Greenberg's conjecture and Leopoldt's conjecture

By Norikazu Kubotera

Department of Information and Computer Science, School of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 2000)

Abstract: Let p be an odd prime number. We show that the Iwasawa invariants of a certain non-abelian p-extension fields of \mathbf{Q} vanish. And we construct non-abelian p-extensions over some imaginary quadratic fields satisfying Leopoldt's conjecture on the p-adic regulator.

Key words: The Iwasawa invariants; Leopoldt's conjecture; embedding problems.

1. Introduction. Let p be an odd prime number and k a finite algebraic number field. Let k_{∞} be the cyclotomic \mathbf{Z}_p -extension of k. Greenberg [3] conjectured that if k is a totally real number field, the Iwasawa λ -invariant $\lambda_p(k_{\infty}/k)$ and the Iwasawa μ -invariant $\mu_p(k_{\infty}/k)$ always vanish. On this conjecture, there are many results for real abelian number fields by many authors. Recently Komatsu [5] constructed quaternion extensions k over the rational number field \mathbf{Q} with $\lambda_p(k_{\infty}/k) = \mu_p(k_{\infty}/k) = 0$.

Let F be a group of order p^3 defined by $\langle a, b, c | a^p = b^p = c^p = 1, ba = abc, bc = cb, ca = ac \rangle$. Let $\mathbf{Q}_{(1)}$ be the first layer of the cyclotomic \mathbf{Z}_p -extension of \mathbf{Q} . For any prime number q with $q \equiv 1 \pmod{p}$, there exists the unique subfield k(q) of $\mathbf{Q}(\zeta_q)$ which is cyclic over \mathbf{Q} of degree p, where ζ_q is a primitive q-th root of unity.

The main purpose of this paper is to prove the following theorems:

Theorem 1. Let p be a fixed odd prime number. Let l be a prime number satisfying the following conditions. $l \equiv 1 \pmod{p^2}$ and p is not a p-th power residue modulo l. We put $K = \mathbf{Q}_{(1)} \cdot k(l)$. Then there exists a Galois extension L/\mathbf{Q} satisfying the following conditions (1) and (2).

- (1) The Galois group $\operatorname{Gal}(L/\mathbf{Q})$ is isomorphic to F and $K \subseteq L$.
- (2) Any prime of L ramified in L/K is lying above p.

Moreover, for any given odd prime number p there exist infinitely many prime numbers l as above.

Corollary 1. The Iwasawa invariants $\lambda_p(L_{\infty}/L), \ \mu_p(L_{\infty}/L)$ and $\nu_p(L_{\infty}/L)$ vanish for the

above *p*-extension *L*.

We shall prove that Corollary 1 follows indeed from Theorem 1.

By Iwasawa [4], the class number of K is not divisible by p, and for the Galois extension L over \mathbf{Q} satisfying the conditions (1) and (2) of Theorem 1, the class number of L is not divisible by p. Hence the Iwasawa λ -, μ - and ν -invariants of L vanish.

In the same way as in the proof of Theorem 1, we can costruct the non-abelian p-extensions over some imaginary quadratic fields satisfying Leopoldt's conjecture on the non-vanishing p-adic regulator (cf. [1], [2], [6], [8]).

Theorem 2. Let k be an imaginary quadratic number field and h_k the class number of k. Let p be a prime number satisfying the one of the following conditions:

- (i) p > 3 and $p \nmid h_k$.
- (ii) $p = 3, p \nmid h_k$ and p is unramified in k.

Let $k_{(1)}(resp. k_{(1)}^{an})$ be the first layer of the cyclotomic(resp. the anti-cyclotomic) \mathbf{Z}_p -extension of k. We put $K = k_{(1)} \cdot k_{(1)}^{an}$. Then there exists a Galois extension M/k satisfying (*).

(*)
$$\operatorname{Gal}(M/k) \simeq F \text{ and } K \subseteq M.$$

Any prime of M ramified in M/K is lying above p.

Corollary 2. Leopoldt's conjecture for M and p is valid.

2. Some lemmas for embedding problems. In this section, we quote some lemmas for embedding problems.

Let p be an odd prime number. Let k be a finite algebraic number field and \mathfrak{G} its absolute Galois group. Let K/k be a finite Galois extension, and $(\varepsilon): 1 \longrightarrow \mathbb{Z}/p\mathbb{Z} \longrightarrow E \stackrel{j}{\longrightarrow} \operatorname{Gal}(K/k) \longrightarrow 1$ a cen-

¹⁹⁹¹ Mathematics Subject Classification. Primary 11R23, 11R27.

$$\begin{array}{c} \mathfrak{G} \\ & \downarrow \varphi \\ (\varepsilon): 1 \longrightarrow \mathbf{Z}/p\mathbf{Z} \longrightarrow E \xrightarrow{j} \operatorname{Gal}(K/k) \longrightarrow 1 \end{array}$$

where φ is the canonical surjection. A solution of the embedding problem $(K/k, \varepsilon)$ is, by definition, a continuous homomorphism ψ of \mathfrak{G} to E with $j \circ \psi = \varphi$. The Galois extension over k corresponding to the kernel of any solution is called a solution field. A solution ψ is called a proper solution if it is surjective.

