By Takashi Yoshino

Mathematical Institute, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980–8578 (Communicated by Heisuke HIRONAKA, M. J. A., April 12, 1999)

Abstract: We say that a bounded linear operator T on a Hilbert space \mathcal{H} belongs to the class \mathcal{F} if T satisfies the following Fuglede's property that, for a given isometry W on \mathcal{H} , $SW^* = TS$ for some bounded linear operator S on \mathcal{H} always implies $SW = T^*S$. Such class is wider than the class of paranormal contractions, the class of dominant operators and the class \mathcal{Y} which was introduced in [4]. In this paper, we prove that, for the class \mathcal{F} contraction T on \mathcal{H} , the positive square root A_{T^*} of the strong limit of T^nT^{*n} is the projection from \mathcal{H} onto $\mathcal{H}_T^{(u)}$ on which the unitary part of T acts.

Key words: contraction; unitary part; hyponormal operators; paranormal operators; dominant operators.

1. Introduction. It is known that, for a contraction T (i.e., $||T|| \leq 1$) on a Hilbert space \mathcal{H} ,

$$\mathcal{H}_{T}^{(u)} \stackrel{\text{def}}{=} \{ x \in \mathcal{H} ; \| T^{k} x \| = \| x \| = \| T^{*k} x \|$$

for all $k = 1, 2, \cdots \}$
 $= \cap_{k=1}^{\infty} \{ x \in \mathcal{H} ; T^{*k} T^{k} x = x = T^{k} T^{*k} x \}$

is the maximal reducing subspace on which its restriction is unitary and that the projection from $\mathcal{H}_{T}^{(u)}$ belongs to the centre of $\mathcal{R}(T)$, where $\mathcal{R}(T)$ is the von Neumann algebra generated by T. The unitary operator $T|_{\mathcal{H}_{T}^{(u)}}$ is called the unitary part of T.

If T is a contraction, then $||T^{n+1}x|| \leq ||T^nx||$ for all $x \in \mathcal{H}$ and the sequence $\{T^{*n}T^n\}$ is monotonically decreasing and hence it converges to a positive contraction A_T^2 strongly and $T^*A_T^2T = A_T^2$. By using the unique positive square root A_T of A_T^2 , we can represent $\mathcal{H}_T^{(u)}$ as follows:

$$\mathcal{H}_{T}^{(u)} = \{ x \in \mathcal{H} ; \|A_{T}x\| = \|A_{T^{*}}x\| = \|x\| \}$$

= $\{ x \in \mathcal{H} ; A_{T}^{2}x = A_{T^{*}}^{2}x = x \}$
= $\mathcal{N}_{I-A_{T}} \cap \mathcal{N}_{I-A_{T^{*}}},$

where \mathcal{N}_B denotes the null space of the operator B. It is clear that $\mathcal{N}_{A_T} = \{x \in \mathcal{H} : A_T x = 0\}$ and

$$\mathcal{N}_{I-A_T} = \{ x \in \mathcal{H} : A_T x = x \}$$

$$= \{ x \in \mathcal{H} : ||T^n x|| = ||x||, \ n = 1, 2, \cdots \}$$

are invariant under T and $T|_{\mathcal{N}_{I-A_T}}$ is an isometry and

$$\mathcal{N}_{A_T - A_T^2} = \mathcal{N}_{A_T} \oplus \mathcal{N}_{I - A_T}.$$

In [3], C. R. Putnam proved the following.

Proposition. If T is a hyponormal (i.e., $T^*T \ge TT^*$) contraction on \mathcal{H} , then A_{T^*} is the projection from \mathcal{H} onto $\mathcal{H}_T^{(u)}$.

This result is generalized in the each case where T is a **paranormal** (i.e., $||Tx||^2 \leq ||T^2x|| ||x||$ for all $x \in \mathcal{H}$) contraction by K. Ôkubo [2] and where T is a **dominant** (i.e., $(T - zI)\mathcal{H} \subseteq (T - zI)^*\mathcal{H}$ for all $z \in \sigma(T)$, where $\sigma(T)$ denotes the spectrum of T) contraction by [6] respectively.

In this paper we shall show that Proposition is generalized for the more wide class of contractions defined as follows.

Definition 1. If a bounded linear operator T on \mathcal{H} satisfies the following Fuglede's property that, for a given isometry W on \mathcal{H} , $SW^* = TS$ for some bounded linear operator S on \mathcal{H} always implies $SW = T^*S$, then we say that T belongs to the **class** \mathcal{F} and denotes $T \in$ the class \mathcal{F} .

It is known that the paranormal contractions and also the dominant operators belong to the class \mathcal{F} by E. Goya and T. Saitô [1] and by [5] respectively.

In [4], we defined the following class of opera-

¹⁹⁹¹ Mathematics Subject Classification : 47B20, 47A65.

tors.

