On the mean value of $|L(1, \chi)|^{2}$ for odd primitive Dirichlet characters

By Stéphane Louboutin
Département de Mathématiques et Mécanique, Université de Caen, Campus II, BP 5186, 14032 Caen cedex, France
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 13, 1999)

Abstract

Let $f>1$ be given. Whereas a simple formula for the mean value of $|L(1, \chi)|^{2}$ for odd Dirichlet characters modulo f is known, we explain why there is no hope of ever finding a simple formula for the mean value of $|L(1, \chi)|^{2}$ for primitive odd Dirichlet characters modulo f.

Key words: Dirichlet characters; L-functions.

1. Introduction. Let $f>1$ be given. Let X_{f}^{-}and P_{f}^{-}denote the set of all the odd Dirichlet characters modulo f and of all the primitive odd Dirichlet characters modulo f, respectively (see [1, Section 6.8] for the definition of Dirichlet characters, see [1, Section 8.7] for the definition of primitivity and recall that an odd Dirichlet character is a Dirichlet character χ which satisfies $\chi(-1)=-1$). Whenever $d>0$ divides f we let $\tilde{\psi} \in X_{f}^{-}$denote the character induced by $\psi \in X_{f / d}^{-}$. Since $\chi \in X_{f}^{-}$is not primitive if and only if there exist a prime p dividing f and $\psi \in X_{f / d}^{-}$such that $\chi=\tilde{\psi}$ is induced by ψ, for any complex s we get (use the inclusion-exclusion principle) :
(1) $\sum_{\chi \in P_{f}^{-}}|L(s, \chi)|^{2}=\sum_{d \mid f} \mu(d) \sum_{\psi \in X_{f / d}^{-}}|L(s, \tilde{\psi})|^{2}$
where μ and ϕ denote the Möbius and Euler totient functions (see [1, Chapter 2]) and $L(s, \chi)$ denotes the Dirichlet L-functions associated with χ (see [1, Chapter 11]). Notice that $\# X_{1}^{-}=\# X_{2}^{-}=0$ and $\# X_{f}^{-}=\phi(f) / 2$ whenever $f>2$. We proved:

Theorem 1 (See [2], [3]). It holds
(2) $\sum_{\chi \in X_{f}^{-}}|L(1, \chi)|^{2}=\frac{\pi^{2} \phi(f)}{12} \prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)-\frac{\pi^{2} \phi^{2}(f)}{4 f^{2}}$.

We deduce:
Corollary 2 (See [5]). If $f>1$ is square-full then it holds
(3) $\sum_{\chi \in P_{f}^{-}}|L(1, \chi)|^{2}=\frac{\pi^{2} \phi^{2}(f)}{12 f} \prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)$.

Proof. If $d>0$ is square-free and divides f and $\psi \in X_{f / d}^{-}$then $L(s, \tilde{\psi})=L(s, \psi)$ (use the Euler

[^0]products of both these terms (see [1, Section 11.5])). Hence, (1) yields
$$
\sum_{\chi \in P_{f}^{-}}|L(1, \chi)|^{2}=\sum_{d \mid f} \mu(d) \sum_{\psi \in X_{f / d}^{-}}|L(1, \psi)|^{2},
$$
and the desired result follows from Theorem 1.
It was conjectured (not in contradiction with (3)) that:

Conjecture 3 (See [MR 91j:11068] and [5]). For any rational integer $f>1$ we have:
(4) $\sum_{\chi \in P_{f}^{-}}|L(1, \chi)|^{2}$

$$
=\frac{\pi^{2}}{12} \frac{\phi(f)}{f} \frac{J(f)}{f}\left(f \prod_{p \mid f}\left(1+\frac{1}{p}\right)+2 \mu(f)\right)
$$

where $J(f)=\sum_{d \mid f} \mu(d) \phi(f / d)$ is the number of primitive characters modulo f.

This conjecture is false. Indeed, if $f=15$ then P_{15}^{-}is reduced to the character $n \mapsto \chi(n)=(n / 15)$ (Jacobi's symbol) for which $L(1, \chi)=2 \pi / \sqrt{15}$ (for the class number of the imaginary quadratic field $\mathbf{Q}(\sqrt{-15})$ is equal to 2$)$, the left hand side of (4) is equal to $4 \pi^{2} / 15$ while the right hand side of (4) is equal to $52 \pi^{2} / 15^{2}$. Not only is this conjecture false, but its falsity does not trivially comes from any misprint in (4) for according to such a conjecture, $S^{-}(p q)$ defined below should be polynomial in p and q whenever p and q range over the positive rational primes, whereas we will prove:

Theorem 4. Let p and q denote distinct positive primes. Even though

$$
S^{-}(p q) \stackrel{\text { def }}{=} \frac{(p q)^{3}}{\pi^{2}} \sum_{\chi \in P_{p q}^{-}}|L(1, \chi)|^{2}
$$

is always a positive rational number, there does not exist any polynomial $f(X, Y)$ such that for all pairs (p, q) we have $S^{-}(p q)=f(p, q)$.

