On certain cohomology set for $\Gamma_0(N)$

By Takashi Ono

Department of Mathematics, The Johns Hopkins University Baltimore, Maryland, 21218-2689, U.S.A. (Communicated by Shokichi Iyanaga, M. J. A., March 12, 2001)

Abstract: Let $G = \Gamma_0(N)$, $N \not\equiv 3 \pmod{4}$ and g be the group generated by the involution $z \mapsto -1/Nz$ of the upper half plane. We determine the cohomology set $H^1(g, G)$ in terms of the class number of quadratic forms of discriminant -4N.

Key words: Congruence subgroups of level N; the involution; cohomology sets; binary quadratic forms; class number of orders.

1. Introduction. Let g, G be groups where g acts on G to the left and H(g,G) be the (first) cohomology set of (g,G). When $g = \langle s \rangle$, $s^2 = 1$, let us put $a^* = a^{-s}$. Then $(ab)^* = b^*a^*$, $a^{**} = a$ for $a, b \in G$ and so we can make the identification:

$$\begin{array}{l} H(g,G)\\ (1.1) = \{a \in G; \ a^* = a, \text{symmetric elements}\}/\sim\\ \text{where } a \sim b \ (\text{congruence}) \Longleftrightarrow b = c^*ac, c \in G \end{array}$$

In [2], we treated the case where $G = \Gamma(N)$ with $s = (z \mapsto -1/z)$. This time, as the second step, we take the case where $G = \Gamma_0(N)$ with $s = (z \mapsto -1/Nz)$. Unlike in [2] where $a^* = {}^t a$ (transpose), we shall meet various binary positive quadratic forms and hence imaginary quadratic fields $K = \mathbf{Q}(\sqrt{-N})$. We shall show that there is a bijection between the set $H^+(g, \Gamma_0(N))$, the positive part of $H(g, \Gamma_0(N))$, and the form class group C(-4N) whenever $N \not\equiv 3 \pmod{4}$.

2. $F^+(N)$. For a positive integer N, put

$$(2.1) \hspace{1cm} S = \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 0 \\ 0 & N \end{pmatrix}.$$

For $g = \langle s \rangle$, $s^2 = 1$ and $A \in G = \Gamma_0(N)$, put

$$(2.2) A^s = SAS^{-1} = U^t A^{-1} U^{-1}.$$

One checks that q acts on G. We also put

$$(2.3) A^* = A^{-s} = U^t A U^{-1}.$$

Denoting by Z(g, G) the set of all cocycles in (g, G), we have, from (2.2), (2.3),

$$(2.4) Z(g,G) = \{ A \in G; A^* = A \}.$$

2000 Mathematics Subject Classification. 11F75.

Now put

(2.5)
$$F = \varphi(A) = AU, \quad A \in Z(g, G).$$

Then, we find that

$$(2.6) A^* = A \iff {}^t F = F.$$

From (2.4), (2.5), (2.6) we see that the map φ identifies the set Z(g,G) of cocycles with the following set $\mathcal{F}(N)$ of symmetric matrices:

$$(2.7) \mathcal{F}(N) = \left\{ F = \begin{pmatrix} a & Nb \\ Nb & Nc \end{pmatrix}; ac - Nb^2 = 1 \right\}.$$

Furthermore, note that the (right) action $A \mapsto T^*AT$ of $T \in \Gamma_0(N)$ on Z(g,G) corresponds to the (right) action $F \mapsto {}^tT_1FT_1$ of $T_1 = U^{-1}TU \in \Gamma^0(N)$ on $\mathcal{F}(N)$ under the identification of Z(g,G) and $\mathcal{F}(N)$ by the map φ . In other words, we have, via φ ,

(2.8)
$$H(q, \Gamma_0(N)) = \mathcal{F}(N)/\Gamma^0(N).$$

As usual, for a negative integer D, we denote by $\Phi(D)$ the set of all integral primitive positive definite binary quadratic forms of discriminant D:

(2.9)
$$\Phi(D) = \{ f = ax^2 + bxy + cy^2; (a, b, c) = 1, \\ a > 0, b^2 - 4ac = D < 0 \}.$$

We identify $f \in \Phi(D)$ with the half-integral matrix $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$, as usual.

