The abc conjecture and the fundamental system of units of certain real bicyclic biquadratic fields

By Shin-ichi Katayama

Department of Mathematical Sciences, Tokushima University, 1-1 Minamijyosanjima-cho, Tokushima 770-8502 (Communicated by Shokichi Iyanaga, m.j.a., Dec. 13, 1999)

Let k_1 be a real quadratic field and

$$
\eta_1 = (M + \sqrt{M^2 \pm 4})/2
$$

be a fixed unit of k_1 with a positive integer M . Let $\bar{\eta}_1$ be the field conjugate of η_1 .

Put

$$
g_n(M) = \eta_1^n + \bar{\eta}_1^n
$$
, $h_n(M) = \frac{\eta_1^n - \bar{\eta}_1^n}{\sqrt{M^2 \pm 4}}$.

Then the sequences $\{g_n(M)\}_{n\in\mathbb{N}}$ and $\{h_n(M)\}_{n\in\mathbb{N}}$ are the non-degenerate binary recurrence sequences defined by

$$
g_{n+2}(M) = Mg_{n+1}(M) \pm g_n(M),
$$

\n
$$
h_{n+2}(M) = Mh_{n+1}(M) \pm h_n(M),
$$

with the initial terms $g_0(M) = 2$, $g_1(M) = M$ and $h_0(M) = 0$, $h_1(M) = 1$. If there is no fear of confusion, we simply write $h_n(M)$ and $g_n(M)$ for h_n and g_n , respectively.

In our previous paper [1], we have investigated Hasse's unit indices Q_K of the real bicyclic biquadratic fields $K = \mathbf{Q}(\sqrt{M^2 \pm 4}, \sqrt{h_{2n+1}^2(M)-1})$ and shown that $Q_K = 1$ except for finitely many indices n . In this note, assuming the *abc conjecture*, we shall determine the fundamental system of units of almost all K explicitly. First of all, we shall quote the following:

The abc conjecture. For any $\varepsilon > 0$, there exists a constant $K_0 > 0$ (depending on ε) such that if a, b, c are non-zero relatively prime integers with $a+b+c=0,$ then

$$
\max\{|a|, |b|, |c|\} \le K_0 r^{1+\varepsilon},
$$

where $r = rad(abc) = \prod_{p \mid abc} p$ (p: prime integer).

Any positive integer m can be written in the form $m = s(m)q^2(m)$, where $s(m)$ is the square free part of m. The following proposition is a corollary of a more general result of P. Ribenboim and G. Walsh [5, Theorem 2]:

Proposition 1 (Assuming the abc conjecture).

For any $\varepsilon > 0$,

$$
q(h_n) \leq h_n^{\varepsilon}
$$
 and $q(g_n) \leq g_n^{\varepsilon}$

except for finitely many indices n.

Since $h_n = s(h_n)q^2(h_n)$, we have $q(h_n) \leq h_n^{\varepsilon}$ if and only if $(q(h_n))^{1/\epsilon-2} \leq s(h_n)$. Hence the abc conjecture and the fact $1/\varepsilon - 2 \to \infty$ as $\varepsilon \to +0$ imply that for any $m > 0$,

$$
(1) \tq^m(h_n) \le s(h_n)
$$

except for finitely many indices n . From the case $m = 2$ of the above (1), we have $h_n = s(h_n)q^2(h_n)$ $\leq s^2(h_n)$. The fact $h_n \to \infty$ as $n \to \infty$ implies the following proposition.

Proposition 2 (Assuming the abc conjecture). For any constant $C > 0$,

$$
C \leq s(h_n)
$$

except for finitely many indices n.

It is easy to show that for any positive integers x and y ,

$$
s(xy) = s(x)s(y)/(s(x), s(y))^{2} \ge s(x)s(y)/(x, y)^{2},
$$

$$
q(xy) = q(x)q(y)(s(x), s(y)) \le q(x)q(y)(x, y).
$$

In Proposition 1 of [1], we have shown h_{2n+1}^2 $-1 = h_{2n}h_{2n+2}$ with $(h_{2n}, h_{2n+2}) = M$. Hence, assuming the abc conjecture, we have that, for any $m > 0$,

$$
s(h_{2n})s(h_{2n+2}) \ge M^{2m+4}
$$

except for finitely many indices n . The inequality (1) implies $s(h_{2n}) \geq q^{2m}(h_{2n})$ and $s(h_{2n+2}) \geq$ $q^{2m}(h_{2n+2})$ except for finitely many indices n. Hence we have

