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Ichimura-Sumida criterion for Iwasawa λ-invariants

By Takashi Fukuda∗) and Keiichi Komatsu∗∗)

(Communicated by Shokichi Iyanaga, m. j. a., Sept. 12, 2000)

Abstract: For an odd prime number p and real abelian number fields k with the degree
[k : Q] = p in which p splits completely, we give a criterion for vanishing of Iwasawa λ-invariants.
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1. Introduction. Let p be an odd prime
number, k a real abelian number field, k∞ the cy-
clotomic Zp-extension of k. Greenberg’s conjecture
asserts that the Iwasawa λ-invariant λp(k) of k∞ over
k vanishes. In [3], [5] and [6], remarkable criteria of
λp(k) = 0 were established when the degree [k : Q]
is prime to p. In this paper we deal with the case
[k : Q] = p.

All the auhors of [3], [5] and [6] had the same
idea to obtain their criteria by investigating deeply
the properties of cyclotomic units. But the formu-
lations of their criteria are not the same, because
of their different approaches. For example, in [3],
Ichimura and Sumida gave a criterion by using a
structure theorem of semi-local units modulo cyclo-
tomic units proved in [2]. When p splits completely
and [k : Q] = p, we shall give a criterion similar to [3]
by using Tsuji’s result in [9] in place of [2], which will
be applied to cyclic cubic fields to give new examples
of λ3(k) = 0.

2. Theorem. We begin by explaining the
notations. We denote as usual by Z and Q the ring
of rational integers and the field of the rational num-
bers, respectively.

For a positive integer n, we denote by ζn a prim-
itive n-th root of unity. Let p be a fixed odd prime
number, Qp the algebraic closure of the p-adic num-
ber field Qp and O = Zp[ζp] the integer ring of
Qp(ζp). For a finite extension L over K, we denote
by NL/K the norm mapping of L over K.

For any algebraic number field F , we denote
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respectively by λp(F ) and µp(F ) the Iwasawa λ-
invariant and µ-invariant associated to the ideal class
group of the cyclotomic Zp-extension F∞ = ∪∞n=0Fn
over F with its n-th layer Fn.

Let k be a cyclic extension of Q of degree p with
conductor f and ∆ = G(k∞/Q∞) the Galois group
of k∞ over Q∞. We fix a topological generator γ
of G(k∞/k). In this paper, we shall always assume
that the prime number p splits completely in k.

Let χ be a non-trivial Qp-valued character of
∆, gχ(T ) the Iwasawa power series in the power se-
ries ring O[[T ]] associated to the p-adic L-function
Lp(s, χ) by

gχ((1 + fp)1−s − 1) = Lp(s, χ)

for s ∈ Zp and Pχ(T ) the distinguished polynomial
of gχ(T ). We decompose

Pχ(T ) = P1(T )e1 · · ·Pr(T )er

for some r ≥ 1 and some natural numbers ei, where
Pi(T )’s are some irreducible distinguished polynomi-
als in O[T ] with Pi 6= Pj (i 6= j). We note that the
Iwasawa main conjecture and Kida’s formula imply
r ≥ 1.

Put νn = νn(T ) = ((1 + T )p
n − 1)/T for n ≥ 1.

By the Leopoldt conjecture and Iwasawa main con-
jecture, which have already been proved in our case,
the abelian group O[[T ]]/(Pi, νn) is finite. We de-
note by pai,n the exponent of O[[T ]]/(Pi, νn). Then
we can take a polynomial XPi,n(T ) = Xi,n(T ) in
O[T ] satisfying

Xi,nPi ≡ pai,n (mod νn)

for n ≥ 1. Define a polynomial Yi,n(S, T ) in Z[S, T ]
by

Yi,n(χ(σ), T ) ≡ Xi,n(T ) (mod pai,n),

where σ is a fixed generator of ∆.
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Let pn be the unique prime ideal of Qn lying
above p, Ekn the group of units ε of kn satisfying
ε ≡ 1 (mod pn) and CQn the group of cyclotomic
units ε of Qn satisfying ε ≡ 1 (mod pn). Put

cn = NQ(ζfpn+1 )/kn(1− ζfpn+1)p−1.

Then cn is contained in Ekn . Our main purpose is
to prove the following theorem and to give new ex-
amples of cyclic cubic fields k’s for which λ3(k) = 0.

