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Abstract:

Let G be the principal congruence subgroup of level N > 3 and g be the group

generated by the involution z — —1/z of the upper half plane. We shall determine the cardinality
of the (first) cohomology set H(g,G) in terms of the binary form 22 + y? mod N.
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Let X be a Riemann sur-
face and X be its universal covering space. Then
X is the quotient of X by a group G of automor-
phisms of X acting discretely and without fixed
points: X =G\ X, G = m,(X). Consider a sub-
group g of Aut()? ) which normalizes G. Thus we
can speak of the (first) cohomology set H (g, w1 (X)).
In this paper, we shall determine the cardinality of
the set for the very special case where X = ‘H, the
upper half plane, G =T(N), N > 3, and g = the
group generated by the involution z +— —1/z of H.
It turns out that

(1.1)

where SO3(Z/NZ) = the special orthogonal group
for 22 + y* over Z/NZ. If, in particular, N = p, an
odd prime, then we have

4 (9, T(0) = 5 (p— (1))

2. Generality. In general, let g, G be sub-
groups of a group such that g normalizes G. We shall
write the action of g on G by a° = sas™!, s € g,
a € G. Denote by Z(g,G) the set of all cocycles of g
in G:

1. Introduction.

LH (9, T(N)) = 1£50:(2/NE),

(1.2)

21 Z(9,G)

={f:9— G (maps); f(st) = f(s)f(t)°, s, € g}.
The equivalence f ~ f', f, f' € Z(g, Q) is defined by
(22) fr~f = f(s)=a'f(s)a’, a€ G, scyg.
The cohomology set is then defined by
(2.3) H(g,G) = Z(g,G)/ ~ .
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Now suppose that g = (s) with s> = 1. Then a
cocycle f is entirely determined by the value a = f(s)
with aa® = 1, we may set
(24) Z(9.G) ={a € G;aa® =1},
(25) H(9.G)=2(9,G)/ ~

where a~d' <= d =c lac®, c€G.
3. T'(N).

I(N)={A € SLy(Z);A=1 mod N}.

For an integer N > 3, put
(3.1)

10
is of order four, whereas its image s in PSLa(R) =
Aut(H) is of order two. On the other hand, since
N > 3, the group (3.1) is identified with its image in
Aut(H). In accordance with notation in 2, we set

(3.2) G =T(N).

Let S be the matrix (O ) € SLy(Z). Note that S

g=(s),

Clearly g, G are subgroups of Aut(H), s* = 1
normalizes G and ¢ NG = 1. For a matrix A

ab
(c d) € SLy(Z), we put

» g

b a

Then, from (2.4), (2.5), (3.2) and (3.3), it follows
that

(3.4) Z(g.G) = {A€T(N), 4 = A},

(3.5) H(g,G) = Z(9,G)/ ~
A~A & A ='TAT, T € G.

(3.3) A" =SAS'= < d _C) =iA1

where

In other words, the set (3.4) of cocycles is nothing
else than the set of symmetric matrices in I'(V) and
the equivalence in (3.5) is a refinement of the ordi-
nary congruence of integral quadratic forms. Having
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these in mind, we shall modify our notation as fol-
lows:

(3.6) Z(N) = Z(9,G)

:{A:(ZZC)), aECEl,

b=0 mod N, (2b)? — 4ac = 4},

(3.7) A~ A', A, A" € Z(N)

<= A ='TAT, T ¢ T'(N).

Furthermore, in view of theory of integral quadratic
forms, we shall split Z(N) into two parts ZT(NN) and
Z~(N):

ab

(3.8) ZT(N) = {A: (b ) € Z(N), a > 0},

(3.9) Z~(N) = {A = <Z i’) € Z(N), a < o}.
Since a matrix in Z*(NN) is not equivalent to one in

Z~(N) in the sense of (3.5), we have the following
splitting of cohomology set:

H(g,G) = Z(N)/ ~
— H(N) = HH(N) + H~(N)
B ey = zr )~
H-(N) = 2-(N)/ ~

Hence our problem of counting #H (g, &) is reduced
to that for T (N) and fH~(N) respectively. We
shall use the symbol ~ for ordinary congruence of
integral matrices:

(3.11) A~ A <= A'='"UAU, U € SLy(Z).

Let R be a complete set of representatives of SLa(Z)
modulo T(N) : R = SLy(Z)/T(N) = SLy(Z/NZ).
Now take a matrix A € ZT(N). Since the binary
form corresponding to A is primitive positive defi-
nite with discriminant —4, we have A ~ I and so
there is a matrix U € SLy(Z) such that A =*UU by
(3.11). If we write U = RT, T € I'(N), R € R, we
have A = 'T(*RR)T ~ 'RR. Note that 'RR is sym-
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metric, positive and = I mod N, i.e., an element
of ZT(N). Next, take a matrix A € Z7(N). Then
— A is positive with discriminant —4, and so —A ~ I,
hence —A = 'UU =*T(*RR)T as above, and we have
A~ —'RR, R € R. Summarizing, we get, for ¢ = =,

(3.12) A~ ¢€'RR, for some R € R, for A € Z°(N).

To complete the proof of (1.1), in view of (3.12),
it remains to clarify the relation between R and R’

when ‘RR ~ 'R'R’. First of all, one verifies easily the
following
(3.13)  For W € SLy(Z), '"WW =1

— W= (S),5 = ((1)_01)

Next, we have

'RR ~'R'R' <= 'R'R' ='"T'RRT, T € T(N
«— YRTRY(RITR ) =1
G prR-1l = g
= SIRT

< R' =S'T'R, T' € T(N).

If we set T*(N) = (S)I'(IN), then (3.14) means that
(3.15) 'RR ~ mod I'™*(N).

Since N > 3, one sees at once that [I'™*(N) : T'(V)] =
4. From (3.10), (3.12) and (3.15) we obtain

4H®(N) = #(SO2(Z/NZ))/4, ¢ = +

)

(3.14)
— R

'‘R'R' <— R=R

and hence

(1.1) = LH(S0:(Z/NT)).

tH (N)

Added in proof. As Prof. H. Wada pointed
out the argument after line 6, p. 117 is invalid when
N =0, mod 4, because the set Z~(N) is empty. It
is easy to check that

XX =-I mod N is solvable <= N £0 mod 4.

Hence, in case N = 0 mod 4, the number in (1.1)
should be reduced to its half.





