On the topology of the moduli space of negative constant scalar curvature metrics on a Haken manifold

By Minyo Katagiri

Department of Mathematics, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506 (Communicated by Shigefumi MORI, M.J.A., Sept. 13, 1999)

1. Introduction. The topology of the space of positive scalar curvature metrics on a closed manifold M has been studied by several authors ([6]). It turns out that the topology of this space is very complicated, and the moduli space of positive scalar curvature metrics quotient by the diffeomorphism group of M can have infinitely many connected components. By contrast, the topology of the space of negative scalar curvature metrics is very simple ([7]).

Let M be a closed connected manifold. Denote by $\mathcal{M}_{-1}(M)$ the set of all Riemannian metrics with scalar curvature -1. The diffeomorphism group acts on $\mathcal{M}_{-1}(M)$ by pull-back. In this paper, we will report the topological structure of the moduli space $\mathcal{M}_{-1}(M)/\mathrm{Diff}_0(M)$, the space of Riemannian metrics with scalar curvature -1 devided by the group $\text{Diff}_0(M)$ of diffeomorphisms which are isotopic to the identity map. The result gives a fact that if M is a closed connected Haken manifold with no nontrivial symmetry, then the moduli space $\mathcal{M}_{-1}(M)/\mathrm{Diff}_0(M)$ is a contractible manifold. Note that this result is an analogue to the contractibility of the Teichmüller space on an oriented surface with negative Euler number ([3], [10]). It seems that there are similarities between Haken manifolds and oriented surfaces with non-positive Euler number.

2. The space of negative constant scalar curvature metrics. Let M be a closed nmanifold, and $\mathcal{M}(M)$ be the space of all Riemannain metrics on M. For $g \in \mathcal{M}(M)$, let R_g denote the scalar curvature of g, and $\mathcal{M}_{-1}(M)$ denote the space of Riemannian metrics with scalar curvature -1. It is known that if M is a closed n-manifold, $n \geq 3$, then M admits a Riemannian metric with scalar curvature -1, i.e., $\mathcal{M}_{-1}(M)$ is a non-empty set if dim $M \geq 3$. We denote by $L_k^2 \mathcal{M}(M)$ the space of all L_k^2 -metrics, where L_k^2 is a Sobolev space whose derivatives of order less than or equal to k are all in L^2 . Then the space $L_k^2 \mathcal{M}(M)$ is a Hilbert manifold for 2k > n. It is known that the space $\mathcal{M}(M)$ is an ILH-manifold in the sense of the inverse limit of Hilbert manifolds: $\mathcal{M}(M) = \lim_{\leftarrow} L_k^2 \mathcal{M}(M)$ ([8]).

For 2k > n+2, let $\mathcal{R} : L_k^2 \mathcal{M}(M) \to L_{k-2}^2(M)$ defined by $\mathcal{R}(g) := R_g$ denote the scalar curvature map. The tangent space at $g \in L_k^2 \mathcal{M}(M)$ can be identified with the space $L_k^2(M; S^2T^*M)$ of symmetric (0, 2)-tensor fields of class L_k^2 . We denote its differential at $g \in L_k^2 \mathcal{M}(M)$ by $\beta_g := d\mathcal{R}_g :$ $L_k^2(M; S^2T^*M) \to L_{k-2}^2(M)$.

Lemma 2.1. The differential β_g of the scalar curvature map is given by

$$\beta_g(h) = -\Delta_g(\operatorname{tr}_g h) + \delta_g \delta_g h - (h, \operatorname{Ric}_g),$$

where δ_g is the formal adjoint of the covariant derivative of g and Ric_g is the Ricci curvature of g.

Theorem 2.2 ([2]). Let $g \in L^2_k \mathcal{M}(M)$, 2k > n+2, with $R_g = -1$. Then β_g is surjective.

Theorem 2.3. $\mathcal{M}_{-1}(M)$ is a smooth contractible ILH-submanifold of $\mathcal{M}(M)$ with tangent space $T_g \mathcal{M}_{-1}(M)$ at $g \in \mathcal{M}_{-1}(M)$ given as Ker β_g the kernel of the differential of the scalar curvature map.

3. Some results on Haken manifolds. A compact connected orientable 3-manifold M is said to be *irreducible* if every 2-sphere S^2 in M bounds a 3-ball B^3 .