For each prime \mathfrak{q} of k, we denote by $k_{\mathfrak{q}}$ (resp. $K_{\mathfrak{Q}}$) the completion of k (resp. K) by \mathfrak{q} (resp. prime \mathfrak{Q} of K lying above \mathfrak{q}). Then the local problem $(K_{\mathfrak{Q}}/k_{\mathfrak{q}}, \varepsilon_{\mathfrak{q}})$ of $(K/k, \varepsilon)$ is defined by the diagram

$$\begin{array}{c} \mathfrak{G}_{\mathfrak{q}} \\ \downarrow \varphi|_{\mathfrak{G}_{\mathfrak{q}}} \end{array}$$

$$(\varepsilon_{\mathfrak{q}}): 1 \longrightarrow \mathbf{Z}/p\mathbf{Z} \longrightarrow E_{\mathfrak{q}} \xrightarrow{j|_{E_{\mathfrak{q}}}} \operatorname{Gal}(K_{\mathfrak{Q}}/k_{\mathfrak{q}}) \longrightarrow 1$$

where $\operatorname{Gal}(K_{\mathfrak{Q}}/k_{\mathfrak{q}})$ is isomorphic to the decomposition group of \mathfrak{Q} in K/k, $\mathfrak{G}_{\mathfrak{q}}$ is the absolute Galois group of $k_{\mathfrak{q}}$, and $E_{\mathfrak{q}}$ is the inverse image of $\operatorname{Gal}(K_{\mathfrak{Q}}/k_{\mathfrak{q}})$ by j.

In the same manner as the case of $(K/k, \varepsilon)$, solutions, solution fields etc. are defined for $(K_{\mathfrak{Q}}/k_{\mathfrak{q}}, \varepsilon_{\mathfrak{q}})$.

Lemma 1 (Neukirch [9]). $(K/k,\varepsilon)$ has a solution if and only if $(K_{\mathfrak{Q}}/k_{\mathfrak{q}},\varepsilon_{\mathfrak{q}})$ has a solution for any prime \mathfrak{q} of k.

Lemma 2 (Shafarevich [11]). Let $k_{\mathfrak{p}}$ be a finite extension over \mathbf{Q}_p with degree N. If $k_{\mathfrak{p}}$ does not contain a primitive p-th root of unity, the Galois group of the maximal p-extension over $k_{\mathfrak{p}}$ is a free pro-p-group, of rank N + 1.

3. Proof of Theorem 1. Let *F* be a group of order p^3 defined by $\langle a, b, c \mid a^p = b^p = c^p = 1, ba = abc, bc = cb, ca = ac \rangle$. Let $(\varepsilon) : 1 \longrightarrow \mathbb{Z}/p\mathbb{Z} \longrightarrow F \xrightarrow{j} \operatorname{Gal}(K/\mathbb{Q}) \longrightarrow 1$ be a non-split central extension. First, we see that the embedding problem $(K/\mathbb{Q}, \varepsilon)$ is solvable. By Lemma 1 we have only to consider the local problem $(K_{\mathfrak{q}}/\mathbb{Q}_q, \varepsilon_q)$ for any prime number *q*, where \mathfrak{q} is a prime of *k* lying above *q*.

Let \mathfrak{p} and \mathfrak{l} be primes of K above p and l, respectively.

Since $F_p = j^{-1}(\operatorname{Gal}(K_{\mathfrak{p}}/\mathbf{Q}_p)) = F$ and since the Galois group of the maximal *p*-extension over \mathbf{Q}_p is a free pro-*p*-group of rank 2by Lemma 2, the local

problem $(K_{\mathfrak{p}}/\mathbf{Q}_p, \varepsilon_p)$ has a solution. Since (ε_p) is a non-split central extension, it is a proper solution. By local class field theory, $L(p)/K_{\mathfrak{p}}$ is a ramified extension, where L(p) is a solution field of $(K_{\mathfrak{p}}/\mathbf{Q}_p, \varepsilon_p)$.

Since $F_l = j^{-1}(\operatorname{Gal}(K_{\mathfrak{l}}/\mathbf{Q}_l)) \simeq \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$, there exists a solution of the local problem $(K_{\mathfrak{l}}/\mathbf{Q}_l, \varepsilon_l)$.

It is clear that for any prime \mathfrak{q} of K which is unramified in K/\mathbf{Q} , the local problem $(K_{\mathfrak{q}}/\mathbf{Q}_q, \varepsilon_q)$ has a solution, where $q = \mathfrak{q} \cap \mathbf{Q}$.

Thus there exists a proper solution of $(K/\mathbf{Q}, \varepsilon)$, since (ε) is a non-split central extension. Let L be a solution field of $(K/\mathbf{Q}, \varepsilon)$. Let \mathfrak{L} be a prime of Llying above l. \mathfrak{L} is unramified in L/K, because the ramification group of \mathfrak{L} over \mathbf{Q} is not isomorphic to $\mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$.

