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Coefficient bounds and convolution properties for certain classes of

close-to-convex functions

By Yong Chan Kim,∗) Jae Ho Choi,∗) and Toshiyuki Sugawa∗∗)

(Communicated by Shigefumi Mori, m. j. a., June 13, 2000)

Abstract: A number of authors (cf. Koepf [4], Ma and Minda [6]) have been studying the
sharp upper bound on the coefficient functional |a3−µa2

2| for certain classes of univalent functions.
In this paper, we consider the class C(ϕ,ψ) of normalized close-to-convex functions which is defined
by using subordination for analytic functions ϕ and ψ on the unit disk. Our main object is to
provide bounds of the quantity a3 − µa2

2 for functions f(z) = z + a2z
2 + a3z

3 + · · · in C(ϕ,ψ) in
terms of ϕ and ψ, where µ is a real constant. We also show that the class C(ϕ,ψ) is closed under
the convolution operation by convex functions, or starlike functions of order 1/2 when ϕ and ψ

satisfy some mild conditions.
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1. Introduction. Let A denote the class of
functions of the form

f(z) = z +
∞∑

n=2

anz
n,

which are analytic in the open unit disk D = {z ∈
C : |z| < 1}. Also let S, S∗(α) and K(α) denote
the subclasses of A consisting of functions which are
univalent, starlike of order α and convex of order
α in D. In particular, the classes S∗(0) = S∗ and
K(0) = K are the familiar ones of starlike and convex
functions in D, respectively. For analytic functions
g and h with g(0) = h(0), g is said to be subordinate
to h if there exists an analytic function ω on D such
that ω(0) = 0, |ω(z)| < 1 and g(z) = h(ω(z)) for
z ∈ D. The subordination will be denoted by

g ≺ h or g(z) ≺ h(z) in D.

Note that g ≺ h if and only if g(0) = h(0) and
g(D) ⊂ h(D) when h is univalent in D.

Let M be the class of analytic functions ϕ in D
normalized by ϕ(0) = 1, and let N be the subclass
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of M consisting of those functions ϕ which are uni-
valent in D and for which ϕ(D) is convex. Also, for
a constant α ≥ 0, set N (α) = {ϕ ∈ N : Reϕ > α}.

Ma and Minda [6] and the authors [3] defined
the subclasses K(ϕ), S∗(ϕ) and C(ϕ,ψ) of A by

K(ϕ) =
{
f ∈ A : 1 +

zf ′′(z)
f ′(z)

≺ ϕ(z) in D
}
,

S∗(ϕ) =
{
f ∈ A :

zf ′(z)
f(z)

≺ ϕ(z) in D
}
,(1.1)

and

C(ϕ,ψ)=
{
f∈A : ∃h ∈ K(ϕ) s.t.

f ′(z)
h′(z)

≺ψ(z) in D
}

for ϕ, ψ ∈ M. Note that f ∈ K(ϕ) if and only if
zf ′ ∈ S∗(ϕ). Hence f ∈ C(ϕ,ψ) if and only if

∃g ∈S∗(ϕ) such that zf ′(z)/g(z)≺ψ(z) in D.(1.2)

For functions ϕ, ψ ∈ M, if ϕ and e−iβψ have pos-
itive real part in D, where β is some constant in
(−π/2, π/2), then the class C(ϕ,ψ) is obviously a
subclass of close-to-convex functions, in particular,
consists of univalent functions in D. Now we recall
that if f ∈ A satisfies

(1.3)
∣∣∣∣arg

zf ′(z)
f(z)

∣∣∣∣ < π

2
α (z ∈ D)

for a constant α (0 < α ≤ 1), then f(z) is said to
be strongly starlike of order α in D, and we write
f ∈ S∗α. If we set ϕα(z) = ((1 + z)/(1 − z))α (0 <
α ≤ 1), then, from (1.1) and (1.3), we can easily see
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the inclusion

(1.4) S∗α = S∗(ϕα) ⊂ C(ϕα, ϕα).