Theorem 2.1. Let p be an odd prime number
and k a cyclic extension of Q of degree p in which p
splits completely. Let γ, ζn, Yi,n, Ekn , CQn

, pai,n , σ be
as above. Then the following are equivalent:
(1) λp(k) = 0.
(2) There exists n ≥ 1 such that there exists no el-

ement εn of Ekn with

εp
ai,n

n ≡ cYi,n(σ,γ−1)
n (mod CQn

)

for any i (1 ≤ i ≤ r).
Corollary 2.1. Assumptions and notations

being as above, we have λp(k) = 0, if there exists
n ≥ 1 such that

cYi,n(σ,γ−1)(σ−1)
n 6∈ (Ekn)p

ai,n

for any i (1 ≤ i ≤ r).
3. Proof of Theorem. Now we consider

several O[[T ]]-modules in order to prove the the-
orem. Let Zp[χ] denote a free O-module of rank
one on which ∆ acts via χ. For any Zp[∆]-module
M, we define the following O-module; M(χ) =
M⊗Zp[∆]Zp[χ]. Moreover we put N∆ =

∑
σ∈∆ σ and

N∆M = {
∑
σ∈∆ σm | m ∈M}. Then the following

is well-known.
Lemma 3.1 (cf. [5]). The O-module M(χ) is

isomorphic to M/N∆M as Zp[∆]-module.
Let L(k∞) be the maximal unramified abelian

p-extension of k∞ and M(k∞) the maximal abelian
p-extension of k∞ unramified outside p. Moreover
we put Λ = Zp[[T ]], X = G(L(k∞)/k∞), X =
G(M(k∞)/k∞). Then we regard X and X as Λ[∆]-
modules, where 1 + T acts as the fixed topological
generator γ ofG(k∞/k). Then we have the following:

Lemma 3.2 (cf. [5]). We have N∆X = 0 and
N∆X = 0, which implies X(χ) ∼= X and X(χ) ∼= X.

Lemma 3.3. The λ-invariant λp(k) is (p− 1)
times the free O-rank of X(χ).

Now we denote by Upn the principal units of the
completion Qnpn of Qn at the prime pn, by Epn the
closure of EQn

in Upnand by Cpn the closure of CQn

in Upn . Put

Vpn = {u ∈ Upn | NQnpn/Qp
(u) = 1}

=
⋂
m>n

NQmpm/Qnpn
(Upm)

(cf. [10, p. 310]). Then we have the following:
Lemma 3.4. The assumptions and notations

being as above, we have Epn = Cpn = Vpn .
Proof. Since the class number of Qn is prime

to p, the group index (EQn
: CQn

) is also prime to
p. This shows Epn = Cpn . Moreover the norm map-
ping is continuous, which shows Epn ⊂ Vpn . Now
we assume Epn $ Vpn . Since M(Qn) = Q∞ implies
Upn/Epn

∼= Zp, the index (Upn : Vpn) is finite. Put
(Upn : Vpn) = pa, then (1 + p)p

a ∈ Vpn . This is a
contradiction.

Let Pn be a prime ideal of kn lying above pn
and UPn

the principal units of knPn
. We put

Un =
p∏
i=1

UPσi
n

and Vn =
p∏
i=1

VPσi
n
,

where

VPn
= {u ∈ UPn

| NknPn/Qp
(u) = 1}.

Then Λ[∆] acts on Un in the obvious way. We fix an
isomorphism ϕ of Qnpn onto knPn

. Then ϕ induces
an isomorphism ϕ̃ : Upn ⊗Zp Zp[∆] → Un as Λ[∆]-
module in the obvious way.

Let ι : Ekn → Un be the diagonal embedding.
We note ει = (

∑p
i=1 ε

σ−i ⊗ σi)ϕ̃ for ε ∈ Ekn . We
identify Un with Upn ⊗Zp Zp[∆] by ϕ̃. Now, we de-
termine the structure of Vn(χ) as an O[[T ]]-module.
Since Vpn = Cpn is generated by

NQ(ζpn+1 )/Qn

(1− ζgpn+1

1− ζpn+1

)p−1

as Λ-module, Vpn is isomorphic to Λ/νnΛ, where g
is a primitive root modulo pn+1. Hence we have

Vn ∼= Λ[∆]/νnΛ[∆],(1)

which shows

Vn(2)
∼= (Λ[∆]/νnΛ[∆])/((N∆Λ[∆] + νnΛ[∆])/νnΛ[∆])
∼= Λ[∆]/(N∆Λ[∆] + νnΛ[∆])
∼= (Λ[∆]/N∆Λ[∆])/((N∆Λ[∆] + νnΛ[∆])/N∆Λ[∆])
∼= O[[T ]]/νnO[[T ]].