From now on we assume that

$$N \not\equiv 3 \pmod{4}$$
, i.e., $N \equiv 0, 1 \text{ or } 2 \pmod{4}$.

Back to the set $\mathcal{F}(N)$ of (2.7), we set

(2.10)
$$\begin{cases} \mathcal{F}^{+}(N) = \{ F \in \mathcal{F}(N); \ a > 0 \} \\ \mathcal{F}^{-}(N) = \{ F \in \mathcal{F}(N); \ a < 0 \} \\ = \{ -F; F \in \mathcal{F}^{+}(N) \}. \end{cases}$$

Dedicated to Professor S. Iyanaga, M.J.A., on his 95th birthday.

Then $\mathcal{F}(N)$ is a disjoint sum of $\mathcal{F}^+(N)$ and $\mathcal{F}^-(N)$, and each summand is stable under the the action of $\Gamma^0(N)$. Hence the following definition makes sense:

(2.11)
$$H^{e}(g, \Gamma_{0}(N)) = \mathcal{F}^{e}(N)/\Gamma^{0}(N), \ e = \pm,$$
 and we have

(2.12)
$$\sharp H(q, \Gamma_0(N)) = 2 \sharp (\mathcal{F}^+(N)/\Gamma^0(N)).$$

In view of (2.7), (2.9), (2.10), the set $\mathcal{F}^+(N)$ may be considered as

(2.13)
$$\mathcal{F}^{+}(N) = \{ f = ax^2 + 2Nbxy + Ncy^2; \\ a > 0, D_f = -4N \},$$

and so, by (2.9), (2.13), we have

$$(2.14) \mathcal{F}^+(N) \subset \Phi(-4N).^{*)}$$

Consequently, from (2.8), (2.11), we see that the embedding (2.14) induces naturally a map

(2.15)
$$\pi: H^+(g, \Gamma_0(N)) = \mathcal{F}^+(N)/\Gamma^0(N)$$

 $\to \Phi(-4N)/SL_2(\mathbf{Z}).$

3. π is injective. We shall prove that the map π in (2.15) is injective. So, for a matrix (or a quadratic form) $F \in \mathcal{F}^+(N)$, we denote by [F], $[F]^0$, the class of F modulo $SL_2(\mathbf{Z})$, $\Gamma^0(N)$, respectively. We must then show that [F] = [G], $F, G \in \mathcal{F}^+(N)$, $\Rightarrow [F]^0 = [G]^0$. Now the assumption says that

(3.1)
$$G = {}^{t}TFT \text{ for some } T \in SL_2(\mathbf{Z}).$$

If we put

$$(3.2) \begin{array}{l} T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ F = \begin{pmatrix} p & Nq \\ Nq & Nr \end{pmatrix}, \ G = \begin{pmatrix} u & Nv \\ Nv & Nw \end{pmatrix}, \\ ad - bc = 1, \ pr - Nq^2 = 1, \ uw - Nv^2 = 1, \end{array}$$

then, (3.1) means that

$$(3.3) \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} p & Nq \\ Nq & Nr \end{pmatrix} = \begin{pmatrix} u & Nv \\ Nv & Nw \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

On taking (3.3) modulo N we have

$$\begin{pmatrix} ap \ 0 \\ bp \ 0 \end{pmatrix} \equiv \begin{pmatrix} du \ -bu \\ 0 \ 0 \end{pmatrix} \pmod{N}$$

and hence $bp \equiv 0 \pmod{N}$. As $pr \equiv 1 \pmod{N}$ by (3.2), we have $b \equiv 0 \pmod{N}$, i.e., $T \in \Gamma^0(N)$, or $[F]^0 = [F]^0$.

