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A twisted invariant for finitely presentable groups

By Takayuki Morifuji

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8914

(Communicated by Heisuke Hironaka, m. j. a., Nov. 13, 2000)

Abstract: Following Wada’s construction [4] on the twisted Alexander polynomial, we
introduce a new twisted invariant for finitely presentable groups.
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1. Introduction. Let Γ be a finitely pre-
sentable group with a homomorphism α to a finite
cyclic group Z/m. We assume that the class number
hm of the m-th cyclotomic field K = Q(ζm) is equal
to one, where ζm is a primitive m-th root of unity.
To each linear representation

ρ : Γ→ GL(n,Z)

of the group Γ we will assign an algebraic number
ΘΓ,ρ ∈ K called a twisted invariant of Γ associated
to ρ. This is well-defined up to a factor of a unit
of the ring OK = Z[ζm] of algebraic integers and is
in fact an invariant of the group Γ, the associated
homomorphism α and the representation ρ. Namely,
although we need a presentation of Γ to define an
algebraic number ΘΓ,ρ, yet it can be shown that

Theorem 1. The twisted invariant ΘΓ,ρ ∈
Q(ζm) is independent of the choice of the presen-
tation.

The construction of ΘΓ,ρ and the proof of its in-
variance are based on the idea of Wada’s paper [4],
which introduces the twisted Alexander polynomial
for finitely presentable groups with a homomorphism
to a free abelian group. A merit of our framework
here is that we can deal with finitely presentable
groups such as the modular group and the orbifold
fundamental group.

2. Construction. For a given homomor-
phism α : Γ → Z/m = 〈q | qm〉, we denote the
induced homomorphism of the integral group ring
by

α̃ : Z[Γ]→ Z[Z/m].

Since the group ring Z[Z/m] ∼= Z[q]/(qm − 1) is not
an integral domain (namely, has a zero divisor), we
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consider the composite of α̃ and the projection

π : Z[q]/(qm − 1)→ Z[q]/(Φm(q)),

where Φm(q) denotes the m-th cyclotomic polyno-
mial. Here it should be noted that π is well-defined as
a ring homomorphism, because Φm(q) divides qm − 1
in Z[q]. Then the assumption hm = 1 implies that
the commutative ring Z[q]/(Φm(q)) ∼= Z[ζm] is a
unique factorization domain (see [2]). By abuse of
notation, we denote the composite π ◦ α̃ via α̃ (it
just corresponds to the homomorphism α̃ : Z[Γ] →
Z[t±1

1 , . . . , t±1
r ] in Wada’s paper [4]).

Next we extend the representation ρ to the in-
tegral group ring and denote it by ρ̃. Then ρ̃ ⊗ α̃

defines a ring homomorphism

Z[Γ]→M(n,OK),

where M(n,OK) is the matrix algebra of degree n
over OK . We suppose that the group Γ has the pre-
sentation

Γ = 〈x1, . . . , xu | r1, . . . , rv〉.
Let Fu be the free group on generators x1, . . ., xu and
define a ring homomorphism Ψ : Z[Fu]→M(n,OK)
to be the composite of the surjection Z[Fu] → Z[Γ]
induced by the presentation and ρ̃⊗ α̃.

Now let us consider the v × u matrix M whose
(i, j) component is the n× n matrix

Ψ
( ∂ri
∂xj

)
∈M(n,OK),

where ∂/∂x denotes the free differential calculus (see
[1]). For 1 ≤ j ≤ u, let us denote by Mj the v ×
(u− 1) matrix obtained from M by removing the j-
th column. We now regard Mj as a vn × (u − 1)n
matrix with coefficients in OK . For a (u− 1)n-tuple
of indices

I=(i1, . . . , i(u−1)n) (1 ≤ i1 ≤ · · · ≤ i(u−1)n ≤ vn),
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we denote by M I
j the (u − 1)n × (u − 1)n square

matrix consisting of the ikth rows of the matrix Mj ,
where k = 1, . . ., (u− 1)n.

Lemma 2. In OK , detM I
j det Ψ(1 − xk) =

±detM I
k det Ψ(1 − xj) holds for 1 ≤ j < k ≤ u

and for any choice of the indices I.
Proof. We can apply the proof of [4] Lemma 3

for our ring homomorphism Ψ.
Hereafter we assume the following condition

(C):
(C) There exists an index j so that det Ψ(1−xj) �= 0

in OK .
We denote by Qj ∈ OK the greatest common

divisor of det M I
j for all the choices of the indices

I. The algebraic integer Qj is well-defined up to a
factor of ε ∈ O×

K . We also define Qj to be zero if
v < u− 1 and one if Γ is a cyclic group (i.e. u = 1).