Therefore, it seems that there is no hope of ever finding a neat explicit formula for the sums $\sum_{\chi \in P_{f}^{-}}|L(1, \chi)|^{2}$ which would be valid for any $f>$ 1.

2. Proof of Theorem 4.

Theorem 5. Whenever $d \geq 1$ divides $f>1$ we set
(5) $T_{ \pm}(f, d) \stackrel{\text { def }}{=} \sum_{1 \leq a \leq f}^{*} \sum_{\substack{1 \leq b \leq f \\ b \equiv \pm a \\(\bmod f / d)}}^{*} a b$,
(where \sum^{*} stands for a summation ranging over indices relatively prime to f). We have

$$
\begin{align*}
S^{-}(f) & \stackrel{\text { def }}{=} \frac{f^{3}}{\pi^{2}} \sum_{\chi \in P_{f}^{-}}|L(1, \chi)|^{2} \tag{6}\\
& =\sum_{d \mid f} \mu(d) \phi(f / d) T_{+}(f, d)
\end{align*}
$$

and $S^{-}(f)$ is always a positive rational integer. Notice that if p and q denote distinct positive primes then (6) yields

$$
(7) \quad S^{-}(p q)=\phi(p q) T_{+}(p q, 1)-\phi(q) T_{+}(p q, p)
$$

$$
-\phi(p) T_{+}(p q, q)+T_{+}(p q, p q)
$$

Proof.

$$
S^{-}(f)=f^{2} \sum_{\chi \in P_{f}^{-}}|L(0, \chi)|^{2}
$$

(use the functional equation satisfied by

$$
L(s, \chi)
$$

(see [1, Section 12.10]))

$$
=f^{2} \sum_{d \mid f} \mu(d) \sum_{\psi \in X_{f / d}^{-}}|L(0, \tilde{\psi})|^{2}
$$

(use (1) for $s=0$)
$=\sum_{\substack{d \mid f \\ d<f / 2}} \mu(d) \sum_{\psi \in X_{f / d}^{-}}\left|\sum_{a=1}^{f} a \tilde{\psi}(a)\right|^{2}$
(use [1, Section 12.13])
$=\frac{1}{2} \sum_{\substack{d \mid f \\ d<f / 2}} \mu(d) \phi(f / d)\left(T_{+}(f, d)-T_{-}(f, d)\right)$
$=\frac{1}{2} \sum_{d \mid f} \mu(d) \phi(f / d)\left(T_{+}(f, d)-T_{-}(f, d)\right)$
(for $T_{+}(f, f)=T_{-}(f, f)$
and $T_{+}(f, f / 2)=T_{-}(f, f / 2)$ whenever f is even)
where we have used

$$
\begin{aligned}
& \sum_{\psi \in X_{f / d}^{-}} \tilde{\psi}(a) \overline{\tilde{\psi}(b)}=\sum_{\psi \in X_{f / d}^{-}} \psi(a) \overline{\psi(b)} \\
& \quad= \begin{cases}\phi(f / d) / 2 & \text { if } b \equiv a \quad(\bmod f / d) \\
-\phi(f / d) / 2 & \text { if } b \equiv-a \quad(\bmod f / d) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(provided that $\operatorname{pgcd}(a, f)=\operatorname{pgcd}(b, f)=1$). Now, since the canonical morphism $s:(\mathbf{Z} / f \mathbf{Z})^{*} \longrightarrow$ $(\mathbf{Z} /(f / d) \mathbf{Z})^{*}$ is surjective, for any given a relatively prime to f we have

$$
\begin{aligned}
& \sum_{1 \leq a \leq f}^{*} \sum_{\substack{1 \leq b \leq f \\
b \equiv a}}^{*} a=\# \operatorname{ker} s \cdot \sum_{1 \leq a \leq f}^{*} a \\
& =\frac{\phi(f)}{\phi(f / d)} \sum_{1 \leq a \leq f}^{*} a=\frac{f \phi^{2}(f)}{2 \phi(f / d)}
\end{aligned}
$$

and

$$
\begin{aligned}
T_{-}(f, d) & =\sum_{1 \leq a \leq f}^{*} \sum_{\substack{1 \leq a \leq f \\
b \equiv a}}^{*} a(f-b) \\
& =\frac{f^{2} \phi^{2}(f)}{2 \phi(f / d)}-T_{+}(f, d)
\end{aligned}
$$

which provides us with the desired result in using $\sum_{d \mid f} \mu(d)=0$.

Lemma 6. Whenever $q=n p+1$ and p are prime, it holds $S^{-}(p, q)=g(p, q)$ where $g(X, Y) \stackrel{\text { def }}{=}$ $X^{2} Y^{2}(X-1)^{2}(Y-1)^{2} / 12-X Y^{2}(X-1)(Y-1)^{2} / 6$.