4. π is surjective. Let $F = F(x,y) = ax^2 + 2Nbxy + Ncy^2$ be a quadratic form in $\mathcal{F}^+(N)$ for $N \not\equiv 3 \pmod{4}$. The discriminant of F is D = -4N. Call τ the root of $F(x,1) = ax^2 + 2Nbx + Nc = 0$ in the upper half plane. Then $a\tau = -bN + \sqrt{-N}$ is an algebraic integer in \mathcal{O}_K with $K = \mathbf{Q}(\sqrt{-N})$. We put

(4.1)
$$\mathcal{O}(N) = [1, a\tau] = \mathbf{Z} + a\tau \mathbf{Z},$$

which is an order of the ring \mathcal{O}_K . The index $f = [\mathcal{O}_K : \mathcal{O}(N)]$ is the conductor of $\mathcal{O}(N)$. The discriminant of $\mathcal{O}(N)$ becomes D = -4N above. We have the equality: $D = -4N = f^2 d_K$ where d_K is the discriminant of K. If we put

(4.2)
$$\omega_K = \frac{d_K + \sqrt{d_K}}{2},$$

then we have

$$(4.3) \mathcal{O}_K = [1, \omega_K], \mathcal{O}(N) = [1, f\omega_K].$$

In what follows, let $\mathcal{O} = \mathcal{O}(N) \subset \mathcal{O}_K$ with conductor f^{**} . We denote by $I(\mathcal{O})$ the group of proper fractional \mathcal{O} -ideals, by $P(\mathcal{O})$ the subgroup of principal \mathcal{O} -ideals and put $C(\mathcal{O}) = I(\mathcal{O})/P(\mathcal{O})$, the ideal class group of the order \mathcal{O} . On the other hand, we set $C(D) = \Phi(D)/SL_2(\mathbf{Z})$, the form class group for the discriminant D = -4N. There is an isomorphism

$$(4.4) C(D) \xrightarrow{\sim} C(\mathcal{O})$$

which is induced by sending the quadratic form $ax^2 + bxy + cy^2$ in $\Phi(D)$ to the proper ideal $[a, h + \sqrt{-N}]$ $\subset \mathcal{O}$, with b = 2h.

Next, let $I(\mathcal{O}, f)$ be the subgroup of $I(\mathcal{O})$ generated by ideals prime to f, $P(\mathcal{O}, f)$ be the subgroup of $I(\mathcal{O}, f)$ generated by principal ideals $\alpha \mathcal{O}$ where $\alpha \in \mathcal{O}$ has the norm prime to f.

Finally, let $I_K(f)$ be the subgroup of the group of fractional \mathcal{O}_K -ideals I_K generated by ideals prime to f, $P_{K,\mathbf{Z}}(f)$ be the subgroup of $I_K(f)$ generated by principal ideals of the form $\alpha \mathcal{O}_K$, where $\alpha \in \mathcal{O}_K$ satisfies $\alpha \equiv a \pmod{f\mathcal{O}_K}$ for some integer a relatively prime to f. Then there are natural isomorphisms

(4.5)
$$C(\mathcal{O}) \xrightarrow{\sim} I(\mathcal{O}, f)/P(\mathcal{O}, f) \\ \xrightarrow{\sim} I_K(f)/P_{K,\mathbf{Z}}(f),$$

where the second isomorphism is the inverse one induced by the map:

$$(4.6) [a, b + \omega_K] \mapsto [a, f(b + \omega_K)]$$

from $I_K(f)$ to $I(\mathcal{O}, f)$.

^{*)} It is easy to verify that every form in $\mathcal{F}^+(N)$ is primitive whenever $N\not\equiv 3(\text{mod }4)$. For $N\equiv 3(\text{mod }4)$, this is not true: e.g., $N=3,\,a=c=2,\,b=1,\,f=2x^2+6xy+6y^2$. One finds similar nonprimitive forms for any $N\equiv 3(\text{mod }4)$.

^{**)} As for basic facts on orders see [2, §7, §8].

Consequently we end up with the isomorphism

$$(4.7) C(-4N) \xrightarrow{\sim} I_K(f)/P_{K,\mathbf{Z}}(f)$$

induced by $F = ax^2 + bxy + cy^2 \mapsto [a, -h + \sqrt{-N}],$ b = 2h.

