Greenberg's conjecture for Dirichlet characters of order divisible by p

By Takae Tsujı
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8914

(Communicated by Shokichi Iyanaga, m. J. A., April 12, 2001)

Abstract

Fix an odd prime number p. For an even Dirichlet character χ, it is conjectured that the Iwasawa λ-invariant $\lambda_{p, \chi}$ related to the χ-part of ideal class group is zero ([5], [2]). In this note, we show (under some assumptions) that there exist infinitely many characters χ of order divisible by p for which the conjecture is true by using Kida's formula ([6]).

Key words: Iwasawa theory; Greenberg's conjecture; Kida's formula.

For a prime number p and a number field k, let k_{∞} / k be the cyclotomic \mathbf{Z}_{p}-extension with its n-th layer k_{n}. We denote by A_{n} the p-Sylow subgroup of the ideal class group of k_{n} for each $n \geq 0$ and put $X_{\infty}=\lim A_{n}$ where the projective limit is taken with respect to the relative norms. It is conjectured that X_{∞} is a finite abelian group if k is totally real([2], [5, p. 316]), which is often called Greenberg's conjecture.

When k is a real abelian field, decomposing X_{∞} by the action of $\Delta=\operatorname{Gal}\left(k_{\infty} / \mathbf{Q}_{\infty}\right)$, we can formulate Greenberg's conjecture for (p, χ) for each character χ of Δ (see below). In [7], when the order of χ is divisible by p and χ satisfies some assumptions, the author gave a sufficient (but not necessary) condition for the conjecture for (p, χ) to be true (Proposition 1). In this note, we will rewrite this sufficient condition by using Kida's formula for p-adic L-function proved by Sinnott [6]. Furthermore, we will show that there exist infinitely many characters χ which satisfy the condition (Proposition 5).

In the following, we fix an odd prime number p. Let χ be a $\overline{\mathbf{Q}}_{p}^{\times}$-valued nontrivial even primitive Dirichlet character of the first kind, i.e. the conductor of χ is not divisible by p^{2}. Let k be the real abelian field corresponding to χ. Since χ is of the first kind, we have $\operatorname{Gal}(k / \mathbf{Q}) \cong \Delta$, and hence X_{∞} becomes a $\mathbf{Z}_{p}[\Delta]$-module. We define V^{χ} by

$$
V^{\chi}:=\left\{x \in X_{\infty} \otimes_{\mathbf{z}_{p}} \Phi \mid \delta x=\chi(\delta) x, \forall \delta \in \Delta\right\}
$$

where Φ denotes the field generated by the values of χ over \mathbf{Q}_{p}. It is known that V^{χ} is a finite dimensional Φ-vector space (cf. [5, Theorem 5]). We put $\lambda_{\chi}=\lambda_{p, \chi}=\operatorname{dim}_{\Phi} V^{\chi}$. We know that X_{∞} is finitely generated over \mathbf{Z}_{p} ([1]). Then Greenberg's

[^0]conjecture for (p, χ) is stated as follows:
$$
\lambda_{\chi}=0
$$

Let $L_{p}(s, \chi)$ denote the Kubota-Leopoldt p-adic L function associated to χ. By Iwasawa, it is shown that there exists a unique power series $g_{\chi}(T)$ with coefficients in \mathcal{O}, the integer ring of Φ, such that

$$
g_{\chi}\left((1+p)^{s}-1\right)=L_{p}(1-s, \chi)
$$

(cf. [9, Theorem 7.10]). By using FerreroWashington theorem $([1])$, we can define $\lambda_{\chi}^{*}=$ $\min \left\{n \mid a_{n} \in \mathcal{O}^{\times}\right\}$, where $g_{\chi}(T)=\sum a_{n} T^{n}$. It follows from the Iwasawa main conjecture proved in [3] that

$$
\lambda_{\chi} \leq \lambda_{\chi}^{*}
$$

(cf. e.g. [7, §3]). Hence, if $\lambda_{\chi}^{*}=0$, we clearly have $\lambda_{\chi}=0$.

