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Cauchy-Kovalevskaja-Nagumo type theorems for PDEs with shrinkings
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1. Introduction. By the Cauchy-Kovalev-
skaja theorem we know that, if f(t, x, u, v) is an an-
alytic function of (t, x, u, v) ∈ R4 then the Cauchy
problem

∂1u(t, x) = f(t, x, u(t, x), ∂2u(t, x)),(1.1)

u(0, x) = 0,(1.2)

where ∂i is the partial differentiation in the ith vari-
able, has a unique analytic local solution. But it
seems impossible simply to replace the first order
derivative ∂2u(t, x) in the equation (1.1) by a higher
order derivative ∂p

2u(t, x) with p > 1.
So it was quite surprising to us to learn that

Augustynowicz et al. [2], [3] had solved the Cauchy
problem for an equation of the form

∂1u(t, x) = a(t, x)∂p
2u(t, α(t, x)x) + g(t, x)(1.3)

or

∂1u(t, x) = a(t, x)∂p
2u(α(t, x)t, x) + g(t, x).(1.4)

In (1.3) and (1.4) it is assumed that a(t, x), g(t, x)
and α(t, x) are given analytic functions of (t, x). The
function α is called a delay and has the property that
0 < α(t, x) < 1 if |t| + |x| is small. It seems that
a delay plays the role of appeasing the disturbance
caused by differentiation in x.

Our purpose here is to generalize the above men-
tioned results in [2], [3] as much as possible. We
want to consider non-linear differential equations in-
stead of linear ones such as (1.3) or (1.4). Also we
want mainly to consider the case where the differen-
tial equation is not analytic in t.

As the first step toward these ends we consider
in this note two simple PDEs of the form

∂1u(t, x) = f(t, x, u(t, x), ∂p
2u(t, α(t, x)x))(1.5)

and

∂1u(t, x) = f(t, x, u(t, x), ∂p
2u(α(t)t, x)).(1.6)

In (1.5) and (1.6) α(t, x) or α(t) is a function with
properties similar to those of α(t, x) in (1.3) and
(1.4). We call α(t, x) or α(t) a shrinking instead

of a delay, since it may sound strange to use the
word delay for the space variable. Our result for
the equation (1.5) will be stated in §2 as Theorem
2.1. Our result for the equation for (1.6) will be
stated in §3 as Theorem 3.2. Note that the dis-
cussion for the equation (1.5) is much simpler than
that for the equation (1.6). For instance, the do-
main of existence of a solution to the Cauchy prob-
lem (1.6)-(1.2) is of the strange form {(t, x) ; |t| <

a, R− |x| − |t|1/(p+1) > 0}, while the corresponding
domain for the problem (1.5)-(1.2) is of the simple
form {(t, x) ; |t| < a, |x| < R}. In order to obtain
the result of §3 we use a variant of the famous trick
in Nagumo [1].

For the reason why α(t) in (1.6) cannot be re-
placed by α(t, x) and further possibilities of obtain-
ing other related results see the remarks in §4.

2. Shrinking in the space variable. The
purpose of this section is to solve the Cauchy prob-
lem for the equation (1.5). Our result will be stated
in the Theorem 2.1 below. In the theorem we use
the following notation. If T , R and S are positive
constants, we write

A(T, R) = {(t, x) ∈ R×C ; |t| < T, |x| < R},
B(T, R, S) = {(t, x, u, v) ∈ R×C3 ;

(t, x) ∈ A(T, R), |u| < S, |v| < S}.
Theorem 2.1. Let T , R, S and m be positive

constant. Assume that m < 1. Let p be an integer≥
1. In the differential equation (1.5) assume that
(i) f(t, x, u, v) is a complex valued bounded contin-

uous function of (t, x, u, v) ∈ B(T, R, S) ;
(ii) f(t, x, u, v) is analytic in (x, u, v) ;
(iii) α(t, x) is a complex valued continuous function

of (t, x) ∈ A(T, R) ;
(iv) α(t, x) is analytic in x and satisfies the inequal-

ity

|α(t, x)| ≤ m.

Then there is a positive constant a such that the
Cauchy problem (1.5)-(1.2) has a unique solution
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u : A(a,R) → C such that u(t, x), ∂1u(t, x) and
∂p
2u(t, x) are continuous in (t, x) and analytic in x.