Proof. Using

$$
T_{+}(f, 1)=\sum_{1 \leq a \leq f}^{*} a^{2}=\frac{1}{3} f^{2} \phi(f)+\frac{1}{6} f \prod_{p \mid f}(1-p)
$$

we obtain $T_{+}(p q, 1)=p^{2} q^{2}(p-1)(q-1) / 3+p q(p-$ $1)(q-1) / 6$, and using

$$
T_{+}(f, f)=\left(\sum_{1 \leq a \leq f}^{*} a\right)^{2}=\frac{1}{4} f^{2} \phi^{2}(f)
$$

we obtain $T_{+}(p q, p q)=p^{2} q^{2}(p-1)^{2}(q-1)^{2} / 4$. Now, writting $a=A+q A^{\prime}$ and $b=A+q B^{\prime}$ with $1 \leq A \leq q$, $0 \leq A^{\prime} \leq p-1$ and $0 \leq B^{\prime} \leq p-1$, we get

$$
T_{+}(p q, p)=\sum_{A=1}^{q-1}\left(\sum_{\substack{A^{\prime}=0 \\ \operatorname{pgcd}\left(A+q A^{\prime}, p\right)=1}}^{p-1} A+q A^{\prime}\right)^{2}
$$

Then, we notice that p divises $A+q A^{\prime}$ if and only if $A^{\prime} \equiv-A(\bmod p)$, and we write $A=p Q+R$ with $1 \leq R \leq p$ and $Q \geq 0$. We get

$$
\begin{aligned}
T_{+} & (p q, p) \\
= & \sum_{Q=0}^{n-1} \sum_{R=1}^{p}\left(\sum_{\substack{A^{\prime}=0 \\
A^{\prime} \neq-R \\
(\bmod p)}}^{p-1} p Q+R+q A^{\prime}\right)^{2} \\
= & \sum_{Q=0}^{n-1} \sum_{R=1}^{p}\left(\sum_{\substack{A^{\prime}=0 \\
A^{\prime} \neq p-R}}^{p-1} p Q+R+q A^{\prime}\right)^{2} \\
= & \sum_{Q=0}^{n-1} \sum_{R=1}^{p}\left(p(p-1) Q+(p+q-1) R+\frac{p-3}{2} p q\right)^{2} \\
= & p^{2} q^{2}(p-1)^{2}(q-1) / 4 \\
& +p q(p-1)(q-1)(p+q-1) / 6 .
\end{aligned}
$$

In the same way,

$$
T_{+}(p q, q)=\sum_{A=1}^{p-1}\left(\sum_{\substack{A^{\prime}=0 \\ \operatorname{pgcd}\left(A+p A^{\prime}, q\right)=1}}^{q-1} A+p A^{\prime}\right)^{2}
$$

and q divides $A+p A^{\prime}$ if and only if q divides $n A+$ $n p A^{\prime}$, hence if and only if $A^{\prime} \equiv n A(\bmod q)$. Since $0 \leq n A \leq n(p-1)<q$, then q divides $A+p A^{\prime}$ if and only if $A^{\prime}=n A$, which yields $A+p A^{\prime}=A+p n A=$ $q A$. Hence,

$$
\begin{aligned}
T_{+}(p q, q) & =\sum_{A=1}^{p-1}\left(-q A+\sum_{A^{\prime}=0}^{q-1}\left(A+p A^{\prime}\right)\right)^{2} \\
& =\sum_{A=1}^{p-1}\left(p q \frac{q-1}{2}\right)^{2}=p^{2} q^{2}(p-1)(q-1)^{2} / 4 .
\end{aligned}
$$

The Lemma follows from (7) and these four previous formulae.

Now, we are in a position to prove the last assertion of Theorem 4: Lemma 6 would give $f(X, Y)=$ $g(X, Y)$ (according to Dirichlet's Theorem, for any prime p there are infinitely many primes q of the form $q=n p+1, n \geq 1$. Hence, for any prime p we would have $f(p, Y)=g(p, Y)$. Now, since there are infinitely many primes $p>2$ we would then obtain $f(X, Y)=g(X, Y))$. But this identity cannot hold for while $S^{-}(p q)=S^{-}(q p)$, this expression $g(p, q)$ is not symetrical in p and q.

References

[1] T. M. Apostol: Introduction to Analytic Number Theory. Undergrad. Texts Math., SpringerVerlag, pp. 1-338 (1976).
[2] S. Louboutin: Quelques formules exactes pour des moyennes de fonctions L de Dirichlet. Canad. Math. Bull., 36, 190-196 (1993).
[3] S. Louboutin: Corrections à: Quelques formules exactes pour des moyennes de fonctions L de Dirichlet. Canad. Math. Bull., 37, 89 (1994).
[4] Qi Minggao: A kind of mean square formula for L-functions. J. Tsinghua Univ., 31, 34-41 (1991) (see MR 93g:11090).
[5] W. P. Zhang: A note on a class of mean square values of L-functions. J. Northwest Univ., (3) 20, 9-12 (1990) (see MR 91j:11068).

[^0]: 1991 Mathematics Subject Classification. Primary 11M20.