Let M be a compact connected orientable 3manifold. Let S be a compact connected orientable surface, and let $i: S \to M$ be an embedding of Sinto M. Then i induces a homomorphisms on the homotopy groups $i_*: \pi_k(S) \to \pi_k(M)$ for $k \ge 1$. The embedded surface i(S) is *incompressible* if the induced homomorphism i_* is injective on the fundamental group $\pi_1(S)$. A 3-manifold is *sufficiently large* if it contains an incompressible surface of genus greater than zero.

Definition 3.1. A Haken manifold M is an irreducible compact connected orientable sufficiently large 3-manifold.

Remark 3.2. A connected manifold M is called a $K(\pi, 1)$ -manifold if the fundamental group

 $\pi_1(M)$ of M is isomorphic to π , and the k-th homotopy group $\pi_k(M) = \{0\}$ for $k \geq 2$. A Haken manifold must be an irreducible $K(\pi, 1)$ -manifold, and the fundamental group is infinite and not isomorphic to Z. Moreover, it is known that a Haken manifold can not admit a positive scalar curvature metric ([6]). Therefore, by normalization of volume, the constant scalar curvature of a metric on a Haken manifold may be 0 or -1.

We denote by $L_k^2 \text{Diff}(M)$ the space of all L_k^2 diffeomorphisms. We know that the group Diff(M)of all diffeomorphisms of M is an ILH-Lie group in the sence that $\text{Diff}(M) = \lim_{\leftarrow} L_k^2 \text{Diff}(M)$ ([8]). Let $\text{Diff}_0(M)$ denote the group of diffeomorphisms which are isotopic to the identity map.

Let G be a group. We denote the group of automorphisms of G by Aut (G). Let Inn (G) denote its normal subgroup of inner autmorphisms, and let Out (G) := Aut (G)/Inn (G) denote the quotient group of outer automorphisms. We denote the center of G by C(G).

Theorem 3.3. Let M be a Haken manifold with fundamental group $\pi_1(M) \cong G$. Then the homotopy type of the diffeomorphism group is given by the followings:

$$\pi_0(\operatorname{Diff}(M)) \cong \operatorname{Diff}(M)/\operatorname{Diff}_0(M) \cong \operatorname{Out}(G),$$

$$\pi_1(\operatorname{Diff}(M)) \cong \pi_1(\operatorname{Diff}_0(M)) \cong C(G),$$

$$\pi_k(\operatorname{Diff}(M)) \cong \pi_k(\operatorname{Diff}_0(M)) = \{0\}$$

for $k \geq 2$.

Remark 3.4. A proof of Theorem 3.3 is due to the results of Hatcher (See [4], [5]). The important fact is that a Haken manifold can be reduced to a ball with the use of incompressible sur-Let S be an incompressible surface in a faces. Haken manifold M, consider the fibration Diff (M - $S) \rightarrow \text{Diff}(M) \rightarrow \text{Emb}(S, M), \text{ where } \text{Emb}(S, M)$ is the space of smooth embeddings of S into M. If $\pi_k(\operatorname{Emb}(S, M)) = \{0\}$, then $\pi_k(\operatorname{Diff}(M)) \cong$ $\pi_k(\text{Diff}(M-S))$. Now from the assumption, M can be reduced to a ball by cutting operations with the use of incompressible surfaces, hence for $k \geq 2, \ \pi_k(\operatorname{Diff}(M)) \cong \pi_k(\operatorname{Diff}(B^3)) \cong \{0\}.$ In fact, we know that $\pi_k(\text{Emb}(S, M)) \cong \pi_{k-1}(\text{Diff}(S \times$ $[0,1]) \cong \{0\}$ in this case.

Let Isom(M, g) denote the isometry group of a Riemannian manifold (M, g). For a connected *n*manifold M, define the *degree* of M by

$$\deg(M) := \max\{\dim \operatorname{Isom}(M,g) \mid g \in \mathcal{M}(M)\}\$$

Theorem 3.5. Let M be a Haken manifold with deg (M) = 0. Then Diff₀(M) is a contractible ILH-Lie group.

127

4. Contractibility of the moduli space on a Haken manifold. For a metric $g \in \mathcal{M}(M)$, the Lie derivative gives us a mapping $\alpha_g : \mathcal{X}(M) \to C^{\infty}(M; S^2T^*M)$ defined as $\alpha_g(X) := \mathcal{L}_X g$, where $\mathcal{X}(M)$ denotes the space of vector fields on M. We use the Riemannian metric g to identify the tangent bundle and cotangent bundle of M. The formal adjoint operator α_q^* of α_g is given by $\alpha_q^*(h) = 2\delta_g h$.