Proof . Let a ≤ T be a positive constant and
assume that there is a solution u : A(a,R) → C of
the Cauchy problem (1.5)-(1.2). Then

w(t, x) := ∂1u(t, x)

satisfies the integral equation

(2.1)

w(t, x) = f

(
t, x,

∫ t

0

w(τ, x)dτ,

∫ t

0

∂p
2w(τ, α(t, x)x)dτ

)

for (t, x) ∈ A(a,R). If, conversely, the integral equa-
tion (2.1) has a solution w : A(a,R) → C, then

u(t, x) :=
∫ t

0

w(τ, x)dτ

becomes a solution in A(a,R) of the Cauchy problem
(1.5)-(1.2).

So we want now to solve the integral equation
(2.1). For this purpose we take an upper bound M

of |f(t, x, u, v)| in B(T, R, S). We need the following
lemma.

Lemma 2.1. If (t, x, u1, v1) and (t, x, u2, v2)
are in B(T, R, S/2), then the inequality

|f(t, x, u1, v1)− f(t, x, u2, v2)|
≤ 4M

S
{|u1 − u2|+ |v1 − v2|}

holds.
Proof . Easy by Cauchy’s integral formula.
Next let a be a positive constant. We denote

by C(a) the set of all bounded continuous functions
from A(a,R) into C and write

D(a) = {u ∈ C(a) ; u(t, x) is analytic in x},
E(a) = {u ∈ D(a) ; |u(t, x)| ≤ M

for all (t, x) ∈ A(a,R)}.
D(a) becomes a Banach space by defining the

norm of its element u by

‖u‖ = sup
(t,x)∈A(a,R)

|u(t, x)|.

E(a) is a closed subset of D(a). Let us prepare an-
other lemma.

Lemma 2.2. If u is in E(a), then ∂p
2u(t, x) is

continuous in (t, x), analytic in x and satisfies the
inequality

|∂p
2u(t, x)| ≤ p!M

(R− |x|)p

for all (t, x) ∈ A(a,R).
Proof . Easy by Cauchy’s integral formula.
Now let

a = min
{

T,
S

2M
,
SRp(1−m)p

p!2M

}
(2.2)

and take an element w of the set E(a) arbitrarily.
Then we have∣∣∣∣

∫ t

0

w(τ, x)dτ

∣∣∣∣ ≤ |t|M ≤ aM ≤ S/2,(2.3)
∣∣∣∣
∫ t

0

∂p
2w(τ, α(t, x)x)dτ

∣∣∣∣(2.4)

≤ p!M |t|
(R− |α(t, x)x|)p ≤

p!Ma

Rp(1−m)p ≤ S/2.

Therefore we see that, if a is defined by (2.2) and
w ∈ E(a), then an element w̃ ∈ E(a) is defined by

w̃(t, x) = f

(
t, x,

∫ t

0

w(τ, x)dτ,

∫ t

0

∂p
2w(τ, α(t, x)x)dτ

)
.

We denote the mapping w 7→ w̃ by Φ. Let us check if
the map Φ : E(a) → E(a) is a contraction. Suppose
two elements w1 and w2 of E(a) are given. Then we
have, like (2.3) and (2.4),

∣∣∣∣
∫ t

0

w1(τ, x)dτ −
∫ t

0

w2(τ, x)dτ

∣∣∣∣
≤ a‖w1 − w2‖,∣∣∣∣

∫ t

0

∂p
2w1(τ, α(t, x)x)dτ−

∫ t

0

∂p
2w2(τ, α(t, x)x)dτ

∣∣∣∣

≤ p!a‖w1 − w2‖
Rp(1−m)p .

Therefore, by Lemma 2.1, we have

‖Φ(w1)− Φ(w2)‖
≤ a

4M

S

Rp(1−m)p + p!
Rp(1−m)p

‖w1 − w2‖.

It follows that, if a satisfies the condition

a ≤ min
{

T,
S

2M
,
SRp(1−m)p

p!2M
,(2.5)

S

8M

Rp(1−m)p

p! + Rp(1−m)p

}
,

then the inequality

‖Φ(w1)− Φ(w2)‖ ≤ 2−1‖w1 − w2‖
holds. This means that the map Φ : E(a) → E(a) is
a contraction, if a satisfies (2.5).

