. Therefore $\left[A_{T} \mathcal{H}\right]^{\sim}$ reduces V_{T}.

Lemma 3. A necessary and sufficient condition that A_{T} is the projection from \mathcal{H} onto $\mathcal{H}_{T}^{(u)}$ is that $A_{T} T$ is normal.

Proof . Assume that $A_{T} T$ is normal. Since
$A_{T} T$ is normal
$\Leftrightarrow\left\|T^{*} A_{T} x\right\|=\left\|A_{T} x\right\|$
for all $x \in \mathcal{H} \quad$ (by Lemma 1)
$\Leftrightarrow T T^{*} A_{T} x=A_{T} x$
for all $x \in \mathcal{H} \quad$ (because T is a contraction)

$$
\Leftrightarrow T T^{*} A_{T}=A_{T},
$$

we have

$$
T A_{T}^{2}=T T^{*} A_{T}^{2} T=A_{T}{ }^{2} T
$$

and A_{T} commutes with T. And then

$$
T^{* n} T^{n} A_{T}{ }^{2}=T^{* n} A_{T}^{2} T^{n}=A_{T}{ }^{2}
$$

and $A_{T}{ }^{4}=A_{T}{ }^{2}$ and hence A_{T} is a projection.
For any $x \in \mathcal{H}_{T}^{(u)}, x=A_{T}{ }^{2} x \in A_{T} \mathcal{H}$ and $\mathcal{H}_{T}^{(u)} \subseteq$ $A_{T} \mathcal{H}$.

For any $x \in \mathcal{H}$ and for each $n=1,2, \cdots$,

$$
\left\|T^{n} A_{T} x\right\|=\left\|A_{T} T^{n} x\right\|=\left\|A_{T} x\right\| \quad \text { by Lemma } 1
$$

and

$$
\begin{aligned}
\left\|T^{* n} A_{T} x\right\| & =\left\|T^{*} A_{T} T^{* n-1} x\right\|=\left\|A_{T} T^{* n-1} x\right\| \\
& =\left\|T^{*} A_{T} T^{* n-2} x\right\|=\left\|A_{T} T^{* n-2} x\right\| \\
& =\cdots=\left\|A_{T} x\right\|
\end{aligned}
$$

and hence $A_{T} \mathcal{H} \subseteq \mathcal{H}_{T}^{(u)}$. Therefore $\mathcal{H}_{T}^{(u)}=A_{T} \mathcal{H}$.
Conversely if A_{T} is the projection from \mathcal{H} onto $\mathcal{H}_{T}^{(u)}$, then $A_{T} \mathcal{H}$ reduces T and $\left.T\right|_{A_{T} \mathcal{H}}$ is unitary and hence $\left\|T^{*} A_{T} x\right\|=\left\|A_{T} x\right\|$ for all $x \in \mathcal{H}$. Therefore $A_{T} T$ is normal by Lemma 1 .
3. Conclusion. Now we can generalize Proposition as follows.

Theorem. If a contraction T on \mathcal{H} belongs to the class \mathcal{F}, then $A_{T^{*}}$ is the projection from \mathcal{H} onto $\mathcal{H}_{T}^{(u)}$.

Proof. By Lemma 3, we have only to prove that $A_{T^{*}} T^{*}$ is normal.

Let $A_{T^{*}} T^{*}=V_{T^{*}} A_{T^{*}}$ is the polar decomposition of $A_{T^{*}} T^{*}$. Then, by Lemma $2,\left[A_{T^{*}} \mathcal{H}\right]^{\sim}$ reduces $V_{T^{*}}$ and

$$
\begin{aligned}
& W=\left.V_{T^{*}}\right|_{\left[A_{T^{*}} \mathcal{H}\right]^{\sim}} \oplus I_{\left[A_{T^{*}} \mathcal{H}\right]^{\perp}} \\
& \text { on } \mathcal{H}=\left[A_{T^{*}} \mathcal{H}\right]^{\sim} \oplus\left[A_{T^{*}} \mathcal{H}\right]^{\perp}
\end{aligned}
$$

is an isometry on \mathcal{H}, where $I_{\left[A_{T^{*}} \mathcal{H}\right]^{\perp}}$ denotes the identity operator on $\left[A_{T^{*}} \mathcal{H}\right]^{\perp}$, and

$$
\begin{equation*}
A_{T^{*}} T^{*}=V_{T^{*}} A_{T^{*}}=W A_{T^{*}} \tag{1}
\end{equation*}
$$

