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Abstract:

Let p be an odd prime number. We show that the Iwasawa invariants of a

certain non-abelian p-extension fields of Q vanish. And we construct non-abelian p-extensions
over some imaginary quadratic fields satisfying Leopoldt’s conjecture on the p-adic regulator.
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1. Introduction. Let p be an odd prime
number and k a finite algebraic number field. Let
ks be the cyclotomic Z,-extension of k. Greenberg
[3] conjectured that if & is a totally real number field,
the Iwasawa A-invariant Ap(koo/k) and the Iwasawa
p-invariant p, (koo /k) always vanish. On this conjec-
ture, there are many results for real abelian number
fields by many authors. Recently Komatsu [5] con-
structed quaternion extensions k over the rational
number field Q with A\, (koo /k) = tp(kso/k) = 0.

Let F be a group of order p3 defined by (a, b, c |
a? = b = P = 1,ba = abe,bc = cb,ca = ac). Let
Q1) be the first layer of the cyclotomic Z,-extension
of Q. For any prime number ¢ with ¢ = 1 (mod p),
there exists the unique subfield k(g) of Q(¢,) which
is cyclic over Q of degree p, where (, is a primitive
g-th root of unity.

The main purpose of this paper is to prove the
following theorems:

Theorem 1. Let p be a fized odd prime num-
ber. Letl be a prime number satisfying the following
conditions. | =1 (mod p?) and p is not a p-th power
residue modulo . We put K = Q) - k(l). Then
there exists a Galois extension L/Q satisfying the
following conditions (1) and (2).

(1) The Galois group Gal(L/Q) is isomorphic to F

and K C L.

(2) Any prime of L ramified in L/K is lying above

.

Moreover, for any given odd prime number p
there exist infinitely many prime numbers | as above.

Corollary 1. The Iwasawa invariants
Mp(Loo/L), pip(Loo/L) and vy(Leo /L) vanish for the
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above p-extension L.

We shall prove that Corollary 1 follows indeed
from Theorem 1.

By Iwasawa [4], the class number of K is not
divisible by p, and for the Galois extension L over
Q satisfying the conditions (1) and (2) of Theorem
1, the class number of L is not divisible by p. Hence
the Iwasawa A-, u- and v-invariants of L vanish.

In the same way as in the proof of Theorem
1, we can costruct the non-abelian p-extensions over
some imaginary quadratic fields satisfying Leopoldt’s
conjecture on the non-vanishing p-adic regulator (cf.
[1], [2], [6], [8])-

Theorem 2. Let k be an imaginary quadratic
number field and hy the class number of k. Let p be
a prime number satisfying the one of the following
conditions:

(i) p>3 and pf hg.

(ii) p =3, p1 hi and p is unramified in k.
Let k(y)(resp. k?ﬁ) be the first layer of the cyclo-
tomic(resp. the anti-cyclotomic) Z,-extension of k.
We put K = kg - k‘(‘ﬁ Then there exists a Galois
extension M/k satisfying ().

(*) Gal(M/k) ~ F and K C M.

Any prime of M ramified in M/K is lying above p.
Corollary 2. Leopoldt’s
and p is valid.

conjecture for M

2. Some lemmas for embedding prob-
lems. In this section, we quote some lemmas for
embedding problems.

Let p be an odd prime number. Let k be a fi-
nite algebraic number field and & its absolute Galois
group. Let K/k be a finite Galois extension, and

(6) :1 — Z/pZ — E - Gal(K/k) — 1 a cen-
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tral extension of finite groups. Then an embedding
problem (K/k, ¢) is defined by the diagram

()

le
(€):1 — Z/pZ — E 1 Gal(K/k) — 1

where ¢ is the canonical surjection. A solution of
the embedding problem (K/k,¢) is, by definition, a
continuous homomorphism 1 of & to E with joy =
. The Galois extension over k corresponding to the
kernel of any solution is called a solution field. A
solution % is called a proper solution if it is surjective.
For each prime q of k, we denote by k, (resp.
Kgq) the completion of k (resp. K) by q (resp. prime
9 of K lying above q). Then the local problem
(Ka/kq,eq) of (K/k,¢) is defined by the diagram

Q5C|
l¢|®q
(c):1 — Z/pZ — By ™% Gal(K o /ky) — 1

where Gal(Kgq/kq) is isomorphic to the decompo-
sition group of Q in K/k, &, is the absolute Ga-
lois group of kg, and E, is the inverse image of
Gal(Kgq/kq) by j.

In the same manner as the case of (K/k, ¢), solu-
tions, solution fields etc. are defined for (Kgq /kq,€q).