Therefore, there is a unique element w ∈ E(a)
that satisfies the equality Φ(w) = w. This means
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that the Cauchy problem (1.5)-(1.2) has a unique
solution u : A(a,R) → C with the properties men-
tioned in the theorem.

3. Shrinking in the time variable. The
purpose of this section is to solve the Cauchy problem
for the equation (1.6). Our result will be stated in
the Theorem 3.1 below. In the theorem we use the
following notation. If T and R are positive constants
and p is a positive integer, then we write

Ω(T, R, p) = {(t, x) ∈ R×C ;

|t| < T, R− |x| − |t|1/(p+1) > 0}.
Theorem 3.1. Let T , R, S and m be positive

constant. Assume that m<1. Let p be an integer ≥1.
In the differential equation (1.6) assume that
(i) f(t, x, u, v) satisfies the same conditions as in

Theorem 2.1;
(ii) α(t) is a real valued continuous function of t ∈

[−T, T ] satisfying the inequality 0 < α(t) ≤ m.
Then there is a positive constant a such that the
Cauchy problem (1.6)-(1.2) has a unique solution
u : Ω(a,R, p) → C such that u(t, x), ∂1u(t, x) and
∂p
2u(t, x) are continuous in (t, x) and analytic in x.

Proof . Assume that there exists a positive
number a ≤ T such that the Cauchy problem (1.6)-
(1.2) has a solution u : Ω(a,R, p) → C. Then

w(t, x) := ∂1u(t, x)

satisfies the integral equation

(3.1)

w(t, x) = f

(
t, x,

∫ t

0

w(τ, x)dτ,

∫ α(t)t

0

∂p
2w(τ, x)dτ

)

in the region Ω(a,R, p). If, conversely, the integral
equation (3.1) has a solution w(t, x) in the region
Ω(a,R, p), then

u(t, x) :=
∫ t

0

w(τ, x)dτ

becomes a solution of the Cauchy problem (1.6)-
(1.2).

So we want now to solve the integral equation
(3.1). For this purpose we take an upper bound M of
|f(t, x, u, v)| in B(T, R, S). Let a be a positive con-
stant. We denote by C(a) the set of all bounded con-
tinuous functions from Ω(a,R, p) into C and write

D(a) = {u ∈ C(a) ; u(t, x) is analytic in x},
E(a) = {u ∈ D(a) ;

|u(t, x)| ≤ M for all (t, x) ∈ Ω(a, R, p)}.

D(a) becomes a Banach space by defining the norm
of its element u by

‖u‖ = sup
(t,x)∈Ω(a,R,p)

|u(t, x)|.

E(a) is a closed subset ofD(a). We need the following
lemma.

Lemma 3.1. If u is in E(a), then ∂p
2u(t, x) is

continuous in (t, x), analytic in x and satisfies the
inequality

|∂p
2u(t, x)| ≤ p!M(

R− |x| − |t|1/(p+1)
)p

for all (t, x) ∈ Ω(a,R, p).
Proof . Easy by Cauchy’s integral formula.
Corollary. If u is in E(a) and (t, x) is in

Ω(a,R, p), then

|∂p
2u(mt, x)| ≤ p!M

m̃|t|p/(p+1)
,

where m̃ =
(
1−m1/(p+1)

)p
.

Proof . If (t, x) ∈ Ω(a,R, p), then R − |x| −
|t|1/(p+1) > 0 and

R− |x| − |mt|1/(p+1)

= R− |x| − |t|1/(p+1) + |t|1/(p+1) − |mt|1/(p+1)

> (1−m1/(p+1))|t|1/(p+1) = m̃1/p|t|1/(p+1).

Therefore we have, by Lemma 3.1,

|∂p
2u(mt, x)|

≤ p!M(
R− |x| − |mt|1/(p+1)

)p ≤
p!M

m̃|t|p/(p+1)
.