Since, by (1),

$$
\begin{equation*}
A_{T^{*}} W^{*}=T A_{T^{*}}, \tag{2}
\end{equation*}
$$

we have, by the assumption that $T \in$ the class \mathcal{F},

$$
\begin{equation*}
A_{T^{*}} W=T^{*} A_{T^{*}} \tag{3}
\end{equation*}
$$

And since

$$
\left(A_{T^{*}} W^{*}\right) W^{*}=\left(T A_{T^{*}}\right) W^{*}=T\left(A_{T^{*}} W^{*}\right) \quad \text { by }(2),
$$

we have, by the same reason as above,

$$
\begin{equation*}
A_{T^{*}}=\left(A_{T^{*}} W^{*}\right) W=T^{*}\left(A_{T^{*}} W^{*}\right)=\left(A_{T^{*}} W\right) W^{*} \tag{3}
\end{equation*}
$$

and

$$
\begin{aligned}
& {\left[I_{\left[A_{T^{*}} \mathcal{H}\right]^{\sim}}-\left(\left.V_{T^{*}}\right|_{\left[A_{T^{*}} \mathcal{H}\right]^{\sim}}\right)\left(\left.V_{T^{*}}\right|_{\left[A_{T^{*}} \mathcal{H}\right]^{\sim}}\right)^{*}\right] A_{T^{*}} \mathcal{H} } \\
= & \left(I_{\mathcal{H}}-W W^{*}\right) A_{T^{*}} \mathcal{H}=\{o\}
\end{aligned}
$$

and hence $\left.V_{T^{*}}\right|_{\left[A_{T^{*}} \mathcal{H}\right] \sim}$ is unitary.
Since

$$
A_{T^{*}} T^{*}=V_{T^{*}} A_{T^{*}} \quad \text { by }(1)
$$

and since

$$
A_{T^{*}} T=W^{*} A_{T^{*}}=V_{T^{*}}^{*} A_{T^{*}} \quad \text { by }(3)
$$

we have

$$
A_{T^{*}}{ }^{2} V_{T^{*}}=A_{T^{*}}\left(T^{*} A_{T^{*}}\right)=\left(A_{T^{*}} T^{*}\right) A_{T^{*}}=V_{T^{*}} A_{T^{*}}{ }^{2}
$$

and $V_{T^{*}}$ commutes with $A_{T^{*}}$ and hence $A_{T^{*}} T^{*}=$ $V_{T^{*}} A_{T^{*}}$ is normal.

Corollary 1. If T is a contraction such that, for some positive integer n, T^{n} belongs to the class \mathcal{F}, then $A_{T^{*}}$ is the projection from \mathcal{H} onto $\mathcal{H}_{T}^{(u)}$.

Proof. Since $A_{T^{* n}}=A_{T^{*}}$ and since $A_{T^{n}}=$ $A_{T}, \mathcal{H}_{T^{n}}^{(u)}=\mathcal{H}_{T}^{(u)}$ and hence the conclusion follows from Theorem.

Corollary 2. If T is a contraction such that, for some positive integer n, T^{n} belongs to the class \mathcal{F}, then $A_{T}=I_{\mathcal{H}^{(u)}} \oplus B$ for some positive contraction
B on $\mathcal{H} \ominus \mathcal{H}^{(u)}$.
Proof. For any $x \in \mathcal{H}$, let $x=A_{T^{*}} x+(I-$ $\left.A_{T^{*}}\right) x$. Then, by Theorem, $A_{T^{*}}$ is the projection from \mathcal{H} onto $\mathcal{H}_{T}^{(u)}$ and it commutes with T and hence, for any positive integer m, we have

$$
\begin{aligned}
\left\|T^{m} x\right\|^{2} & =\left\|T^{m} A_{T^{*}} x\right\|^{2}+\left\|T^{m}\left(I-A_{T^{*}}\right) x\right\|^{2} \\
& \geq\left\|T^{m} A_{T^{*}} x\right\|^{2}=\left\|A_{T^{*}} x\right\|^{2} .
\end{aligned}
$$

Therefore we have $A_{T}{ }^{2} \geq A_{T^{*}}{ }^{2}$ and $A_{T} \geq A_{T^{*}}$ by Heinz's inequality. Since $A_{T^{*}}$ commutes with $T, A_{T^{*}}$ commutes with A_{T} and $A_{T}=I_{\mathcal{H}^{(u)}} \oplus B$ for some positive contraction B on $\mathcal{H} \ominus \mathcal{H}^{(u)}$ because $A_{T} \leq I$.

References

[1] E. Goya and T. Saitô: On intertwinig by an operator having a dense range. Tôhoku Math. J., 33, 127-131 (1981).
[2] K. Ôkubo: The unitary part of paranormal operators. Hokkaido Math. J., 6, 273-275 (1977).
[3] C. R. Putnam: Hyponormal contractions and strong power convergence. Pacific J. Math., 57, 531-538 (1975).
[4] A. Uchiyama and T. Yoshino: On the class \mathcal{Y} operators. Nihonkai Math. J., 8, 179-194 (1997).
[5] T. Yoshino: Remark on the generalized PutnamFuglede theorem. Proc. Amer. Math. Soc., 95, 571-572 (1985).
[6] T. Yoshino: On the unitary part of dominant contractions. Proc. Japan Acad., 66A, 272-273 (1990).

[^0]: 1991 Mathematics Subject Classification : 47B20, 47A65.

