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Abstract:

Let G =T((N), N # 3 (mod 4) and g be the group generated by the involution

2z + —1/Nz of the upper half plane. We determine the cohomology set H'(g,G) in terms of the
class number of quadratic forms of discriminant —4N.
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1. Introduction. Let g, G be groups where
g acts on G to the left and H(g,G) be the (first)
cohomology set of (g,G). When g = (s), s> = 1, let
us put ¢* = a~®. Then (ab)* = b*a*, a** = a for
a,b € G and so we can make the identification:

H(g,G)
(1.1) = {a € G; a* = a,symmetric elements}/ ~
where a ~ b (congruence) <= b = c*ac,c € G

In [2], we treated the case where G = I'(N) with
s = (2 — —1/z). This time, as the second step,
we take the case where G = I'g(N) with s = (z —
—1/Nz). Unlike in [2] where a* = ‘a (transpose), we
shall meet various binary positive quadratic forms
and hence imaginary quadratic fields K = Q(v/—N).
We shall show that there is a bijection between the
set H*(g,To(N)), the positive part of H(g,To(N)),
and the form class group C(—4N) whenever N #
3(mod 4).
2. FT(N). For a positive integer N, put

0 -1 10
S_(N 0)’ U_<0N>'
For g = (s), s> =1 and A € G =I'¢(N), put
AS = SAS L =UtA U

(2.1)

(2.2)
One checks that g acts on G. We also put
(2.3) A=A =U'AU "

Denoting by Z(g, G) the set of all cocycles in (g, G),
we have, from (2.2), (2.3),

(2.4) Z(g,G) = {A € G; A" = A}
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Now put
(2.5)
Then, we find that

F=p(A) =AU, Ac Z(g,G).

(2.6) A*=A+= 'F=F

From (2.4), (2.5), (2.6) we see that the map ¢ iden-
tifies the set Z(g,G) of cocycles with the following
set F(N) of symmetric matrices:

(2.7) F(N) = {F = (;b %i) cac— Nb? = 1}.

Furthermore, note that the (right) action A — T*AT
of T € To(N) on Z(g,G) corresponds to the (right)
action F +— Ty FTy of Ty = U'TU € T°(N) on
F(N) under the identification of Z(g, @) and F(N)
by the map ¢. In other words, we have, via ¢,

(2.8) H(g,To(N)) = F(N)/T*(N).

As usual, for a negative integer D, we denote by
®(D) the set of all integral primitive positive definite
binary quadratic forms of discriminant D:

(2.9)  ®(D) = {f = ax® + bay + cy*; (a,b,c) = 1,

a>0, b> —4ac =D < 0}.

We identify f € ®(D) with the half-integral matrix

a b/2
(6/2 . ), as usual.

From now on we assume that
N #£ 3 (mod 4), i.e., N=0,1 or 2 (mod 4).
Back to the set F(N) of (2.7), we set

FT(N)={F € F(N); a> 0}
F-(N)={F e F(N); a<0}
={-F;F € F*(N)}.

(2.10)
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Then F(N) is a disjoint sum of F(N) and F~(N),
and each summand is stable under the the action of
I'%(N). Hence the following definition makes sense:

(2.11)  H®(g,To(N)) = F*(N)/T(N), e =+,
and we have
£H (g, To(N)) = 28(F*(N)/T°(N)).

In view of (2.7), (2.9), (2.10), the set F*(N) may be
considered as

FFH(N) ={f = ar? + 2Nbzy + Ncy?;
a > 07Df = —4N},

and so, by (2.9), (2.13), we have
FH(N) C ®(—4N).?)

(2.12)

(2.13)

(2.14)

Consequently, from (2.8), (2.11), we see that the
embedding (2.14) induces naturally a map
m: H*(9,To(N)) = F*(N)/T°(N)
— ®(—4N)/SLs(Z).

(2.15)

3. m is injective. We shall prove that the
map 7 in (2.15) is injective. So, for a matrix (or a
quadratic form) F € F*(N), we denote by [F], [F]°,
the class of F' modulo SLy(Z), T°(N), respectively.
We must then show that [F] = [G], F,G € FT(N),
= [F]° = [G]°. Now the assumption says that

(3.1) G ="'TFT for some T € SLy(Z).
If we put
(3.2) I= <(cz Z)’ F= (]\Zf)q %g) G= <J\1;v ]]\\;13}))’
ad—bc=1, pr —N¢®> =1, vw — Nv? =1,
then, (3.1) means that
(3.3)<a0) (p Nq) _ ( U N’U) (d —b).
bd) \Nq Nr Nv Nw/ \—c a
On taking (3.3) modulo N we have
(Zﬁ 8) = (dgc —(l))u) (mod N)
and hence bp = 0 (mod N). As pr =1 (mod N) by

(3.2), we have b = 0 (mod N), i.e., T € T°(N), or
[FJO = [F]0 0

*) It is easy to verify that every form in F+ (N) is primitive
whenever N # 3(mod 4). For N = 3(mod 4), this is not true:
eg, N=3,a=c=2,b=1, f =2x2 + 6zy + 6y2. One finds
similar nonprimitive forms for any N = 3(mod 4).