For constants β ∈ (−π/2, π/2) and γ with 0 ≤
γ < cosβ, we set

ψβ,γ(z) =
1 + (eiβ − 2γ)eiβz

1− z
.

The function ψβ,γ maps the unit disk onto the half-
plane {z : Re(e−iβz) > γ}. Note that S∗(α) ≡
S∗(ψ0,α) and K(α) ≡ K(ψ0,α) for 0 ≤ α < 1. Note
also that a function in S∗(ψβ,0) is usually called β-
spirallike. We set

(1.5) Cα,γ =
⋃

|β|<arccos γ

C(ψ0,α, ψβ,γ)

for 0 ≤ α < 1 and 0 ≤ γ < 1. A function in Cα,γ

is called close-to-convex of order (γ, α) (cf. [2, II,
p. 89]). In particular, C ≡ C0,0 is the class of usual
close-to-convex functions.

In [3], the second and third authors investigated
the norm estimate of the pre-Schwarzian derivatives
for the class C(ϕ,ψ). In this paper, we shall in-
vestigate the coefficient bounds of the class C(ϕ,ψ)
and also give convolution properties of functions in
C(ϕ,ψ). Here, the convolution or the Hadamard
product f ∗ g of two analytic functions

f(z) =
∞∑

n=0

anz
n and g(z) =

∞∑
n=0

bnz
n

on D is defined by

(f ∗ g)(z) = f(z) ∗ g(z) =
∞∑

n=0

anbnz
n.

2. Preliminary results. The following lem-
mas will be required in our investigation.

Lemma 2.1. Assume that η(z) = e1+e2z+· · ·
is analytic in D with |η(z)| ≤ 1. Then |e1|2+|e2| ≤ 1.

Proof. By Schwarz-Pick’s Lemma, we obtain

|η′(z)|
1− |η(z)|2

≤ 1
1− |z|2

,

so that |η(0)|2 + |η′(0)| ≤ 1. Hence |e1|2 + |e2| ≤ 1.

Lemma 2.2 (Ma and Minda [6]). Let ϕ(z) =
1 + A1z + A2z

2 + · · · be univalent in D. If f(z) =
z + a2z

2 + a3z
3 + · · · ∈ K(ϕ), then

∣∣a3 − µa2
2

∣∣ ≤

K(µ,A1, A2), where

K(µ,A1,A2)(2.6)

=



(A2−(3µ/2)A2
1+A2

1)/6
if 3A2

1µ≤2(A2+A2
1−A1),

A1/6
if 2(A2+A2

1−A1)≤3A2
1µ≤2(A2+A2

1+A1),
((3µ/2)A2

1−A2
1−A2)/6

if 2(A2+A2
1+A1)≤3A2

1µ.

Lemma 2.3 (Ruscheweyh and Sheil-Small [8]).
Suppose either g ∈ K, h ∈ S∗ or else g, h ∈ S∗(1/2).
Then for any analytic function G in D, we have

(g ∗ hG)(z)
(g ∗ h)(z)

∈ coG(D) (z ∈ D),

where coG(D) is the closed convex hull of G(D).
3. Main results. We begin by proving
Theorem 3.1. Let ϕ(z) = 1+A1z+A2z

2+· · ·
be univalent in D and let ψ(z) = 1+B1z+B2z

2+· · ·
be analytic in D. If f(z) = z + a2z

2 + a3z
3 + · · · ∈

C(ϕ,ψ), then

|a3 − µa2
2| ≤ K(µ,A1, A2) +M(µ,A1, B1, B2),

where K(µ,A1, A2) is given by (2.6) and

M(µ,A1,B1,B2)

=


(1/3)(|B2−(3µ/4)B2

1 |+A1|B1||1−3µ/2|)
if A1|B1||1−3µ/2|≥2(|B1|−|B2−(3µ/4)B2

1 |),
|B1|
3

+
(A1|B1||1−3µ/2|)2

12(|B1|−|B2−(3µ/4)B2
1 |)

otherwise.

