A twisted invariant for finitely presentable groups

By Takayuki Morifuji
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8914
(Communicated by Heisuke Hironaka, m. J. a., Nov. 13, 2000)

Abstract

Following Wada's construction [4] on the twisted Alexander polynomial, we introduce a new twisted invariant for finitely presentable groups.

Key words: Twisted invariant; finitely presentable group; Alexander polynomial.

1. Introduction. Let Γ be a finitely presentable group with a homomorphism α to a finite cyclic group \mathbf{Z} / m. We assume that the class number h_{m} of the m-th cyclotomic field $K=\mathbf{Q}\left(\zeta_{m}\right)$ is equal to one, where ζ_{m} is a primitive m-th root of unity. To each linear representation

$$
\rho: \Gamma \rightarrow G L(n, \mathbf{Z})
$$

of the group Γ we will assign an algebraic number $\Theta_{\Gamma, \rho} \in K$ called a twisted invariant of Γ associated to ρ. This is well-defined up to a factor of a unit of the ring $O_{K}=\mathbf{Z}\left[\zeta_{m}\right]$ of algebraic integers and is in fact an invariant of the group Γ, the associated homomorphism α and the representation ρ. Namely, although we need a presentation of Γ to define an algebraic number $\Theta_{\Gamma, \rho}$, yet it can be shown that

Theorem 1. The twisted invariant $\Theta_{\Gamma, \rho} \in$ $\mathbf{Q}\left(\zeta_{m}\right)$ is independent of the choice of the presentation.

The construction of $\Theta_{\Gamma, \rho}$ and the proof of its invariance are based on the idea of Wada's paper [4], which introduces the twisted Alexander polynomial for finitely presentable groups with a homomorphism to a free abelian group. A merit of our framework here is that we can deal with finitely presentable groups such as the modular group and the orbifold fundamental group.
2. Construction. For a given homomorphism $\alpha: \Gamma \rightarrow \mathbf{Z} / m=\left\langle q \mid q^{m}\right\rangle$, we denote the induced homomorphism of the integral group ring by

$$
\tilde{\alpha}: \mathbf{Z}[\Gamma] \rightarrow \mathbf{Z}[\mathbf{Z} / m] .
$$

Since the group ring $\mathbf{Z}[\mathbf{Z} / m] \cong \mathbf{Z}[q] /\left(q^{m}-1\right)$ is not an integral domain (namely, has a zero divisor), we

[^0]consider the composite of $\tilde{\alpha}$ and the projection
$$
\pi: \mathbf{Z}[q] /\left(q^{m}-1\right) \rightarrow \mathbf{Z}[q] /\left(\Phi_{m}(q)\right),
$$
where $\Phi_{m}(q)$ denotes the m-th cyclotomic polynomial. Here it should be noted that π is well-defined as a ring homomorphism, because $\Phi_{m}(q)$ divides $q^{m}-1$ in $\mathbf{Z}[q]$. Then the assumption $h_{m}=1$ implies that the commutative ring $\mathbf{Z}[q] /\left(\Phi_{m}(q)\right) \cong \mathbf{Z}\left[\zeta_{m}\right]$ is a unique factorization domain (see [2]). By abuse of notation, we denote the composite $\pi \circ \tilde{\alpha}$ via $\tilde{\alpha}$ (it just corresponds to the homomorphism $\tilde{\alpha}: \mathbf{Z}[\Gamma] \rightarrow$ $\mathbf{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$ in Wada's paper [4]).

Next we extend the representation ρ to the integral group ring and denote it by $\tilde{\rho}$. Then $\tilde{\rho} \otimes \tilde{\alpha}$ defines a ring homomorphism

$$
\mathbf{Z}[\Gamma] \rightarrow M\left(n, O_{K}\right)
$$

where $M\left(n, O_{K}\right)$ is the matrix algebra of degree n over O_{K}. We suppose that the group Γ has the presentation

$$
\Gamma=\left\langle x_{1}, \ldots, x_{u} \mid r_{1}, \ldots, r_{v}\right\rangle .
$$

Let F_{u} be the free group on generators x_{1}, \ldots, x_{u} and define a ring homomorphism $\Psi: \mathbf{Z}\left[F_{u}\right] \rightarrow M\left(n, O_{K}\right)$ to be the composite of the surjection $\mathbf{Z}\left[F_{u}\right] \rightarrow \mathbf{Z}[\Gamma]$ induced by the presentation and $\tilde{\rho} \otimes \tilde{\alpha}$.