Especially we have

Vn(χ) ∼= Zp
n(p−1)
p(3)
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as Zp-module.
Let En be the closure of (Ekn)ι in Un and Wn =

N∆(Vn).
Lemma 3.5. The above En contains Wn.
Proof. We note Wn = {

∑p
i=1 u⊗ σi | u ∈ Vn}.

Hence Wn is the closure of {
∑p
i=1 u

σ−i ⊗ σi | u ∈
EQn} by Lemma 3.4. This shows Wn ⊂ En.

Put U = lim←−Un, E = lim←−En and W = lim←−Wn.
Here the projective limits are taken with respect to
the relative norm. Then we have U = lim←−Vn and
the projection U → Vn is surjective by the definition
of Vn. Hence we have U ∼= Λ[∆] by (1), W = N∆U

and U(χ) ∼= O[[T ]]. Recall I = G(M(k∞)/L(k∞)),
which is isomorphic to U/E by class field theory.
Then we have

I(χ) ∼= (U/E)(χ) ∼= (U/E)
/
(EW/E) ∼= U/E ∼= I

∼= (U/W )
/
(E/W )

by Lemma 3.5. Hence we have the following exact
sequence of O[[T ]]-modules by Lemma 3.2:

0→ I(χ)→ X(χ)→ X(χ)→ 0.

This implies ΦX(T ) = ΦI(T )ΦX(T ) for the charac-
teristic polynomials ΦI(T ), ΦX(T ), ΦX(T ) of O[[T ]]-
modules I(χ), X(χ), X(χ), respectively. Moreover
we have ΦX(T ) = Pχ(T ) by the Iwasawa main con-
jecture. Put Qi(T ) = Pχ(T )/Pi(T ). Then we have
the following:

Lemma 3.6. The irreducible polynomial
Pi(T ) divides ΦX(T ) if and only if
(Vn/Wn)Qi ⊂ En/Wn for all n ≥ 1.

Proof. We note Vn(χ) = Vn/Wn in our case.
Then the proof is essentially the same as in [5, p.
732].

Now, we denote cιn by ηn ∈ Un. Let Cn be
the closed subgroup of Un generated by ηn as Λ[∆]-
module and put C = lim←−Cn. Then C is a closed sub-
group of U generated by η = lim←− ηn as Λ[∆]-module.
Then we have

(U/C)(χ) ∼= (U/W )
/
(CW/W )

∼= lim←−(Un/Wn)
/
(CnWn/Wn).

Proof of Theorem 2.1. Our proof is essentially
the same as in [3, p. 733] except for using [9] and
dealing with Wn. By [9], there exists an element
u = lim←−un such that uW generates U/W as O[[T ]]-

module, uPχ ≡ η (mod W ) and uPχn ≡ ηn (mod Wn).
Hence

CnWn/Wn
∼=
(
PχO[[T ]] + νnO[[T ]]

)/
νnO[[T ]]

by (2). Hence we have

ηXi,nn ≡ uXi,nPχn = uXi,nPiQin(4)

≡ up
ai,nQi
n (mod Wn)

We suppose that there exists an element εn ∈ En
with η

Xi,n
n ≡ εp

ai,n

n (mod Wn). Then we have
ε
ai,n
n ≡ up

ai,nQi
n (mod Wn) by (4). Hence εn ≡

uQin (mod Wn) by (3). This means (Vn/Wn)Qi ⊂
En/Wn. Conversely, we suppose that (Vn/Wn)Qi ⊂
En/Wn. Then there exists an element εn of En
with uQin ≡ εn (mod Wn), which shows η

Xi,n
n ≡

εp
ai,n

n (mod Wn) by (4). The diagonal mapping
Ekn → En induces an isomorphism Ekn/E

pai,n

kn
∼=

En/Ep
ai,n

n by [10, p. 75] which shows(
Ekn/EQn

)/(
EQn

Ep
ai,n

kn
/EQn

)
∼=
(
En/Wn

)/(
Ep

ai,n

n Wn/Wn

)
by the proof of Lemma 3.5. Since (EQn

: CQn
) is

prime to p, we have(
Ekn/CQn

)/(
CQn

Ep
ai,n

kn
/CQn

)
∼=
(
En/Wn

)/(
Ep

ai,n

n Wn/Wn

)
.

This shows our theorem.
4. Examples. In [1], we studied λ3-

invariants of cyclic cubic fields k of prime conductor
f in which 3 splits. We restricted our attention to
f ’s such that f ≡ 1 (mod 32) and f 6≡ 1 (mod 33).
Our method was based on the explicit construction
of the cyclotomic units in k2 and succeeded in
proving λ3(k) = 0 for some f ’s. But there remain
three tough f ’s for which we were not able to
determine λ3(k), namely f =5527, 7219 and 8677.
In this section, we try to attack these f ’s.

