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Abstract:

The existence theorems for (1) a differential inclusion in a Banach space and

(2) a variational problem governed by it are presented. In order to solve this problem, some
implications of the weak convergence in the space of vector-valued absolutely continuous functions

are also explored.
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1. Introduction. Let X be a real separable
refiexjve Banach space. A correspondence (=multi-
valued mapping) I" : [0,T] x X — X and a function
u:[0,T] x X x X — R are assumed to be given. A
double arrow —- indicates the domain and the range
of a correspondence. The compact interval [0,77] is
endowed with the Lebesgue measure dt. L. denotes
the o-field of the Lebesgue-measurable sets of [0, 7.

Let 2017([0,7],X) be the Sobolev space con-
sisting of functions of [0,7] into X. And let A(a)
be the set of all the solutions in the Sobolev space
2517([0, T], X) of a differential inclusion:

(%) w(t) € T(t,x(t), z(0) = a,

where £ denotes the derivative of z and a is a fixed
vector in X. We consider a variational problem:

T
(1) MinimizexEA(a)/o u(t, x(t), z(t))dt.

The object of this paper is to discuss a couple
of existence problems as follows:

(i) the existence of a solution for the differential
inclusion (x), and
(ii) the existence of an optimal solution for the vari-

ational problem (f).

In Maruyama [8][9], I presented a solution of
these problems in the special case X = R’ by making
use of the convenient properties of the weak conver-
gence in the Sobolev space 202 ([0, T}, RY); i.e. if a
sequence {x, } in 202 ([0, T], RY), weakly converges
to some z* € 2042 ([0, 7], RY), then there exists a
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subsequence {z,} of {x,} such that

zp — ¢*  uniformly on [0,T], and

W, a2 ¢

Zn — &*  weakly in £5([0,T],R").
However it deserves a special notice that this
property does not hold in the space 20%2([0, T, X) if
dim X = co. Taking account of this fact, I provided
a new convergence result to overcome this difficulty
in the case X is a real separable Hilbert space in
Maruyama [10]. T also gave a existence theory for
the problems (i) and (ii) being based upon this new
tool in the framework of a separable Hilbert space.

The purpose of the present paper is a further
generalization of my previous results to the case X is
a real separable refiexive Banach space.

I have also to mention about another improve-
ment added on this occasion. In Maruyama [10], I
imposed a very restrictive requirement on the conti-
nuity of the correspondence I'; i.e.

the correspondence x +—~ I'(¢, z) is upper hemi-

continuous for each fixed ¢ € [0, 7] with respect

to the weak topology for the domain and the
strong topology for the range.

I have to admit frankly that this is a very un-
pleasant assumption. In the present paper, I propose
the upper hemi-contimuity of x - I'(¢,z) with re-
spect to the “weak-weak” combination of topologies
instead of the “weak-strong” combination.

2. A convergence theorem in 2847 ([0, T,
X). AsT have already said, any weakly convergent
sequence {z,,} in the Sobolev space 22([0, T], RY)
has a subsequence which satisfies the property (W)
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in section 1.

On the other hand, let X be a real Banach space
with the Radon-Nikodym property (RNP). Then any
absolutely continuous function f : [0,7] — X is
Frechet-differentiable a.e. (If the Banach space X
does not have RNP, this property does not hold.
For a counter-example, see Komura [7].) Let {z,}
be a sequence in 2317([0, 7], X) which weakly con-
verges to some z* € 1P([0,T], X). We should keep
in mind that it is not necessarily true that the se-
quence {z,} has a subsequence {z,} which satisfies
the propery (W) if dim X = oo even in the case p = 2.
(See Maruyama [10] for a counter-example.)

The following theorem cultivated to overcome
this difficulty is a generalization of Theorem 1 of
Maruyama [10]. Henceforth we denote by X (resp.
X,) a Banach space X endowed with the strong
(resp. weak) topology.

Theorem 1. Let X be a real separable reflex-
ive Banach space. And consider a sequence {x,} in
the Sobolev space WWP([0,T],X)(p = 1). Assume
that

(i) the set {z,(t)}22, is bounded (and hence rela-
tively compact) in X, for each t € [0,T], and

(ii) there exists some function ¢ € £P(]0,T], 0,
+00)) such that

[l (]| = p(t)ae.