Proof. If f ∈ C(ϕ,ψ), from the definition of the
class C(ϕ,ψ) there exists a function h ∈ K(ϕ) such
that f ′/h′ ≺ ψ. We set

h(z) = z + d2z
2 + d3z

3 + · · ·

and

(3.7) g(z) =
f ′(z)
h′(z)

= 1+b1z+b2z2+ · · · = ψ(ω(z)),

where ω is an analytic function on D such that
|ω(z)| ≤ |z| for z ∈ D. Then a simple calcu-
lation shows b1 = 2(a2 − d2) and b2 = 3(a3 −
d3) − 4d2(a2 − d2), so that a2 = b1/2 + d2 and
a3 = d3 + b2/3 + (2/3)b1d2. Thus we have

a3 − µa2
2(3.8)

= (d3 − µd2
2) +

1
3

(
b2 −

3µ
4
b21

)
+

(
2
3
− µ

)
b1d2.
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By Lemma 2.2, we have

(3.9) |d3 − µd2
2| ≤ K(µ,A1, A2).

We write ω(z) = e1z + e2z
2 + · · · . Then, from (3.7)

we have b1 = B1e1 and b2 = B1e2 + B2e
2
1. Since

1+(zh′′(z))/(h′(z)) ≺ ϕ(z) in D, Rogosinski’s result
[7] implies |d2| ≤ (1/2)A1. Therefore, we get∣∣∣∣13

(
b2 −

3µ
4
b21

)
+

(
2
3
− µ

)
b1d2

∣∣∣∣
≤ |B1|

3
|e2|+

1
3

∣∣∣∣B2 −
3µ
4
B2

1

∣∣∣∣ |e1|2
+

∣∣∣∣23 − µ

∣∣∣∣ |d2B1||e1|

≤ |B1|
3
|e2|+

1
3

∣∣∣∣B2 −
3µ
4
B2

1

∣∣∣∣ |e1|2
+

∣∣∣∣13 − µ

2

∣∣∣∣A1|B1||e1|.

Taking η(z) = ω(z)/z in Lemma 2.1, we obtain
|e2| ≤ 1− |e1|2, so that∣∣∣∣13

(
b2 −

3µ
4
b21

)
+

(
2
3
− µ

)
b1d2

∣∣∣∣ ≤ P (|e1|),

where P (x) = ax2 + bx+ c and a = 1
3 (|B2− 3µ

4 B
2
1 |−

|B1|), b = A1|B1|| 13 −
µ
2 | and c = |B1|/3. Since b ≥ 0

and 0 ≤ |e1| ≤ 1, we have

P (|e1|) ≤


P (−b/2a) = c− b2/4a

if a < 0 and − b/2a < 1,
P (1) = a+ b+ c otherwise.

Thus we conclude∣∣∣∣13
(
b2 −

3µ
4
b21

)
+

(
2
3
− µ

)
b1d2

∣∣∣∣(3.10)

≤M(µ,A1, B1, B2).

Hence, making use of (3.9) and (3.10) in equality
(3.8), we obtain the desired result.

Corollary 3.2. If f(z) = z+a2z
2+a3z

3+· · · ∈
C(ψ0,0, ψ0,0), then

|a3 − µa2
2| ≤



3− 4µ if µ ≤ 1/3,
1/3 + 4/9µ if 1/3 ≤ µ ≤ 2/3,
(16− 21µ+ 9µ2)/3(4− 3µ)

if 2/3 ≤ µ ≤ 1
3µ− 5/3 if 1 ≤ µ ≤ 4/3,
4µ− 3 if 4/3 ≤ µ.

Remark. From (1.5) it is clear that
C(ψ0,0, ψ0,0) ⊂ C. For the cases of 0 ≤ µ ≤ 1/3

and 1/3 ≤ µ ≤ 2/3, the above estimates agree with
those of Koepf [4].