Since 32 is the highest power of 3 dividing f−1,
we see immediately that degPχ(T ) = 2 by Kida’s
formula (cf. [4]). We have to examine whether Pχ(T )
is irreducible and factorize it when it is not irre-
ducible. We first note that gχ(T ) is constructed ex-
plicitly as follows. Put χ∗ = ωχ−1 with the Te-
ichmüller character ω modulo 3. Let

ξn = − 1
2qn

qn∑
a=1

(a,qn)=1

aχ∗(a)−1

(
Qn

a

)−1

∈ O[Γn]

be −1/2 times Stickelberger element for kn(ζ3). Here
qn = 3n+1f , Γn is the Galois group G(Qn/Q) and
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(Qn/a) denotes the Artin symbol. Let gn(T ) be the
power series in O[[T ]] associated to ξn via correspon-
dence 1+ Ṫ ↔ (Qn/(1+q0)), where (1+T )(1+ Ṫ ) =
1 + q0. Then gχ(T ) = lim←− gn(T ) and gχ(T ) is explic-
itly approximated by gn:

gχ(T ) ≡ gn(T ) (mod ωn(Ṫ )),(5)

where ωn = ωn(T ) = (1 + T )3
n − 1. Let π = 1− ζ3

be a prime element of O = Z3[ζ3]. Since Pχ(T ) is a
distinguished polynomial, we have α ∈ πO, if Pχ(T )
has a root α in O. The following lemma gives a
sufficient condition for reducibility of Pχ(T ).

Lemma 4.1. Let r < n be positive integers. If
there exists a representative α0 of πO/π2n+1O such
that

gn(α0) ≡ 0 (mod π2n+1)

and

g′n(α0) 6≡ 0 (mod πr+1),

(here g′n denotes the formal derivative of gn), then
Pχ(T ) has a root α in πO. Furthermore,

α ≡ α0 (mod π2n+1−2r).

Proof. Since gχ(T ) = Pχ(T )uχ(T ) with a unit
element uχ(T ) in O[[T ]] and ωn(α̇0) = (1 + α̇0)3

n −
1 ≡ 0 (mod π2n+1), we have

Pχ(α0) ≡ 0 (mod π2n+1)

by (5). Furthermore, since g′χ(T ) = P ′χ(T )uχ(T ) +
Pχ(T )u′χ(T ), we have

P ′χ(α0) 6≡ 0 (mod πr+1)

again by (5). Then we apply Proposition 2 in [7] to
our case.

We note that if we have β0 ∈ πO such that

gn(β0)/g′n(β0)2 ∈ πO

then we can easily get α0 in Lemma 4.1 by the New-
ton iteration

βi+1 = βi − gn(βi)/g′n(βi).

Example 4.1. Let f = 7219. Then

g4(T ) ≡ (27 + 153ζ)+ (98 + 145ζ)T +(31 + 181ζ)T 2

+(160 + 225ζ)T 3 + (87 + 140ζ)T 4

+(231 + 151ζ)T 5 + (234 + 86ζ)T 6

+(12 + 125ζ)T 7 + (107 + 184ζ)T 8

+ higher terms (mod 35),

where ζ = ζ3. By Lemma 4.1, we see that
Pχ(T ) decomposes into a product of linear factors
P1(T )P2(T ), where

P1(T ) ≡ T − (12 + 42ζ) (mod π7),

P2(T ) ≡ T − (50 + 16ζ) (mod π7).

Then a1,2 = 2 and a2,2 = 3. Namely the exponents
of O[[T ]]/(P1, ν2) and O[[T ]]/(P2, ν2) are 32 and 33

respectively. So it is enough to determine Xi,2(T )
modulo 32 or 33. In fact, we have

X1,2(T ) ≡ 3T + 3T 4 + (3 + 6ζ)T 6 + T 7 (mod 32),

X2,2(T ) ≡ (24 + 21ζ) + (21 + 9ζ)T + 9ζT 2

+(6 + 3ζ)T 3 + (24 + 15ζ)T 4 + (3 + 3ζ)T 5

+(5 + 16ζ)T 6 + T 7 (mod 33)

and hence

Y1,2(σ, γ − 1) ≡ (2 + 6σ) + 7γ + 6γ2 + (8 + 6σ)γ3

+4γ4 + 3γ5 + (5 + 6σ)γ6

+γ7 (mod 32),

Y2,2(σ, γ − 1) ≡ (22 + 19σ) + (16 + 21σ)γ

+(15 + 3σ)γ2 + (10 + 4σ)γ3

+(22 + 24σ)γ4 + (21 + 15σ)γ5

+(25 + 16σ)γ6 + γ7 (mod 33).