Now let us consider the $v \times u$ matrix M whose (i, j) component is the $n \times n$ matrix

$$
\Psi\left(\frac{\partial r_{i}}{\partial x_{j}}\right) \in M\left(n, O_{K}\right)
$$

where $\partial / \partial x$ denotes the free differential calculus (see [1]). For $1 \leq j \leq u$, let us denote by M_{j} the $v \times$ $(u-1)$ matrix obtained from M by removing the j th column. We now regard M_{j} as a $v n \times(u-1) n$ matrix with coefficients in O_{K}. For a $(u-1) n$-tuple of indices
$I=\left(i_{1}, \ldots, i_{(u-1) n}\right) \quad\left(1 \leq i_{1} \leq \cdots \leq i_{(u-1) n} \leq v n\right)$,
we denote by M_{j}^{I} the $(u-1) n \times(u-1) n$ square matrix consisting of the i_{k} th rows of the matrix M_{j}, where $k=1, \ldots,(u-1) n$.

Lemma 2. In $O_{K}, \operatorname{det} M_{j}^{I} \operatorname{det} \Psi\left(1-x_{k}\right)=$ $\pm \operatorname{det} M_{k}^{I} \operatorname{det} \Psi\left(1-x_{j}\right)$ holds for $1 \leq j<k \leq u$ and for any choice of the indices I.

Proof. We can apply the proof of [4] Lemma 3 for our ring homomorphism Ψ.

Hereafter we assume the following condition (C):
(C) There exists an index j so that $\operatorname{det} \Psi\left(1-x_{j}\right) \neq 0$ in O_{K}.
We denote by $Q_{j} \in O_{K}$ the greatest common divisor of det M_{j}^{I} for all the choices of the indices I. The algebraic integer Q_{j} is well-defined up to a factor of $\varepsilon \in O_{K}^{\times}$. We also define Q_{j} to be zero if $v<u-1$ and one if Γ is a cyclic group (i.e. $u=1$).

Under the assumption (C), we can define the twisted invariant of Γ associated to the representation ρ to be the algebraic number

$$
\Theta_{\Gamma, \rho}=\frac{Q_{j}}{\operatorname{det} \Psi\left(1-x_{j}\right)} \in K
$$

This is of course well-defined up to a factor of $\varepsilon \in$ O_{K}^{\times}.

In order to prove Theorem 1, we need to show the invariance of $\Theta_{\Gamma, \rho}$ under the Tietze transformations (see [3]). However we can again apply Wada's argument for our situation, so that we omit the routine proof here (see [4] Theorem 1). Further we see that the twisted invariant does not depend on the choice of the basis for the representation space.
3. Examples. A few examples show what the twisted invariant is like. Our first example is a finite cyclic group $\Gamma=\mathbf{Z} / m=\left\langle q \mid q^{m}\right\rangle$ such that $h_{m}=1$. The abelianization is the identity map; $\alpha=\mathrm{id}: \Gamma \rightarrow\left\langle q \mid q^{m}\right\rangle$. Every linear representation

$$
\rho: \Gamma \rightarrow G L(n, \mathbf{Z})
$$

is determined by the image $A=\rho(q) \in G L(n, \mathbf{Z})$ of the generator of Γ. If the representation ρ satisfies the condition (C), then we obtain

$$
\Theta_{\Gamma, \rho}=\frac{1}{\operatorname{det}(I-q A)} .
$$

A not so simple example is the following. Consider a group Γ given by

$$
\Gamma=\left\langle x, y \mid x y x=y x y,(x y x)^{4}=1\right\rangle
$$

The group Γ is isomorphic to the modular group
$S L(2, \mathbf{Z})$. It is also known as the mapping class group of the 2-dimensional torus. As the associated homomorphism we take the abelianization $\alpha: \Gamma \rightarrow$ $\left\langle q \mid q^{12}\right\rangle$. We then see that $h_{12}=1$ (cf. [2]) and the cyclotomic polynomial is $\Phi_{12}(q)=q^{4}-q^{2}+1$. Here we shall make a calculation in $\mathbf{Z}[q] /\left(q^{4}-q^{2}+1\right)$ rather than $\mathbf{Z}\left[\zeta_{12}\right]$.