Lemma 1 (Neukirch [9]). (K/k,e) has a so-
lution if and only if (Kq/kq,eq) has a solution for
any prime q of k.

Lemma 2 (Shafarevich [11]). Let k, be a fi-
nite extension over Q, with degree N. If k, does
not contain a primitive p-th root of unity, the Galois
group of the mazimal p-extension over k, is a free
pro-p-group, of rank N + 1.

3. Proof of Theorem 1. Let F be a group
of order p? defined by (a,b,c | a? = b = c? = 1,ba =
abe,bec = ¢b,ca = ac). Let (¢) : 1 — Z/pZ —
F -1 Gal(K/Q) — 1 be a non-split central ex-
tension. First, we see that the embedding problem
(K/Q,¢) is solvable. By Lemma 1 we have only to
consider the local problem (K,/Qq,¢4) for any prime
number ¢, where g is a prime of k lying above q.

Let p and [ be primes of K above p and [, re-
spectively.

Since F, = j7(Gal(K,/Q,)) = F and since the
Galois group of the maximal p-extension over Q,, is
a free pro-p-group of rank 2by Lemma 2, the local
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problem (K,/Q,,€,) has a solution. Since (gp) is a
non-split central extension, it is a proper solution.
By local class field theory, L(p)/K, is a ramified ex-
tension, where L(p) is a solution field of (K, /Qp,ep).

Since F; = j YGal(K{/Q))) =~ Z/pZ x
Z/pZ, there exists a solution of the local problem
(K1/Qu,e1).

It is clear that for any prime q of K which is
unramified in K/Q, the local problem (Ky/Qq,€q)
has a solution, where ¢ = q N Q.

Thus there exists a proper solution of (K/Q,¢),
since (¢) is a non-split central extension. Let L be
a solution field of (K/Q,¢). Let £ be a prime of L
lying above [. £ is unramified in L/K, because the
ramification group of £ over Q is not isomorphic to
Z/pZ x Z/pZ.

Assume that a prime Q t p of L is ramified in
L/K. We put ¢ = QN Q. Then q is a prime number.
By local class field theory, N(Q) = ¢*" = 1 (mod p)
for some integer s, where N () is the absolute norm
of Q. Hence ¢ = 1 (mod p). Then there exists a
cyclic subextension k(q)/Q of Q((,)/Q with [k(q) :
Q] = p. Let Qbea prime of L -k(q) above  and let
L’ be the inertia field of Q in L - k(¢)/K. Then we
see that L’ is neither K, L nor L-k(g) by considering
the ramification group. Since Gal(L - k(q)/K) is the
center of Gal(L-k(q)/Q), L'/Q is a Galois extension.
Furthermore, Gal(L’/Q) is isomorphic to Gal(L/Q)
and L'/Q gives a proper solution of (K/Q,¢). By
the choice of L', any prime of L which is unramified
in L/K is also unramified in L'/K, and a prime of
L' above ¢ is unramified in L'/ K. By continuing this
procedure, we can find a required extension over Q.

We show now that for a fixed odd prime number
p there exist infinitely many prime numbers [ satis-
fying that [ = 1 (mod p?) and p is not a p-th power
residue modulo {.

Let M and M’ denote the cyclotomic fields
Q(¢p) and Q((p2), respectively. Then M’ and
M (3/p) are independent cyclic extensions of degree
p over M. We can choose a prime £ of M with abso-
lute degree 1 such that £ is decomposed in M’ and
undecomposed in M (¢/p). By Tchebotarev density
theorem, there exist infinitely many such primes £.
Let ! be a prime number with N(£) = [. Then !
satisfies the above conditions. ]

4. Proof of Theorem 2 and Corollary 2.

Proof of Theorem 2. 1If q is a prime of k with
N(q) = 1 (mod p), there exists a cyclic extension
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over k of degree p which is unramified outside g and
in which q is totally ramified. Hence, in the same way
as in the proof of Theorem 1 there exists a number
field satisfying (x). []

Proof of Corollary 2. Put B, = {a € k* |
(o) = a” for some ideal of k, and «a € k,? for any
prime p of k lying above p}/k*P. Then we have
clearly By, = 0 and Leopoldt’s conjecture follows
from the following lemma:

Lemma 3 (Miki [7]). Let K be a finite alge-
braic number field and L/K a finite p-extension un-
ramified outside p. If Bx, = 0 and (, ¢ Kgp for
any prime Plp of K, then Leopoldt’s conjecture for
L and p is valid. ]
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