Now it is a routine work to check whether an in-
teger of k2 is an odd power in k2. We see that
c
Y1,2(σ,γ−1)(σ−1)
2 is cube but not 9-th power in k2 and
c
Y2,2(σ,γ−1)(σ−1)
2 is also cube but not 9-th power in k2.

Hence we can conclude that λ3(k) = 0 by Corollary
2.1.

Example 4.2. Let f = 8677. In a sim-
ilar manner to Example 4.1, we have Pχ(T ) =
P1(T )P2(T ), where

P1(T ) ≡ T − (15 + 174ζ) (mod π9),

P2(T ) ≡ T − (197 + 151ζ) (mod π9).

We have a1,2 = 2 and a2,2 = 3. But cY1,2(σ,γ−1)(σ−1)
2

is 9-th power in k2. So we have to work in k3. In this
case, we have a1,3 = 3 and a2,3 = 4. Fortunately, we
see that cY1,3(σ,γ−1)(σ−1)

3 is 9-th power but not 27-th
power in k3 and cY2,3(σ,γ−1)(σ−1)

3 is cube but not 9-th
power in k3. Hence we can conclude that λ3(k) = 0
by Corollary 2.1.

Next we consider the case that Pχ(T ) does not
decompose into a product of linear factors. The fol-
lowing lemma gives a sufficient condition for irre-
ducibility of Pχ(T ) when degPχ(T ) = 2.
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Lemma 4.2. Let n be a positive integer. If
gn(x) 6≡ 0 (mod π2n+1) for any representative x of
πO/π2n+1O, then Pχ(T ) has no roots in O.

Proof. Let gχ(T ) = Pχ(T )uχ(T ) with a unit
element uχ(T ) in O[[T ]]. If Pχ(x) = 0 for some x ∈
O, then x ∈ πO and gχ(x) = 0. We have gn(x) ≡
0 (mod π2n+1) from (5).

When Pχ(T ) has a irreducible factor Pi(T ) of
degree greater than one, we approximate Pχ(T ) by
gn(T ) using the following lemma which can be proved
in the same way as Lemma 5 in [3].

Lemma 4.3. Assume that degPχ(T ) = 2. Let
τ be a shift operator on O[[T ]] defined by

τ
( ∞∑
i=0

aiT
i
)

=
∞∑
i=2

aiT
i−2

and let gn(T ) = πAn(T ) + T 2Bn(T ) with Bn =
τ(gn). Then

Pχ(T ) ≡ gn(T )
Bn(T )

∞∑
j=0

(−1)jπj
(
τ◦An
Bn

)j
◦1 (mod 3n)

for n ≥ 2.
Here, the definition of the operator ◦ is the same

as in the proof of Proposition 7.2 in [10].
Example 4.3. Let f = 5527. Then

g2(T ) = 6T + 19T 2 + (8 + 6ζ)T 3 + 7ζT 4

+(5 + 2ζ)T 5 + (7 + 7ζ)T 6 + (7 + 2ζ)T 7

+(6 + ζ)T 8 + higher terms (mod 32).

We see that Pχ(T ) = P1(T ) is irreducible by Lemma
4.2 and obtain

Pχ(T ) ≡ 6T + T 2 (mod 32)

by Lemma 4.3. From this, we see that the exponent
of O[[T ]]/(P1, ν1) is 3 and

X1,1(T ) ≡ 1 + T (mod 3)

and hence

Y1,1(σ, γ − 1) ≡ γ (mod 3).

We see that cY1,1(σ,γ−1)(σ−1)
1 is not cube in k1. Hence

we can conclude that λ3(k) = 0 by Corollary 2.1.

Example 4.4. In [1], we have verified that
λ3(k) = 0 for seven f ’s. We can also apply Corollary
2.1 to those f ’s. We verified that λ3(k) = 0 by cal-
culations in k1 for f =4933, 9001, 9901 and by those
in k2 for f =3907, 6247, 7687, 8011.

For the case f =2269 and 6481, which could not
be treated in [1] because f ≡ 1 (mod 34), Ozaki and
Yamamoto showed λ3(k) = 0 in [8]. Therefore we
can conclude that λ3(k) = 0 for all cyclic cubic fields
of prime conductor less than 10000.

Our method is applicable to k of non-prime con-
ductor. But the factorization of Pχ(T ) becomes dif-
ficult along with the growth of degPχ(T ).
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