Let us write
$r_{1}=x y x-y x y$ and $r_{2}=(x y x)^{4}-1=(x y)^{6}-1$.
The free derivatives of relations r_{1} and r_{2} by the generator x are

$$
\begin{aligned}
& \frac{\partial r_{1}}{\partial x}=1-y+x y \quad \text { and } \\
& \frac{\partial r_{2}}{\partial x}=1+x y+(x y)^{2}+(x y)^{3}+(x y)^{4}+(x y)^{5}
\end{aligned}
$$

First let us consider the trivial 1-dimensional representation $\mathbf{1}$ over \mathbf{Z}. Because $\operatorname{det} \Psi(1-y)=$ $1-q$ (namely, the condition (C) is satisfied) and $\Psi\left(\partial r_{2} / \partial x\right)=0$ in $\mathbf{Z}[q] /\left(q^{4}-q^{2}+1\right)$, we can conclude

$$
\Theta_{\Gamma, \mathbf{1}}=\frac{1-q+q^{2}}{1-q} \sim 1-q+q^{2}
$$

where we have used a notation \sim to present a relation between associated elements in the integral domain.

Next we investigate the 2-dimensional representation of Γ given by

$$
\rho(x)=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right) \quad \text { and } \quad \rho(y)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Direct computation shows that

$$
\left.\begin{array}{rl}
{ }^{t} M_{2} & =\left({ }^{t} \Psi\left(\frac{\partial r_{1}}{\partial x}\right){ }^{t} \Psi\left(\frac{\partial r_{2}}{\partial x}\right)\right) \\
& =\left(\begin{array}{ccc}
1-q+q^{2} & -q^{2} & 2+2 q^{2}
\end{array}\right. \\
-q+q^{2} & 1-q
\end{array}-2+4 q^{2} \quad 4-2 q^{2}\right) . . ~ \$
$$

Thereby we obtain $Q_{2}=1$. Further we easily see $\operatorname{det} \Psi(1-y)=(1-q)^{2} \neq 0$, so that the twisted invariant of Γ associated to ρ is

$$
\Theta_{\Gamma, \rho}=\frac{1}{(1-q)^{2}} \sim 1
$$

Finally we consider the braid group B_{3} of three strings. Let α be the composite of the abelianization $B_{3} \rightarrow \mathbf{Z}$ and the obvious homomorphism $\mathbf{Z} \rightarrow \mathbf{Z} / 12$. Since the group $B_{3}=\langle x, y \mid x y x=y x y\rangle$ has a representation

$$
\rho: B_{3} \rightarrow S L(2, \mathbf{Z})
$$

we can define its twisted invariant $\Theta_{B_{3}, \rho} \in \mathbf{Q}\left(\zeta_{12}\right)$. From the similar computation as above, it follows
that

$$
\Theta_{B_{3}, \rho}=2-3 q+2 q^{2}
$$

On the other hand, Wada's twisted Alexander polynomial $\Delta_{B_{3}, \rho}(t)$ of B_{3} for the representation ρ is given by

$$
\Delta_{B_{3}, \rho}(t)=1+t^{2} .
$$

We can immediately conclude this fact from the example computed in [4] Section 4 (in fact, we have only to substitute $s=-1$ into the reduced Bu rau representation of B_{3}). Therefore the discussion above implies that

Proposition 3. The twisted invariant $\Theta_{\Gamma, \rho}$ is not a simple reduction of the twisted Alexander polynomial $\Delta_{\Gamma, \rho}(t)$.

Remark 4. If the group Γ has a presentation of deficiency 1 and the homomorphism $\alpha: \Gamma \rightarrow \mathbf{Z} / m$ factors through \mathbf{Z}, then our twisted invariant for the 1-dimensional trivial representation coincides with
the specialization of the original Alexander polynomial at a primitive m-th root of unity.

Acknowledgements. The author would like to express his gratitude to Prof. Shigeyuki Morita for his constant encouragement. This research is supported in part by JSPS Research Fellowships for Young Scientists. The author also thanks to the Fūjukai foundation for the support.

References

[1] Fox, R. H.: Free differential calculus. Ann. Math., 57, 547-560 (1953).
[2] Masley, J., and Montgomery, H. L.: Cyclotomic fields with unique factorization. J. Reine Angew. Math., 286/287, 248-256 (1976).
[3] Tietze, H.: Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten. Monatsh. Math. Phys., 19, 1-118 (1908).
[4] Wada, M.: Twisted Alexander polynomial for finitely presentable groups. Topology, 33, 241256 (1994).

[^0]: 1991 Mathematics Subject Classification. 57M25.