Then there exist a subsequence {zp} of {x,} and

some function z* € WP ([0,T],X) such that

(a) zn — x* uniformly in X, on [0,T], and

(b) Z, — &* weakly in £P([0,T], X).

Remark. Since X is separable and reflexive,

the following results hold true. Assume that p = 1.

[I] £P(]0,T],%) is separable.

[IT] £7([0,T],%)" is isomorphic to £P([0,T],X’),
where 1/p+1/q = 1 and “’”denotes the dual
space.

[ITT] Any absolutely continuous function f : [0,T] —
X is Fréchet-differentiable a.e. and the *funda-
mental theorem of calculus ” |, i.e.

£() = £(0) + / f(rydr t e 0,7]

is valid.

Proof of Theorem 1. (a) To start with, we
shall show the equicontinuity of {z,}. Since v is
integrable, there exists some § > 0 for each ¢ > 0
such that

[Vol. T7(A),

Jon(®) = 2n(@) < [ llaalr)lldr

¢
< / Y(r)dr < e foralln

provided that |t — s| £ 4. This proves the equicon-
tinuity of {x,} in the strong topology for X. Hence
{zn} is also equicontinuous in the weak topology.

Taking account of this fact as well as the as-
sumption (i), we can claim, thanks to the Ascoli-
Arzela theorem, that {z,} is relatively compact in
€([0,T], X.) (the set of continuous functions of [0, T']
into X,,) with respect to the topology of uniform con-
vergence.

By the assumption (i), {x,(0)} is bounded in X,
say  sup, ||z, (0)|| £ C < 400. And the assump-
tion (ii) implies that

’ /O Cin(r)dr

Hence
sup ||, (t)|| = sup
n n

for all

< [l9lh te0,T).

t

2, (0) + / En(T)dT
0

= C+|[Wlh

Thus each x,, can be regarded as a mapping of [0, 7T
into the set

M ={w e X |[[w]| = C+|[¢[l1}.

for all ¢ € [0,T].

The weak topology on M is metrizable because M is
bounded and X is a separable refiexive Banach space.
Hence if we denote by M, the space M endowed
with the weak topology, then the uniform conver-
gence topology on €([0,T], M,,) is metrizable.

Since we can regard {z,} as a relatively compact
subset of €([0,T], M,,), there exists a subsequence
{yn} of {z,, } which uniformly converges to some z* €
e([0, 7], Xu):

(b) Since

g ()] = (1)
the sequence {w,, : [0,7] — X} defined by

a.e.,

gn®)
n(t) Ok n=1,2,
is contained in the unit-ball of £>°([0, T, X) which is
weak”-compact (as the dual space of £1([0,T7],X’))
by Alaogln’s theorem. Note that the weak™ topol-
ogy on the unit ball of £°([0,7],X) is metrizable
since £1([0,T],X’) is separable. Hence {w,} has a
subsequence {w, } which converges to some w* €
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£([0,T], X) in the weak™ topology. We shall write
Zpn = Ynt =Y Wy

If we define an operator A : £>([0,7],%) —
£°([0,T7, %) by
Aig—1-g,
then A is continuous in the weak™ topology for £
and the weak topology for £P. In order to see this,

let {gx} be a net in £°([0, T, X) such that
w*limy,, = g* € £2°([0,T1], X); i.e.

/ (a(t), ga(D)dt — / (a(t), g* (1)) dt
0 0

for all € £'([0,7],X).
Then it is quite easy to verify that

/0 (B(E), D(D)ga (D) dt = / (0B, gr (D) dt
“(t))dt

T
= [ wwst.g
0
11
for all 8 € £P([0,T], %), — + - =1
p q
since -3 € £1([0,T], X"). This proves the continuity

of A.
Hence

(1) Z, =% wy — Y- w" weakly in £°([0,T], %),

which implies

(2) <9,/t' (r )dT> :/:w,z'n(T))dT
A

On the other hand, since

zn(t)—zn(s):/ 2n(T)dT  for all n,

(1))dr forall 6e X'

and z,(t) — zn( — x*(t) — x*(s) in X, we get
(3) < s | (T d7'> (0,2, (t) — zn(9))
(9x()—x*s> for all 0 € X'.