If we take ϕ = ψ = ϕα = z+2αz2 +2α2z3 + · · ·
in Theorem 3.1, we obtain

Corollary 3.3. If f(z) = z+a2z
2+a3z

3+· · · ∈
C(ϕα, ϕα), then

|a3−µa2
2| ≤



(3− 4µ)α2 if 3αµ ≤ 2α− 1

(1− µ)α2 +
α

3

{
2 +

(2− 3µ)2α2

2− (2− 3µ)α

}
if 2α− 1 ≤ 3αµ ≤ 3α− 1

α

{
1 +

(2− 3µ)2α2

3(2− 2α+ 3αµ)

}
if 3α− 1 ≤ 3αµ ≤ 2α

α

{
1 +

(2− 3µ)2α2

3(2− 3αµ+ 2α)

}
if 2α ≤ 3αµ ≤ 2α+ 1

(3µ− 2)α2 + α/3
if 2α+ 1 ≤ 3αµ ≤ 3α+ 1

(4µ− 3)α2 if 3α+ 1 ≤ 3αµ.

Noting the relation S∗α ⊂ C(ϕα, ϕα), we would
have an estimate for strongly starlike functions of
order α. When 3αµ ≤ 2α − 1 or 3αµ ≥ 3α + 1,
that estimate incidentally coincides with the sharp
estimate for strongly starlike functions of order α
obtained previously by Ma and Minda [5].

Now, by using Lemma 2.3, we investigate con-
volution properties of functions in C(ϕ,ψ). First, we
recall results due to Ma and Minda. The following
form is slightly different from the original one, so we
include its proof here.

Proposition 3.4 [6].
(a) Let ϕ ∈ N (0). For g ∈ K and h ∈ S∗(ϕ), we

have g ∗ h ∈ S∗(ϕ).
(b) Let ϕ ∈ N (1/2). For g ∈ S∗(1/2) and h ∈

S∗(ϕ), we have g ∗ h ∈ S∗(ϕ).
Proof. First, we prove (a). Set G = zh′/h ≺ ϕ.

Since z(g ∗ h)′ = g ∗ (zh′) = g ∗ (Gh), from Lemma
2.3, we see

z(g ∗ h)′(z)
(g ∗ h)(z)

=
(g ∗Gh)(z)
(g ∗ h)(z)

∈ coG(D) ⊂ ϕ(D).

Hence, we have z(g ∗h)′/g ∗h ≺ ϕ. Assertion (b) can
be shown similarly.

With the aid of the above result, we can now
prove the following.

Theorem 3.5.
(a) Let ϕ ∈ N (0) and ψ ∈ N . Then, for g ∈ K and
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f ∈ C(ϕ,ψ), we have g ∗ f ∈ C(ϕ,ψ).
(b) Let ϕ ∈ N (1/2) and ψ ∈ N . Then, for g ∈

S∗(1/2) and f ∈ C(ϕ,ψ), we have g ∗ f ∈
C(ϕ,ψ).
Proof. We show only (a). We can handle (b)

in the same fashion. Let ϕ ∈ N (0) and ψ ∈ N . If
f ∈ C(ϕ,ψ), there is a function h ∈ S∗(ϕ) such that
zf ′/h ≺ ψ. Set G(z) = zf ′(z)/h(z). Then G(D) ⊂
ψ(D) and z(g∗f)′ = g∗(zf ′) = g∗Gh. Since ψ(D) is
convex and since z(g ∗ f)′/(g ∗h) is analytic, Lemma
2.3 implies that

z(g ∗ f)′(z)
(g ∗ h)(z)

=
(g ∗Gh)(z)
(g ∗ h)(z)

lies in ψ(D), in other words, z(g ∗ f)′/g ∗ h ≺ ψ.
Now Proposition 3.4 ensures g ∗ h ∈ S∗(ϕ). Hence
we find from definition (1.2) that g ∗ f ∈ C(ϕ,ψ),
which completes the proof of Theorem 3.5.

Remark. If we apply the above theorem to the
case ϕ = ψ0,0 and ψ = ψβ,0 for |β| < π/2, then
Theorem 3.5 would immediately yield that f ∗ g ∈ C
for f ∈ C and g ∈ K (see [1, Theorem 8.7]).
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