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On the mean value of |L(1, χ)|2 for odd primitive Dirichlet characters
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Abstract: Let f > 1 be given. Whereas a simple formula for the mean value of |L(1, χ)|2
for odd Dirichlet characters modulo f is known, we explain why there is no hope of ever finding
a simple formula for the mean value of |L(1, χ)|2 for primitive odd Dirichlet characters modulo f .
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1. Introduction. Let f > 1 be given. Let
X−
f and P−

f denote the set of all the odd Dirich-
let characters modulo f and of all the primitive odd
Dirichlet characters modulo f , respectively (see [1,
Section 6.8] for the definition of Dirichlet charac-
ters, see [1, Section 8.7] for the definition of prim-
itivity and recall that an odd Dirichlet character is
a Dirichlet character χ which satisfies χ(−1) = −1).
Whenever d > 0 divides f we let ψ̃ ∈ X−

f denote the
character induced by ψ ∈ X−

f/d. Since χ ∈ X−
f is not

primitive if and only if there exist a prime p dividing
f and ψ ∈ X−

f/d such that χ = ψ̃ is induced by ψ,
for any complex s we get (use the inclusion-exclusion
principle) :∑

χ∈P−f

|L(s, χ)|2 =
∑
d|f

µ(d)
∑

ψ∈X−
f/d

|L(s, ψ̃)|2(1)

where µ and φ denote the Möbius and Euler totient
functions (see [1, Chapter 2]) and L(s, χ) denotes
the Dirichlet L-functions associated with χ (see [1,
Chapter 11]). Notice that #X−

1 = #X−
2 = 0 and

#X−
f = φ(f)/2 whenever f > 2. We proved:
Theorem 1 (See [2], [3]). It holds∑

χ∈X−
f

|L(1,χ)|2 =
π2φ(f)

12

∏
p|f

(
1− 1

p2

)
− π2φ2(f)

4f2
.(2)

We deduce:
Corollary 2 (See [5]). If f > 1 is square-full

then it holds∑
χ∈P−f

|L(1, χ)|2 =
π2φ2(f)

12f

∏
p|f

(
1− 1

p2

)
.(3)

Proof. If d > 0 is square-free and divides f

and ψ ∈ X−
f/d then L(s, ψ̃) = L(s, ψ) (use the Euler
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products of both these terms (see [1, Section 11.5])).
Hence, (1) yields∑

χ∈P−f

|L(1, χ)|2 =
∑
d|f

µ(d)
∑

ψ∈X−
f/d

|L(1, ψ)|2,

and the desired result follows from Theorem 1.
It was conjectured (not in contradiction with

(3)) that:
Conjecture 3 (See [MR 91j:11068] and [5]).

For any rational integer f > 1 we have:∑
χ∈P−f

|L(1, χ)|2(4)

=
π2

12
φ(f)
f

J(f)
f

f∏
p|f

(
1 +

1
p

)
+ 2µ(f)


where J(f) =

∑
d|f µ(d)φ(f/d) is the number of

primitive characters modulo f .
This conjecture is false. Indeed, if f = 15 then

P−
15 is reduced to the character n 7→ χ(n) = (n/15)

(Jacobi’s symbol) for which L(1, χ) = 2π/
√

15 (for
the class number of the imaginary quadratic field
Q(
√
−15) is equal to 2), the left hand side of (4)

is equal to 4π2/15 while the right hand side of (4)
is equal to 52π2/152. Not only is this conjecture
false, but its falsity does not trivially comes from any
misprint in (4) for according to such a conjecture,
S−(pq) defined below should be polynomial in p and
q whenever p and q range over the positive rational
primes, whereas we will prove:

Theorem 4. Let p and q denote distinct posi-
tive primes. Even though

S−(pq) def=
(pq)3

π2

∑
χ∈P−pq

|L(1, χ)|2
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is always a positive rational number, there does not
exist any polynomial f(X,Y ) such that for all pairs
(p, q) we have S−(pq) = f(p, q).

Therefore, it seems that there is no hope of
ever finding a neat explicit formula for the sums∑
χ∈P−f

|L(1, χ)|2 which would be valid for any f >
1.

2. Proof of Theorem 4.
Theorem 5. Whenever d ≥ 1 divides f > 1

we set

T±(f, d) def=
∗∑

1≤a≤f

∗∑
1≤b≤f

b≡±a (mod f/d)

ab,(5)

(where
∗∑

stands for a summation ranging over in-
dices relatively prime to f). We have

S−(f) def=
f3

π2

∑
χ∈P−f

|L(1, χ)|2(6)

=
∑
d|f

µ(d)φ(f/d)T+(f, d),

and S−(f) is always a positive rational integer. No-
tice that if p and q denote distinct positive primes
then (6) yields

S−(pq) = φ(pq)T+(pq, 1)− φ(q)T+(pq, p)(7)

−φ(p)T+(pq, q) + T+(pq, pq).
Proof.