(2) and (3) imply the relation

_ <o, /:;z;(f) -w*(7‘)d7‘>

forall 6e€ X,

(0,27 (t) -

from which we can deduce the equality

5) = / o) wt ()

(4) a*(t) -
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By (1) and (4), we get the desired result:

Zn — " =1 - w* weakly in £P([0,7],%). O

In the proof of our Theorem 1, we are making
use of some ideas of Aubin and Cellina [1] (pp. 13—
14) as in Maruyama [10].

3. Differential Throughout
this section, X is assumed to be a real separable
reflexive Banach space.

Let us begin by specifying some assumptions im-
posed on the correspondence T": [0,T] x X, — X,,.
Special attentions should be paid to the fact that
both of the domain and the range of I' are endowed
with the weak topology.

Assumption 1. T' is compact-convex-valued,
i.e. T'(t,x) is a non-empty, compact and convexr sub-
set of Xy, for allt € [0,T] and all x € X.

Assumption 2. The correspondence x
[(t,z) is upper hemi-continuous (abbreviated as
u.h.c.) for each fized t € [0,T); i.e. for any fized
(t,z) € [0,T] x Xy and for any neighborhood V of
[(t,z) C X, there exists some neighborhood U of x
such that T'(t,z) CV forall z € U.

Assumption 3. The graph of the correspon-
dence t — T'(t,x) is (L, B(Xy))-measurable for each
fixred x € X where B(X,,) denotes the Barel o-field on
Xy. (For the concept of “measurability” of a corre-
spondence, the best reference is Castaing- Valadier [5)]
Chap. 111.)

Assumption 4. T is £P-integrably bounded,
i.e. there exists ¥ € £P(]0,T], (0,400)) (p > 1) such
that T'(t, x) C Sy for every (t,x) € [0, T]|x X, where
Sy () 18 the closed ball in X with the center O and the
radius ¥(t).

Lemma 1 (Castaing [2]). Suppose that a cor-
respondence ' : [0,T] X X — X satisfies the As-
sumptions 1-3, and that a function x : [0,T] — X is
Bochner-integrable. Then there exists a closed-valued
correspondence X : [0, T] —— X, such that

E(t) C Tt x(t))
and the graph G(X) of X is (L, B(X,))-measurable.

We can show the next lemma in a similar way
as in Maruyama [10], taking account of [III] of the
Remark on page 6.

Lemma 2. Let A be a non-empty com-

pact and conver set in X, and X a subset of
WhP([0,T],%) (p > 1) defined by

X ={z e [[la)|l = ¥(#)

inclusions.

for all t€[0,T],

z(0) € A},

a.e.,
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where 1 € £P([0,T1], (0, +00)). Then X is non-empty
convez and compact in X,,.

We denote by B(0;X,,) a neighborhood base of
the zero element of X,, which consists of convex sets.
The following lemma plays a crucial role in the sub-
sequent arguments although its proof is easy.

Lemma 3. Suppose that the Assumptions 1-2
are satisfied. Let (t*,2*) be any point of [0,T] x X.
Define, for any V € B(0; X,,), a subset K(t*;2*,V),
of [0,T] x X by

K(t*; 2", V)
={(t,z) €0, T x X|z € z* + V, t =1t"}.
Then we have
L(t", %) = Nyepo;x,) O L (K (7527, V)).

(Here we do not have to distinquish the convex
closure with respect to the strong topology and that
with respect to the weak topology. So I simply denote
it by co.)

Lemma 4. Suppose that the Assumptions 1,
2 and 4 (with p > 1) are satisfied. Let A be a non-
empty conver compact subset of X,,. Then the set

H={(a,z,y) € Ax X x X | y(t) € T'(t,x(t))
a.e. and xz(0) =y(0) = a}

is weakly compact in A x X x X. (The set X is
defined in Lemma 2.)

Sketch of proof. Since we already
known that A x X x X is weakly compact in
X x WP x WP, it is enough to show that H is a
weakly closed subset of A x X x X.

Since 201? is a refiexive Banach space, the dual
of which is separable, the weak topology on the
bounded set X is metrizable. So we are permitted
to use a sequence argument.

Let {¢. = (an,7n,yn)} be a sequence in H
which weakly converges to some ¢* = (a*,z*,y*) in
A x X x X. We have to show that ¢* € H. And it
is cnough to check that

have

y*(t) €T(t,z*(t)) a.e.