Theorem 4.1 ([2]). Let M be a closed manifold, and $g \in \mathcal{M}(M)$ be a Riemannian metric on Mwith scalar curvature -1. Then $\operatorname{Im} \alpha_g \subset \operatorname{Ker} \beta_g$, so we have the following splitting of the tangent space $T_g \mathcal{M}(M)$ at g:

 $T_g\mathcal{M}(M) = \operatorname{Im} \beta_q^* \oplus \operatorname{Im} \alpha_g \oplus (\operatorname{Ker} \alpha_q^* \cap \operatorname{Ker} \beta_g).$

Proposition 4.2. Let M be a closed Haken manifold with $\deg(M) = 0$. Then the action of $\operatorname{Diff}_0(M)$ on $\mathcal{M}_{-1}(M)$ is smooth, proper and free.

Theorem 4.3. Let M be a closed connected Haken manifold with deg (M) = 0. Then the moduli space $\mathcal{M}_{-1}(M)/\text{Diff}_0(M)$ is a smooth contractible ILH-manifold with tangent space $T_{[g]}(\mathcal{M}_{-1}(M)/\text{Diff}_0(M))$ at $[g] \in \mathcal{M}_{-1}(M)/\text{Diff}_0(M)$ isomorphic to the space Ker $\beta_q/\text{Im } \alpha_q \cong \text{Ker } \alpha_a^* \cap \text{Ker } \beta_q$.

Remark 4.4. Let M be a closed connected oriented surface. Denote by $\mathcal{C}(M)$ the set of all complex structures on M. The quotient space $\mathcal{T}(M) := \mathcal{C}(M) / \text{Diff}_0(M)$ is called the *Teichmüller* There is a $\text{Diff}_0(M)$ -invariant diffeomorspace. phism Ψ : $\mathcal{C}(M) \to \mathcal{M}_{-1}(M)$ and thus Ψ induces a diffeomorphism of the moduli space $\mathcal{T}(M) \cong$ $\mathcal{M}_{-1}(M)/\mathrm{Diff}_0(M)$. It is known that if the Euler number $\chi(M)$ of M is negative, then $\mathcal{T}(M)$ is a cell of real dimension $-3\chi(M)$, and hence it is contractible. This diffeomorphism also becomes an isometry between the Weil-Petersson metric on $\mathcal{T}(M)$ and the L^2 -metric on $\mathcal{M}_{-1}/\text{Diff}_0(M)$. Formore detail, see [3], [10]. We will also discuss properties of the L^2 metric on the moduli space on a Haken manifold in forthcoming paper.

References

- M. Berger and D. G. Ebin: Some decompositions of the space of symmetric tensors on a Riemannian manifold. J. Differential Geom., 3, 370–392 (1969).
- [2] A. E. Fischer and J. E. Marsden: Deformations of

the scalar curvature. Duke Math. J., **42**, 519–547 (1975).

- [3] A. E. Fischer and A. J. Tromba: On a purely "Riemannian" proof of the structure and dimension of the unramified moduli space of a compact Riemann surface. Math. Ann., 267, 311–345 (1984).
- [4] A. Hatcher: Homeomorphisms of sufficiently large *P*²-irreducible 3-manifolds. Topology, **15**, 343– 347 (1976).
- [5] A. Hatcher: A proof of the Smale conjecture, Diff $(S^3) \cong O(4)$. Ann. of Math., **117**, 553–607 (1983).
- [6] B. Lawson and M. L. Michelsohn: Spin Geometry. Princeton Univ. Press, Princeton, pp. 1–427 (1989).
- [7] J. Lohkamp: The space of negative scalar curvature metrics. Invent. Math., 110, 403–407 (1992).
- [8] H. Omori: On the group of diffeomorphisms on a compact manifold. Proc. Sympos Pure Math., 15, 167–183 (1970).
- [9] R. S. Palais: Homotopy theory of infinite dimensional manifolds. Topology, 5, 1–16 (1966).
- [10] A. J. Tromba: Teichmüller Theory in Riemannian Geometry. Birkhäuser, Basel-Boston pp. 1–220 (1992).