**) As for basic facts on orders see [2, §7, §8].
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4. missurjective. Let = F(x,y) = ax?+
2Nbry + Ney? be a quadratic form in FT(N) for
N # 3 (mod 4). The discriminant of F'is D = —4N.
Call 7 the root of F(x,1) = ax? + 2Nbx + Nc = 0
in the upper half plane. Then ar = —bN + v/—N is
an algebraic integer in O with K = Q(v/—N). We
put

(4.1) O(N)=[1,ar]| =Z + a7Z,

which is an order of the ring Ok. The index f =
[Ok : O(N)] is the conductor of O(N). The dis-
criminant of O(N) becomes D = —4N above. We
have the equality: D = —4N = f2dx where dy is
the discriminant of K. If we put

(4.2) wi = HTVOK +2‘ dc
then we have
(4.3) Ok =[l,wk], O(N)=11, fwg].

In what follows, let O = O(N) C Ok with con-
ductor f.**) We denote by I(O) the group of proper
fractional O-ideals, by P(O) the subgroup of princi-
pal O-ideals and put C(O) = I(0)/P(0O), the ideal
class group of the order @. On the other hand, we set
C(D) = ®(D)/SL2(Z), the form class group for the
discriminant D = —4N. There is an isomorphism

(4.4) (D) = C(0)

which is induced by sending the quadratic form az?+
bry + cy? in ®(D) to the proper ideal [a,h + v/—N]|
C O, with b = 2h.

Next, let 1(O, f) be the subgroup of I(Q) gener-
ated by ideals prime to f, P(O, f) be the subgroup
of I(O, f) generated by principal ideals a@ where
a € O has the norm prime to f.

Finally, let Ik (f) be the subgroup of the group
of fractional Ok-ideals I generated by ideals prime
to f, Pk z(f) be the subgroup of I'x(f) generated by
principal ideals of the form aOf, where a € Ok sat-
isfies @ = a (mod fOk) for some integer a relatively
prime to f. Then there are natural isomorphisms

C(0) = I1(0, f)/P(O, f)
= I (f)/Prz(f),

where the second isomorphism is the inverse one in-
duced by the map:

(4.6) [a,b+ wk] — [a, f(b+ wk)]
from Ix(f) to I(O, f).

(4.5)
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Consequently we end up with the isomorphism
(4.7) C(=4N) = Ik (f)/Prz(f)

induced by F = az? + bxy + cy? — [a, —h + vV/—N],
b= 2h.

We are now ready to prove that 7 is surjective.
So take any form F = az? + bry + cy* € ®(—4N).
By (4.7), an ideal ap = [a, —h++/—N] in I (f) cor-
responds to F. Let p = [p,7 + v/—N] be a prime
ideal in Ik (f) which is congruent to arp modulo
Pk 7(f). The existence of such a p is guaranteed by
the Cebotarev density theorem. Since p is an ideal,
we have

(4.8) p| Norm(r + V=N) =r° + N.

Choose u such that —r = Nu (mod p). In view of
(4.8), we have N?u? = 7> = —N (mod p), hence
P | 1+ Nu? as pf N. Consequently

(4.9) p=[p,r+vV—=N]=[p,—Nu+V—N].

Using v such that pv = 14+ Nu?, put G = pa? +
2Nuzy + Nvy?. Then Dg = (2Nu)? — 4pNv =
AN?u? — 4N(1 + Nu?) = —4N, hence G € F*(N)
and G ~ F. Since 7([G]) = [p], we see from (4.7),
(4.9) that 7 is surjective. []

Summarizing arguments in 3 and 4 up to here,
we obtain

(4.10) Theorem. Let N be a positive inte-
ger = 3 (mod4), m be the map HT(g,Tq(N)) =
FHN)/TOUN) — C(—AN) = &(~AN)/SLa(Z)
given in (2.15). Then w is a bijection. In particular,
the cohomology set HY(g,To(N)) acquires a struc-
ture of a finite abelian group isomorphic to the form
class group of discriminant —4N .
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From (2.12), (4.10), we have

(4.11) Theorem. Notation being as before,
8H(g,To(N)) = 2h(—4N) where h(—4N) means the
class number of the order O(N) ((4.1)).

5. Examples. (5.1) Assume that the posi-
tive integer N # 3 (mod 4) is square free. Hence
N =1,2 (mod 4). Since —N = 2,3 (mod 4), dx =
—4N, K = Q(v/—N). Let O(N) be the order of Ok
n (4.1). As the discriminant D of O(N) is —4N, we
see that O(N) = Ok and hence h(—4N) = hg, the
ordinary class number of K.

(5.2) Let p be a prime number = 1 (mod 4) and
N=p**1 k> 0. Then K =Q(v-N)=Q(v/=p),
dg = —4p. Let D be as before the discriminant of
the order O(N). Then D = —4N = f2dx. Hence
we find f = p*. We have O} = O(N)* = {£1}. By
a well-known formula on class numbers of orders, we
have

h(—4N) = hx f (1 — (Cl;) p1> = pFhi

and we find

§H (g, Do(p** 1))
pk

where gx shows the dependence of the group g on k.

= 2hg for all k£ > 0,
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