The set {z,,(¢)} is relatively compact in %,, (for
each t € [0,7]) since we have the evaluation:

t T
|z ()] = Ha\|+/0 || (7)[|dT = ||a||+/0 P(r)dr

by the Assumption 4. Hence, thanks to Theorem 1,
{gn} has a subsequence (no change in notation) such

[Vol. T7(A),

that

(1) @n(t) = (1)
() Gn(t) =57 ()
Then we can show that

3) 7 (t) € WK (t2* (1), V) ae.

niformly in X, and

weakly in  £P.

by a similar reasoning as in Maruyama [10] based
upon Mazur’s Theorem. Since (3) holds true for all
V € B(0; X,), it follows that

(4) ¥ (t) € Nven(ox,) OT(K (2" (1), V)
Lt 2%(t))

a.e.

The last equality in (4) comes from Lemma 3. Thus
we have proved that (a*,z*,y*) € H. L]

We are now going to find out a solution of (x)
in the Sobolev space 207 ([0,T],X), p > 1. Define a
set A(a) in 20%P by

A(a) = {x € WP | z satisfies () a.e.}

for a fixed a € X.

Theorem 2. Suppose that the correspondence
I' satisfies the Assumptions 1-4. Let A be a non-
empty, convex and compact subset of X,,. Then

(i) A(a*) #0 for any a* € A, and
(ii) the correspondence A : A — 1P is compact-
valued and u.h.c. on A, in the weak topology

for 20,

The proof can be achieved essentially by the
same reasoning as in Maruyama [10], based upon
preceding lemmas.

Remark. Among other things, the assumption
that the set T'(¢,z) is always convex is seriously re-
strictive, especially from the viewpoint of applica-
tions. However there seems to be no easy way to
wipe out the convexity assumption. (See Tateishi
[12].)

Here it may be suggestive for us to glimpse the
special case in which T is a (single-valued) mapping.
A related result was obtained by Szep [11]. (I am
indebted to the late Prof. Tosio Kato for this refer-
ence.)

Corollary. Let f : [0,T] x X, — X, be a
(single-valued) mapping which satisfies the following
three conditions.

(i) The function x — f(t,x) is continuous for each

fixed t € [0,T].

(ii) The function t — f(t,xz) is measurable for each

fized x € X.
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(i) There exists ¥ € £P(]0,T1], (0, +00)), p > 1 such
that f(t,x) € Sy for every (t,x) € [0,T] x X;
i.e. sup,cx || f(t, 2)|| < () for all t € [0,T].
Then the differential equation

()

has at least a solution in WP ([0, T],X). (A solution
of (xx) is a function x € WP which satisfies (x*)
a.e.)

4. Variational problem governed by dif-
ferential inclusion. Let X be a real separable re-
flexive Banach space throughout this section, too.
Assume that u : [0,T] x X, X Xs, (—00,+00] is a
given proper function. Consider a variational prob-
lem:

&= f(t,x),z(0) = a (fizred vector in X)

T
(#) Minimize,e e/ (z) = /O u(t, (1), i(8))dt,

where A(a) is the set of all the solutions of the dif-
ferential inclusion (*) discussed in the preceding sec-
tion.
Definition. Let (£2,&, 1) be a measure space,
S a topological space, and U a real Banach space.
A function f : Q x S x U — R is assumed to be
given. We denote by 9(,S) the set of all the
(€, B(S))-measurable functions of Q into S. (B(S)
denotes the Borel o-field on S.) f is said to have the
lower compactness property if {f~(w, pn(w), O, (w))}
is weakly relatively compact in £1(Q2, R) for any se-
quence {(pn,0,)} in M(Q,5) x £P(Q,V) (p = 1)
which satisfies the following three conditions:
(a) {pn} converges in ineasure to some p* €
M(Q, S),
(b) {6,} converges weakly to some 6* € £P(Q,),
and
(c) there exists some C' < +0o such that

Slip/Qf(wwpn(w)ﬂn(w))du <C

The following theorem is a variation of a result
due to Castaing-Clauzure [3] in the spirit of Ioffe [6].
Theorem 3. Let (Q,&, 1) be a finite complete
measare space, S a metrizable Souslin space, and U
a separable reflexive Banach space. Suppose that a
proper function f : Q x S x B — R satisfies the
following conditions:
(i) f is a normal integrand; i.e.
(a) fis (E®B(S)@B(V), B(R))-measurable, and
(b) the function (§,v) — f(w,&,v) is lower semi-
continuous for any fized w € €1,
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(ii) the function v — f(w,& v) is convex for any
fized (w,&) € QA xS, and
(iii) f has the lower compactness property.