Definition 2. For a bounded linear operator T on \mathcal{H} , we say that T belongs to the **class** \mathcal{Y}_{α} for some $\alpha \geq 1$ if there is a positive number K_{α} such that

$$|T^*T - TT^*|^{\alpha} \le K_{\alpha}{}^2 (T - zI)^* (T - zI)$$

for all $z \in \mathbf{C}$,

where |B| denotes the absolute value $(B^*B)^{\frac{1}{2}}$ of the operator B and \mathbf{C} denotes the set of all complex numbers. It is known that, for each α , β such as $1 \leq \alpha < \beta$, $\mathcal{Y}_{\alpha} \subseteq \mathcal{Y}_{\beta}$ and we say that the operator in $\mathcal{Y} = \bigcup_{\alpha > 1} \mathcal{Y}_{\alpha}$ is the **class** \mathcal{Y} operator.

It is also known that the class \mathcal{Y} operators belong to the class \mathcal{F} by [4]. Each class of operators, that is, the class of paranormal operators, the class of dominant operators and the class \mathcal{Y} , contains the hyponormal operators but these classes are mutually distinct.

2. Preliminaries. Throughout this section, let T be a contraction on \mathcal{H} . Firstly we shall study the general properties of A_T .

Lemma 1. For any positive integer n, $||A_T T^n x|| = ||A_T x|| \ge ||T^{*n} A_T x||$ for all $x \in \mathcal{H}$ and $A_T T^n$ is hyponormal.

Proof. For any $x \in \mathcal{H}$, we have

$$||A_T T^n x||^2 = \langle T^{*n} A_T^2 T^n x, x \rangle = \langle A_T^2 x, x \rangle$$

= $||A_T x||^2 \ge ||T^{*n} A_T x||^2.$

Let $A_T T = V_T A_T$ be the polar decomposition of $A_T T$. Then V_T is a partial isometry and $\mathcal{N}_{V_T} = \mathcal{N}_{A_T}$.

Lemma 2. $[A_T \mathcal{H}]^{\sim}$ reduces V_T where "~" denotes the closure. And hence the restriction $V_T|_{[A_T \mathcal{H}]^{\sim}}$ is an isometry because $\mathcal{N}_{V_T} = \mathcal{N}_{A_T}$.

Proof. Since $A_T T = V_T A_T$, $[A_T \mathcal{H}]^\sim$ is invariant under V_T and since $\mathcal{N}_{V_T} = \mathcal{N}_{A_T}$, \mathcal{N}_{A_T} is invariant under V_T . Therefore $[A_T \mathcal{H}]^\sim$ reduces V_T .

Lemma 3. A necessary and sufficient condition that A_T is the projection from \mathcal{H} onto $\mathcal{H}_T^{(u)}$ is that $A_T T$ is normal.

Proof. Assume that $A_T T$ is normal. Since

 $A_T T$ is normal

$$\Leftrightarrow ||T^*A_Tx|| = ||A_Tx||$$

for all
$$x \in \mathcal{H}$$
 (by Lemma 1)

$$\Leftrightarrow TT^*A_T x = A_T x$$

for all $x \in \mathcal{H}$ (because T is a contraction)

$$\Leftrightarrow TT^*A_T = A_T$$

we have

$$TA_T^2 = TT^*A_T^2T = A_T^2T$$

and A_T commutes with T. And then

$$T^{*n}T^n A_T{}^2 = T^{*n}A_T{}^2T^n = A_T{}^2$$

and $A_T{}^4 = A_T{}^2$ and hence A_T is a projection.

For any $x \in \mathcal{H}_T^{(u)}$, $x = A_T^2 x \in A_T \mathcal{H}$ and $\mathcal{H}_T^{(u)} \subseteq A_T \mathcal{H}$.

For any $x \in \mathcal{H}$ and for each $n = 1, 2, \cdots$,

$$||T^n A_T x|| = ||A_T T^n x|| = ||A_T x||$$
 by Lemma 1

and

$$||T^{*n}A_Tx|| = ||T^*A_TT^{*n-1}x|| = ||A_TT^{*n-1}x||$$

= ||T^*A_TT^{*n-2}x|| = ||A_TT^{*n-2}x||
= \dots = ||A_Tx||

and hence $A_T \mathcal{H} \subseteq \mathcal{H}_T^{(u)}$. Therefore $\mathcal{H}_T^{(u)} = A_T \mathcal{H}$. Conversely if A_T is the projection from \mathcal{H} onto

 $\mathcal{H}_T^{(u)}$, then $A_T\mathcal{H}$ reduces T and $T|_{A_T\mathcal{H}}$ is unitary and hence $||T^*A_Tx|| = ||A_Tx||$ for all $x \in \mathcal{H}$. Therefore A_TT is normal by Lemma 1.

3. Conclusion. Now we can generalize Proposition as follows.

Theorem. If a contraction T on \mathcal{H} belongs to the class \mathcal{F} , then A_{T^*} is the projection from \mathcal{H} onto $\mathcal{H}_T^{(u)}$.

Proof. By Lemma 3, we have only to prove that $A_{T^*}T^*$ is normal.