S−(f)= f2
∑
χ∈P−f

|L(0, χ)|2

(use the functional equation satisfied by

L(s, χ)

(see [1, Section 12.10]))

= f2
∑
d|f

µ(d)
∑

ψ∈X−
f/d

|L(0, ψ̃)|2

(use (1) for s = 0)

=
∑
d|f

d<f/2

µ(d)
∑

ψ∈X−
f/d

|
f∑
a=1

aψ̃(a)|2

(use [1, Section 12.13])

=
1
2

∑
d|f

d<f/2

µ(d)φ(f/d)(T+(f, d)− T−(f, d))

=
1
2

∑
d|f

µ(d)φ(f/d)(T+(f, d)− T−(f, d))

(for T+(f, f) = T−(f, f)

and T+(f, f/2) = T−(f, f/2) whenever

f is even)

where we have used∑
ψ∈X−

f/d

ψ̃(a)ψ̃(b) =
∑

ψ∈X−
f/d

ψ(a)ψ(b)

=


φ(f/d)/2 if b ≡ a (mod f/d)
−φ(f/d)/2 if b ≡ −a (mod f/d)
0 otherwise

(provided that pgcd(a, f) = pgcd(b, f) = 1). Now,
since the canonical morphism s : (Z/fZ)∗ −→
(Z/(f/d)Z)∗ is surjective, for any given a relatively
prime to f we have

∗∑
1≤a≤f

∗∑
1≤b≤f

b≡a (mod f/d)

a = # ker s ·
∗∑

1≤a≤f

a

=
φ(f)
φ(f/d)

∗∑
1≤a≤f

a =
fφ2(f)
2φ(f/d)

and

T−(f, d) =
∗∑

1≤a≤f

∗∑
1≤b≤f

b≡a (mod f/d)

a(f − b)

=
f2φ2(f)
2φ(f/d)

− T+(f, d),

which provides us with the desired result in using∑
d|f µ(d) = 0.

Lemma 6. Whenever q = np + 1 and p are
prime, it holds S−(p, q) = g(p, q) where g(X,Y ) def=
X2Y 2(X−1)2(Y −1)2/12−XY 2(X−1)(Y −1)2/6.

Proof. Using

T+(f, 1) =
∗∑

1≤a≤f

a2 =
1
3
f2φ(f) +

1
6
f
∏
p|f

(1− p)

we obtain T+(pq, 1) = p2q2(p− 1)(q − 1)/3 + pq(p−
1)(q − 1)/6, and using

T+(f, f) =

 ∗∑
1≤a≤f

a

2

=
1
4
f2φ2(f)

we obtain T+(pq, pq) = p2q2(p− 1)2(q− 1)2/4. Now,
writting a=A+ qA′ and b=A+ qB′ with 1≤A≤ q,
0 ≤ A′ ≤ p− 1 and 0 ≤ B′ ≤ p− 1, we get

T+(pq, p) =
q−1∑
A=1

 p−1∑
A′=0

pgcd(A+qA′,p)=1

A+ qA′


2

.
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Then, we notice that p divises A+ qA′ if and only if
A′ ≡ −A (mod p), and we write A = pQ + R with
1 ≤ R ≤ p and Q ≥ 0. We get

T+(pq, p)

=
n−1∑
Q=0

p∑
R=1

 p−1∑
A′=0

A′ 6≡−R (mod p)

pQ+R+ qA′


2

=
n−1∑
Q=0

p∑
R=1

 p−1∑
A′=0

A′ 6=p−R

pQ+R+ qA′


2

=
n−1∑
Q=0

p∑
R=1

(
p(p− 1)Q+ (p+ q − 1)R+

p− 3
2

pq

)2

= p2q2(p− 1)2(q − 1)/4

+ pq(p− 1)(q − 1)(p+ q − 1)/6.

In the same way,

T+(pq, q) =
p−1∑
A=1

 q−1∑
A′=0

pgcd(A+pA′,q)=1

A+ pA′


2

and q divides A + pA′ if and only if q divides nA +
npA′, hence if and only if A′ ≡ nA (mod q). Since
0 ≤ nA ≤ n(p−1) < q, then q divides A+pA′ if and
only if A′ = nA, which yields A+ pA′ = A+ pnA =
qA. Hence,

T+(pq, q) =
p−1∑
A=1

(
−qA+

q−1∑
A′=0

(A+ pA′)

)2

=
p−1∑
A=1

(
pq
q − 1

2

)2

= p2q2(p− 1)(q − 1)2/4.

The Lemma follows from (7) and these four previous
formulae.

Now, we are in a position to prove the last asser-
tion of Theorem 4: Lemma 6 would give f(X,Y ) =
g(X,Y ) (according to Dirichlet’s Theorem, for any
prime p there are infinitely many primes q of the
form q = np + 1, n ≥ 1. Hence, for any prime p we
would have f(p, Y ) = g(p, Y ). Now, since there are
infinitely many primes p > 2 we would then obtain
f(X,Y ) = g(X,Y )). But this identity cannot hold
for while S−(pq) = S−(qp), this expression g(p, q) is
not symetrical in p and q.
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