Let {¢n} be a sequence in M(Y, S) which con-
varges in measure to some ¢* C M(Q, S), Let {0,,}
be a sequence in £P(2,V)(1 £ p < 400) which con-
verges weakly to some 0* € £°(Q2,0). Then we have

/Q F(w, 6" (@), 0% () )dp

Stiminf [ . pu): () d

Remark. 1° A normal integrand f: 2 x .S x
0 — R which also satisfies the condition (ii) is called
a convexr normal integrand.

2°  Toffe [6] established a fundamental theorem
on the lower semi-continuity of a nonlinear integral
functional as above in the case both of S and U are
finite dimensional Euclidean spaces. Theorem 3 is an
extension of IToffe’s result to the case of a nonlinear
integral functional defined on the space of Bochner
integrable functions. See also Valadier [13] for some
important results based on the theory of Young mea-
sures.

Lemma 5. Suppose that the Assumptions 1-
4 are satisfied. Let {x,} be a sequence in A(a) C
WP ([0,7],X) (p>1). Letu: [0,T]x Xy xXs = R
be a proper conver normal integrand with the lower
compactness property. Then there exist a subse-
quence {zn} of {zn} and x* € A(a) such that

(1) J(2") < liminf J(z,),

n

where

J(:r):/O u(t, z(t), x(t))dt.

Proof. By the Assumption 4, all the images of
x,’s are contained in some closed ball B with the
center 0; i.e.

zo(t)€B forall te€[0,7] and n.

Hence we may restrict the domain of u to
[0,7] x B, x X, provided that the sequence {z,}
is concerned. Denoting U = ul, 7}, 5y, (restriction
of u to [0,T] x B x X) we have to show that there ex-
ist a subsequence {z,} of {z,} and some z* € A(a)
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such that

T
/ (ko (£), & (1))t

0
T
< liminf/ u(t, 2, (1), 2, (t))dt
" 0

which is equivalent to (1).

The set B endowed with the weak topology is
metrizable and compact. Hence it is a Polish space.
According to Theorem 1, there exist a subsequence
{zn} of {z,} and x* € WP ([0, 7], X) such that
(a) 2z, — a* uniformly in B,,, and
(b) Z, — &* weakly in £P([0,T], X).

(a) implies, of course, that z, — x* in measure.
Thus applying Theorem 3, we obtain the relation

T
/0 Tt 2" (1), & (t))dt

n

T
< liminf/ a(t, zn(t), 2, (t))dt.
0

Finally we have to prove that z* € A(a). By
(a), it follows that

Tim (2, (8), (1)) = (2" (), n(2)

for any t € [0,7] and n € £P([0,T], X’), where 1/p +
1/q = 1. Since z,(t) € B, there exists some positive
constant C' < oo such that

[z (), n(E)] = Clln(®)]]-

Hence we have, by the Dominated Convergence
Theorem, that
T

i [ (ea(t), n()dt = / (2 (£), () dt

n—00 0

for any n € £°([0, T, X’).

This proves that z, — z* weakly in £P.

Conbining this result with (b), we can conclude
that {z,} weakly converges to z* in 20%P. Since
A(a) is weakly closed, z* € A(a). []

Let {z,} be a minimizing sequence of the prob-
lem (#). Then, by Lemma 5, {x,} has a subsequence
(without change of notaion) such that

J(z*) £ liminf J(x,)
n
for some z* € A(a). It is also obvious that

inf J(z) =liminf J(x,) < J(z¥).
zEA(a) n

[Vol. T7(A),

Thus we have proved that z* is a solution of the
problem (). Summing up —

Theorem 4. Suppose that the Assumptions
1-4 with p > 1 are satisfied for a correspondence
I':[0,T] x X — X. Furthermore let u : [0,T] x
¥, x ¥, — R be a convex normal integrand with the
lower compactness property. Then the problem (f)
has a solution.
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