$$
s^{2}(h_{2n+1}^{2}-1) = s^{2}(h_{2n}h_{2n+2})
$$

\n
$$
\geq s^{2}(h_{2n})s^{2}(h_{2n+2})/M^{4}
$$

\n
$$
\geq q^{2m}(h_{2n})q^{2m}(h_{2n+2})s(h_{2n})s(h_{2n+2})/M^{4}
$$

\n
$$
= (Mq(h_{2n})q(h_{2n+2}))^{2m}s(h_{2n})s(h_{2n+2})/M^{2m+4}
$$

\n
$$
\geq q^{2m}(h_{2n}h_{2n+2}) = q^{2m}(h_{2n+1}^{2}-1).
$$

Thus assuming the abc conjecture, for any $m > 0$,

$$
s(h_{2n+1}^2 - 1) \ge q^m(h_{2n+1}^2 - 1)
$$

except for finitely many indices n. Similarly the fact $g_{2n+1}^2 - M^2 = (M^2 \pm 4)(h_{2n+1}^2 - 1)$ implies that for any $m > 0$,

$$
s((g_{2n+1}/M)^2 - 1) \ge q^m((g_{2n+1}/M)^2 - 1)
$$

except for finitely many indices n.

Combining these, we have the following proposition. Proposition 3 (Assuming the abc conjecture). For any $m \geq 0$,

$$
\begin{array}{ll} s(h_{2n+1}^2-1)\geq q^m(h_{2n+1}^2-1), \\ s((g_{2n+1}/M)^2-1)\geq q^m((g_{2n+1}/M)^2-1), \end{array}
$$

except for finitely many indices n.

In $[1]$, we have shown that except for finitely many indices *n*, the unit $\eta_2 = h_{2n+1} + \sqrt{h_{2n+1}^2 - 1}$ and $\eta_3 = g_{2n+1}/M +$ p $(g_{2n+1}/M)^2 - 1$ are the odd powers of the fundamental units of $k_2 = Q(\sqrt{h_{2n+1}^2 - 1})$ and $k_3 = \mathbf{Q}(\sqrt{g_{2n+1}^2 - M^2})$, respectively. Suppose p

$$
\eta_2 = ((t + \sqrt{t^2 - 4})/2)^{2l + 1}
$$

with $l \geq 1$. Thus $h_{2n+1}^2 - 1 = h_{2l+1}^2(t)(t^2 - 4)/4$ implies

$$
q^{2}(h_{2n+1}^{2}-1) \ge ((h_{2l+1}(t)/2)^{2} \ge ((h_{3}(t)/2)^{2})
$$

= $((t^{2}-1)/2)^{2} > t^{2} - 4 \ge s(t^{2} - 4)$
 $\ge s(h_{2n+1}^{2}-1).$

Similarly if η_3 is not the fundamental unit and an odd power of the fundamental unit of k_3 , we have

$$
q^{2}((g_{2n+1}/M)^{2}-1) > s((g_{2n+1}/M)^{2}-1).
$$

Combining these inequalities and the inequalities of

the case $m = 2$ of Proposition 3, we have the following theorem.

Theorem 1 (Assuming the abc conjecture). $\mathcal{L}_{\mathcal{A}}$

$$
\eta_2 = h_{2n+1} + \sqrt{h_{2n+1}^2 - 1}
$$

(resp. $\eta_3 = g_{2n+1}/M + \sqrt{(g_{2n+1}/M)^2 - 1}$)

is the fundamental unit of the real quadratic field k_2 $(resp. k₃)$, except for finitely many indices n.

As a corollary of this theorem, we can show the following theorem which is a refinement of Theorem 1 of our previous paper [1].

Theorem 2 (Assuming the abc conjecture). Let $\eta_1 = (M + \sqrt{M^2 \pm 4})/2$ be a fundamental unit of k_1 . Then $\{\eta_1, \eta_2, \eta_3\}$ is a fundamental system of units of $K = Q$ ($\sqrt{M^2 \pm 4}, \sqrt{h_{2n+1}^2 - 1}$ except for finitely many indices n.

Remark 1. Numerical investigations which support the above two theorems will be given in a forthcoming paper [2].

References

- [1] S.-I. Katayama, C. Levesque, and T. Nakahara: On the units and the class numbers of certain composita of two quadratic fields. Proc. Japan Acad., 75A, 63–66 (1999).
- [2] S.-I. Katayama: A conjecture on the units of bicyclic biquadratic fields (in preparation).
- [3] S. Lang: Old and new conjectured diophantine equations. Bull. Amer. Math. Soc., 30, 37–75 (1990).
- [4] J. Oesterlé: Nouvelles approches du "Théoème" de Fermat. Astérisque, 161-162, 165-186 (1988).
- [5] P. Ribenboim and G. Walsh: The ABC Conjecture and the powerfull part of terms in binary recurring sequences. J. Number Theory, 74, 134–147 (1999).