Now choose an a > 0 such that

a ≤ min

{
T,

S

2M
,

(
Sm̃

(p + 1)!2mM

)p+1
}

(3.2)

and take an element w of the set E(a) arbitrarily.
Then we have

∣∣∣∣
∫ t

0

w(τ, x)dτ

∣∣∣∣ ≤ |t|M ≤ aM ≤ S/2.(3.3)

Further we have, assuming that t ≥ 0,
∣∣∣∣∣
∫ α(t)t

0

∂p
2w(τ, x)dτ

∣∣∣∣∣ ≤
∫ mt

0

|∂p
2w(τ, x)|dτ

= m

∫ t

0

|∂p
2w(ms, x)|ds ≤ m

∫ t

0

p!M
m̃sp/(p+1)

ds

=
p!mM

m̃
(p + 1)t1/(p+1)≤ (p + 1)!mM

m̃
a1/(p+1)≤S

2
.
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For t ≤ 0, too, we can discuss similarly. In conclusion
we have the inequality

∣∣∣∣∣
∫ α(t)t

0

∂p
2w(τ, x)dτ

∣∣∣∣∣(3.4)

≤ (p + 1)!mM

m̃
a1/(p+1) ≤ S

2
that holds for all (t, x) ∈ Ω(a,R, p).

Therefore we see that, if a is defined by (3.2)
and w ∈ E(a), then an element w̃ in E(a) is defined
by

w̃(t, x) = f

(
t, x,

∫ t

0

w(τ, x)dτ,

∫ α(t)t

0

∂p
2w(τ, x)dτ

)
.

We denote the mapping w 7→ w̃ by Φ. Let us check if
the map Φ : E(a) → E(a) is a contraction. Suppose
two elements w1 and w2 of E(a) are given. Then we
have, like (3.3) and (3.4),

∣∣∣∣
∫ t

0

w1(τ, x)dτ −
∫ t

0

w2(τ, x)dτ

∣∣∣∣
≤ a‖w1 − w2‖

and ∣∣∣∣∣
∫ α(t)t

0

∂p
2w1(τ, x)dτ−

∫ α(t)t

0

∂p
2w2(τ, x)dτ

∣∣∣∣∣
≤ mm̃−1(p + 1)!a1/(p+1)‖w1 − w2‖.

Therefore, by Lemma 2.1, we have

|Φ(w1)(t, x)− Φ(w2)(t, x)|
≤ 4M

S

{
a + mm̃−1(p + 1)!a1/(p+1)

}
‖w1 − w2‖

and

‖Φ(w1)− Φ(w2)‖
≤ 4M

S

{
a + mm̃−1(p + 1)!a1/(p+1)

}
‖w1 − w2‖.

It follows that, if a > 0 satisfies the condition

a ≤ min

{
T,

S

2M
,

(
Sm̃

(p + 1)!2mM

)p+1

, ã

}
,(3.5)

where ã is the unique positive root of the equation

4M

S
{ã + mm̃−1(p + 1)!ã1/(p+1)} =

1
2
,

then the inequality

‖Φ(w1)− Φ(w2)‖ ≤ 2−1‖w1 − w2‖
holds. This means that the map Φ : E(a) → E(a) is
a contraction, if a > 0 satisfies (3.5).

Therefore, there is a unique element w ∈ E(a)
that satisfies the equality Φ(w) = w. This means
that the Cauchy problem (1.6)-(1.2) has a unique
solution u : Ω(a,R, p) → C with the properties men-
tioned in the theorem.

4. Remarks.
(i) It is easy to replace the equation (1.5) by more

general ones such as

∂1u(t, x) = f(t, x, u(t, x),(4.1)

∂2u(t, α1(t, x)x), · · · , ∂p
2u(t, αp(t, x)x)).

(ii) It is also easy to consider the case where x and
u(t, x) in (1.5) or (4.1) are multi-dimensional.

(iii) The reason why α(t) in the differential equation
(1.6) is cannot be replaced by α(t, x) is that we
do not assume analyticity in t of f(t, x, u, v).
If we assume that f(t, x, u, v) is analytic in
(t, x, u, v), then we can replace α(t) by α(t, x)
which is analytic in (t, x).

(iv) The story for the equation (1.6), too, can be gen-
eralized along the same lines as in the remarks
(i) and (ii) above.

(v) The author has a plan to publish elsewhere the
above mentioned generalizations of the stories
for the equations (1.5) and (1.6).
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