Assume that a prime $\mathfrak{Q} \nmid p$ of L is ramified in L/K. We put $q = \mathfrak{Q} \cap \mathbf{Q}$. Then q is a prime number. By local class field theory, $N(\mathfrak{Q}) = q^{p^s} \equiv 1 \pmod{p}$ for some integer s, where $N(\mathfrak{Q})$ is the absolute norm of \mathfrak{Q} . Hence $q \equiv 1 \pmod{p}$. Then there exists a cyclic subextension $k(q)/\mathbf{Q}$ of $\mathbf{Q}(\zeta_q)/\mathbf{Q}$ with [k(q) : $\mathbf{Q} = p$. Let $\widehat{\mathbf{Q}}$ be a prime of $L \cdot k(q)$ above \mathfrak{Q} and let L' be the inertia field of $\widetilde{\mathfrak{Q}}$ in $L \cdot k(q)/K$. Then we see that L' is neither K, L nor $L \cdot k(q)$ by considering the ramification group. Since $\operatorname{Gal}(L \cdot k(q)/K)$ is the center of $\operatorname{Gal}(L \cdot k(q)/\mathbf{Q}), L'/\mathbf{Q}$ is a Galois extension. Furthermore, $\operatorname{Gal}(L'/\mathbf{Q})$ is isomorphic to $\operatorname{Gal}(L/\mathbf{Q})$ and L'/\mathbf{Q} gives a proper solution of $(K/\mathbf{Q},\varepsilon)$. By the choice of L', any prime of L which is unramified in L/K is also unramified in L'/K, and a prime of L' above q is unramified in L'/K. By continuing this procedure, we can find a required extension over **Q**.

We show now that for a fixed odd prime number p there exist infinitely many prime numbers l satisfying that $l \equiv 1 \pmod{p^2}$ and p is not a p-th power residue modulo l.

Let M and M' denote the cyclotomic fields $\mathbf{Q}(\zeta_p)$ and $\mathbf{Q}(\zeta_{p^2})$, respectively. Then M' and $M(\sqrt[p]{p})$ are independent cyclic extensions of degree p over M. We can choose a prime \mathfrak{L} of M with absolute degree 1 such that \mathfrak{L} is decomposed in M' and undecomposed in $M(\sqrt[p]{p})$. By Tchebotarev density theorem, there exist infinitely many such primes \mathfrak{L} . Let l be a prime number with $N(\mathfrak{L}) = l$. Then l satisfies the above conditions.

4. Proof of Theorem 2 and Corollary 2.

Proof of Theorem 2. If \mathfrak{q} is a prime of k with $N(\mathfrak{q}) \equiv 1 \pmod{p}$, there exists a cyclic extension

over k of degree p which is unramified outside q and in which q is totally ramified. Hence, in the same way as in the proof of Theorem 1 there exists a number field satisfying (*).

Proof of Corollary 2. Put $B_{k,p} = \{ \alpha \in k^{\times} \mid (\alpha) = \mathfrak{a}^p \text{ for some ideal of } k, \text{ and } \alpha \in k_{\mathfrak{p}}^{\times p} \text{ for any prime } \mathfrak{p} \text{ of } k \text{ lying above } p \}/k^{\times p}$. Then we have clearly $B_{k,p} = 0$ and Leopoldt's conjecture follows from the following lemma:

Lemma 3 (Miki [7]). Let K be a finite algebraic number field and L/K a finite p-extension unramified outside p. If $B_{K,p} = 0$ and $\zeta_p \notin K_{\mathfrak{P}}$ for any prime $\mathfrak{P}|p$ of K, then Leopoldt's conjecture for L and p is valid.

References

- Ax, J.: On the units of an algebraic number field. Illinois J. Math., 9, 584–589 (1965).
- Brumer, A.: On the units of algebraic number fields. Mathematika, 14, 121–124 (1967).
- [3] Greenberg, R.: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263– 284 (1976).

- [4] Iwasawa, K.: A note on class numbers of algebraic number fields. Abh. Math. Sem. Univ. Hamburg, 20, 257–258 (1956).
- [5] Komatsu, K.: On the Iwasawa λ-invariants of quaternion extensions. Acta Arith., 87, 219–221 (1999).
- [6] Leopoldt, H. W.: Zur Arithmetik in abelschen Zahlkörpern. J. Reine. Angew. Math., 209, 54– 71 (1962).
- [7] Miki, H.: On the Leopoldt conjecture on the padic regulators. J. Number Theory, 26, 117–128 (1987).
- [8] Miyake, K.: On the units of an algebraic number field. J. Math. Soc. Japan, 34, 515–525 (1982).
- [9] Neukirch, J.: Über das Einbettungsproblem der algebraischen Zahlentheorie. Invent. Math., 21, 59–116 (1973).
- [10] Nomura, A.: On the class numbers of certain Hilbert class fields. Manuscripta Math., 79, 379– 390 (1993).
- [11] Shafarevich, I. R.: On *p*-extensions. Mat. Sb. (N.S.), **20(62)**, 351–363 (1947); Amer. Math. Soc. Transl. Ser. 2, **4**, 59–72 (1956) (English transl.).