Under the assumption (C), we can define the
twisted invariant of Γ associated to the representa-
tion ρ to be the algebraic number

ΘΓ,ρ =
Qj

det Ψ(1− xj)
∈ K.

This is of course well-defined up to a factor of ε ∈
O×

K .
In order to prove Theorem 1, we need to show

the invariance of ΘΓ,ρ under the Tietze transforma-
tions (see [3]). However we can again apply Wada’s
argument for our situation, so that we omit the rou-
tine proof here (see [4] Theorem 1). Further we see
that the twisted invariant does not depend on the
choice of the basis for the representation space.

3. Examples. A few examples show what
the twisted invariant is like. Our first example is
a finite cyclic group Γ = Z/m = 〈q | qm〉 such that
hm = 1. The abelianization is the identity map;
α = id : Γ→ 〈q | qm〉. Every linear representation

ρ : Γ→ GL(n,Z)

is determined by the image A = ρ(q) ∈ GL(n,Z) of
the generator of Γ. If the representation ρ satisfies
the condition (C), then we obtain

ΘΓ,ρ =
1

det(I − qA)
.

A not so simple example is the following. Con-
sider a group Γ given by

Γ = 〈x, y | xyx = yxy, (xyx)4 = 1〉.

The group Γ is isomorphic to the modular group

SL(2,Z). It is also known as the mapping class
group of the 2-dimensional torus. As the associated
homomorphism we take the abelianization α : Γ →
〈q | q12〉. We then see that h12 = 1 (cf. [2]) and
the cyclotomic polynomial is Φ12(q) = q4 − q2 + 1.
Here we shall make a calculation in Z[q]/(q4−q2 +1)
rather than Z[ζ12].

Let us write

r1 = xyx− yxy and r2 = (xyx)4 − 1 = (xy)6 − 1.

The free derivatives of relations r1 and r2 by the
generator x are

∂r1
∂x

= 1− y + xy and

∂r2
∂x

= 1 + xy + (xy)2 + (xy)3 + (xy)4 + (xy)5.

First let us consider the trivial 1-dimensional
representation 1 over Z. Because det Ψ(1 − y) =
1 − q (namely, the condition (C) is satisfied) and
Ψ(∂r2/∂x) = 0 in Z[q]/(q4−q2+1), we can conclude

ΘΓ,1 =
1− q + q2

1− q ∼ 1− q + q2,

where we have used a notation ∼ to present a relation
between associated elements in the integral domain.

Next we investigate the 2-dimensional represen-
tation of Γ given by

ρ(x) =
(

1 0
−1 1

)
and ρ(y) =

(
1 1
0 1

)
.

Direct computation shows that

tM2 =
(

tΨ
(
∂r1
∂x

)
tΨ

(
∂r2
∂x

))

=
(

1− q + q2 −q2 2 + 2q2 2− 4q2

−q + q2 1− q −2 + 4q2 4− 2q2

)
.

Thereby we obtain Q2 = 1. Further we easily see
det Ψ(1 − y) = (1 − q)2 �= 0, so that the twisted
invariant of Γ associated to ρ is

ΘΓ,ρ =
1

(1− q)2 ∼ 1.

Finally we consider the braid group B3 of three
strings. Let α be the composite of the abelianization
B3 → Z and the obvious homomorphism Z→ Z/12.
Since the group B3 = 〈x, y | xyx = yxy〉 has a rep-
resentation

ρ : B3 → SL(2,Z),

we can define its twisted invariant ΘB3,ρ ∈ Q(ζ12).
From the similar computation as above, it follows
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that

ΘB3,ρ = 2− 3q + 2q2.

On the other hand, Wada’s twisted Alexander
polynomial ∆B3,ρ(t) of B3 for the representation ρ is
given by

∆B3,ρ(t) = 1 + t2.

We can immediately conclude this fact from the ex-
ample computed in [4] Section 4 (in fact, we have
only to substitute s = −1 into the reduced Bu-
rau representation of B3). Therefore the discussion
above implies that

Proposition 3. The twisted invariant ΘΓ,ρ is
not a simple reduction of the twisted Alexander poly-
nomial ∆Γ,ρ(t).

Remark 4. If the group Γ has a presentation
of deficiency 1 and the homomorphism α : Γ→ Z/m
factors through Z, then our twisted invariant for the
1-dimensional trivial representation coincides with

the specialization of the original Alexander polyno-
mial at a primitive m-th root of unity.
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