We are now ready to prove that π is surjective. So take any form $F = ax^2 + bxy + cy^2 \in \Phi(-4N)$. By (4.7), an ideal $\mathfrak{a}_F = [a, -h + \sqrt{-N}]$ in $I_K(f)$ corresponds to F. Let $\mathfrak{p} = [p, r + \sqrt{-N}]$ be a prime ideal in $I_K(f)$ which is congruent to \mathfrak{a}_F modulo $P_{K,\mathbf{Z}}(f)$. The existence of such a \mathfrak{p} is guaranteed by the Čebotarev density theorem. Since \mathfrak{p} is an ideal, we have

(4.8)
$$p \mid \text{Norm}(r + \sqrt{-N}) = r^2 + N.$$

Choose u such that $-r \equiv Nu \pmod{p}$. In view of (4.8), we have $N^2u^2 \equiv r^2 \equiv -N \pmod{p}$, hence $p \mid 1 + Nu^2$ as $p \nmid N$. Consequently

(4.9)
$$\mathfrak{p} = [p, r + \sqrt{-N}] = [p, -Nu + \sqrt{-N}].$$

Using v such that $pv = 1 + Nu^2$, put $G = px^2 + 2Nuxy + Nvy^2$. Then $D_G = (2Nu)^2 - 4pNv = 4N^2u^2 - 4N(1 + Nu^2) = -4N$, hence $G \in \mathcal{F}^+(N)$ and $G \sim F$. Since $\pi([G]) = [\mathfrak{p}]$, we see from (4.7), (4.9) that π is surjective.

Summarizing arguments in 3 and 4 up to here, we obtain

(4.10) **Theorem.** Let N be a positive integer $\equiv 3 \pmod{4}$, π be the map $H^+(g, \Gamma_0(N)) = \mathcal{F}^+(N)/\Gamma^0(N) \to C(-4N) = \Phi(-4N)/SL_2(\mathbf{Z})$ given in (2.15). Then π is a bijection. In particular, the cohomology set $H^+(g, \Gamma_0(N))$ acquires a structure of a finite abelian group isomorphic to the form class group of discriminant -4N.

From (2.12), (4.10), we have

(4.11) **Theorem.** Notation being as before, $\sharp H(g,\Gamma_0(N)) = 2h(-4N)$ where h(-4N) means the class number of the order $\mathcal{O}(N)$ ((4.1)).

5. Examples. (5.1) Assume that the positive integer $N \not\equiv 3 \pmod{4}$ is square free. Hence $N \equiv 1, 2 \pmod{4}$. Since $-N \equiv 2, 3 \pmod{4}$, $d_K = -4N$, $K = \mathbf{Q}(\sqrt{-N})$. Let $\mathcal{O}(N)$ be the order of \mathcal{O}_K in (4.1). As the discriminant D of $\mathcal{O}(N)$ is -4N, we see that $\mathcal{O}(N) = \mathcal{O}_K$ and hence $h(-4N) = h_K$, the ordinary class number of K.

(5.2) Let p be a prime number $\equiv 1 \pmod{4}$ and $N = p^{2K+1}$, $k \geq 0$. Then $K = \mathbf{Q}(\sqrt{-N}) = \mathbf{Q}(\sqrt{-p})$, $d_K = -4p$. Let D be as before the discriminant of the order $\mathcal{O}(N)$. Then $D = -4N = f^2d_K$. Hence we find $f = p^k$. We have $\mathcal{O}_K^{\times} = \mathcal{O}(N)^{\times} = \{\pm 1\}$. By a well-known formula on class numbers of orders, we have

$$h(-4N) = h_K f\left(1 - \left(\frac{d_K}{p}\right)p^{-1}\right) = p^k h_K$$

and we find

$$\frac{\sharp H(g_K,\Gamma_0(p^{2k+1}))}{p^k}=2h_K \text{ for all } k\geq 0,$$

where g_K shows the dependence of the group g on k.

References

- [1] Cox, D.: Primes of the Form $x^2 + ny^2$. John Wiley, New York (1989).
- [2] Ono, T.: On certain cohomology sets attached to Riemann surfaces. Proc. Japan Acad., **76A**, 116–117 (2000).