Let $A_{T^*}T^* = V_{T^*}A_{T^*}$ is the polar decomposition of $A_{T^*}T^*$. Then, by Lemma 2, $[A_{T^*}\mathcal{H}]^{\sim}$ reduces V_{T^*} and

$$W = V_{T^*}|_{[A_{T^*}\mathcal{H}]^{\sim}} \oplus I_{[A_{T^*}\mathcal{H}]^{\perp}}$$

on $\mathcal{H} = [A_{T^*}\mathcal{H}]^{\sim} \oplus [A_{T^*}\mathcal{H}]^{\perp}$

is an isometry on \mathcal{H} , where $I_{[A_{T^*}\mathcal{H}]^{\perp}}$ denotes the identity operator on $[A_{T^*}\mathcal{H}]^{\perp}$, and

(1)
$$A_{T^*}T^* = V_{T^*}A_{T^*} = WA_{T^*}.$$

Since, by (1),

we have, by the assumption that $T \in$ the class \mathcal{F} ,

And since

$$(A_{T^*}W^*)W^* = (TA_{T^*})W^* = T(A_{T^*}W^*)$$
 by (2),

No. 4]

we have, by the same reason as above,

$$A_{T^*} = (A_{T^*}W^*)W = T^*(A_{T^*}W^*) = (A_{T^*}W)W^*$$

by (3)

and

$$\begin{bmatrix} I_{[A_{T^*}\mathcal{H}]^{\sim}} - (V_{T^*}|_{[A_{T^*}\mathcal{H}]^{\sim}})(V_{T^*}|_{[A_{T^*}\mathcal{H}]^{\sim}})^* \end{bmatrix} A_{T^*}\mathcal{H}$$

= $(I_{\mathcal{H}} - WW^*)A_{T^*}\mathcal{H} = \{o\}$

and hence $V_{T^*}|_{[A_{T^*}\mathcal{H}]^{\sim}}$ is unitary.

Since

$$A_{T^*}T^* = V_{T^*}A_{T^*}$$
 by (1)

and since

$$A_{T^*}T = W^*A_{T^*} = V_{T^*}^*A_{T^*}$$
 by (3),

we have

$$A_{T^*}^2 V_{T^*} = A_{T^*} (T^* A_{T^*}) = (A_{T^*} T^*) A_{T^*} = V_{T^*} A_{T^*}^2$$

and V_{T^*} commutes with A_{T^*} and hence $A_{T^*}T^* = V_{T^*}A_{T^*}$ is normal.

Corollary 1. If T is a contraction such that, for some positive integer n, T^n belongs to the class \mathcal{F} , then A_{T^*} is the projection from \mathcal{H} onto $\mathcal{H}_T^{(u)}$.

Proof. Since $A_{T^{*n}} = A_{T^*}$ and since $A_{T^n} = A_T$, $\mathcal{H}_{T^n}^{(u)} = \mathcal{H}_T^{(u)}$ and hence the conclusion follows from Theorem.

Corollary 2. If T is a contraction such that, for some positive integer n, T^n belongs to the class \mathcal{F} , then $A_T = I_{\mathcal{H}^{(u)}} \oplus B$ for some positive contraction $B \text{ on } \mathcal{H} \ominus \mathcal{H}^{(u)}.$

Proof. For any $x \in \mathcal{H}$, let $x = A_{T^*}x + (I - A_{T^*})x$. Then, by Theorem, A_{T^*} is the projection from \mathcal{H} onto $\mathcal{H}_T^{(u)}$ and it commutes with T and hence, for any positive integer m, we have

$$||T^m x||^2 = ||T^m A_{T^*} x||^2 + ||T^m (I - A_{T^*}) x||^2$$

$$\geq ||T^m A_{T^*} x||^2 = ||A_{T^*} x||^2.$$

Therefore we have $A_T^2 \ge A_{T^*}^2$ and $A_T \ge A_{T^*}$ by Heinz's inequality. Since A_{T^*} commutes with T, A_{T^*} commutes with A_T and $A_T = I_{\mathcal{H}^{(u)}} \oplus B$ for some positive contraction B on $\mathcal{H} \oplus \mathcal{H}^{(u)}$ because $A_T \le I$.

References

- E. Goya and T. Saitô: On intertwinig by an operator having a dense range. Tôhoku Math. J., 33, 127–131 (1981).
- [2] K. Ôkubo: The unitary part of paranormal operators. Hokkaido Math. J., 6, 273–275 (1977).
- [3] C. R. Putnam: Hyponormal contractions and strong power convergence. Pacific J. Math., 57, 531–538 (1975).
- [4] A. Uchiyama and T. Yoshino: On the class *Y* operators. Nihonkai Math. J., 8, 179–194 (1997).
- [5] T. Yoshino: Remark on the generalized Putnam-Fuglede theorem. Proc. Amer. Math. Soc., 95, 571–572 (1985).
- [6] T. Yoshino: On the unitary part of dominant contractions. Proc. Japan Acad., 66A, 272–273 (1990).