When $\chi \omega^{-1}(p)$ is in $\boldsymbol{\mu}_{p^{\infty}}$, the group of all p power roots of unity, we have $\lambda_{\chi}^{*} \geq 1$ by the formula for $L_{p}(0, \chi)$ (cf. [9, Theorem 5.11]) where ω denotes the Teichmüller character. However, Ichimura and Sumida showed that $\lambda_{\chi} \leq \lambda_{\chi}^{*}-1$ in the case where $\chi \omega^{-1}(p)=1\left(\left[4,\left(5_{B}^{\prime}\right)\right.\right.$ p. 724 , Remark 5] $]$. Hence, in this case, we have $\lambda_{\chi}=0$ if $\lambda_{\chi}^{*}=1$. For other cases, the author proved the following:

Proposition 1 [7, Proposition 2.3]. Assume that $\chi \omega^{-1}(p) \in \boldsymbol{\mu}_{p^{\infty}}$ and $\chi \omega^{-1}(p) \neq 1$. We further assume that $\lambda_{\chi}^{*}=1$ or that $B_{1, \chi \omega^{-1}}$ is a p-unit. Then we have $\lambda_{\chi}=0$. Here $B_{1, \chi \omega^{-1}}$ denotes the generalized first Bernoulli number.

In this note, we concentrate on the case where $\chi \omega^{-1}(p) \in \boldsymbol{\mu}_{p^{\infty}}$ and $\chi \omega^{-1}(p) \neq 1$, and consider the condition that $\lambda_{\chi}^{*}=1$ (resp. $B_{1, \chi \omega^{-1}}$ is a p-unit).

We write

$$
\chi=\psi \rho
$$

where the order of ψ (resp. ρ) is prime to p (resp. a p-power). We note that if $\chi \omega^{-1}(p) \in \boldsymbol{\mu}_{p^{\infty}}$ and $\chi \omega^{-1}(p) \neq 1$, we have $\psi \omega^{-1}(p)=1$ and $\rho(p) \neq 1$ (in particular ρ is non-trivial). Then the following is known:

Lemma 2. Let χ be an even Dirichlet character of the first kind. We write $\chi=\psi \rho$ as above. Then the following hold:
(i) (Sinnott [6, Theorem 2.1]) Let N be the number of places v on \mathbf{Q}_{∞} satisfying $\rho(l)=0$ and $\psi \omega^{-1}(l)=1$ where l is the prime number below v. Then we have

$$
\lambda_{\chi}^{*}=\lambda_{\psi}^{*}+N .
$$

(ii) We have the following congruence
$B_{1, \chi \omega^{-1}} \equiv\left(\prod_{l}\left(1-\psi \omega^{-1}(l)\right)\right) B_{1, \psi \omega^{-1}} \quad \bmod \pi$
where l runs over all prime numbers such that $\rho(l)=0$ and π denotes a prime element of \mathcal{O}.
Proof of (ii). Although we can show the assertion (ii) in the same way as in the proof of (i) in [6], we give its proof for the convenience of the reader. For the properties of the generalized Bernoulli number, see $[9, \S 4.1]$. Let m be the conductor of $\chi \omega^{-1}$. We have

$$
\begin{aligned}
B_{1, \chi \omega^{-1}} & =\frac{1}{m} \sum_{a=1}^{m} \chi \omega^{-1}(a) a \\
& =\frac{1}{m} \sum_{\substack{a=1 \\
(a, m)=1}}^{m} \psi \omega^{-1}(a) \rho(a) a \\
& \equiv \frac{1}{m} \sum_{\substack{a=1 \\
(a, m)=1}}^{m} \psi \omega^{-1}(a) a \quad \bmod \pi .
\end{aligned}
$$

On the other hand, we have
$\frac{1}{m} \sum_{\substack{a=1 \\(a, m)=1}}^{m} \psi \omega^{-1}(a) a=\left(\prod_{l \mid m}\left(1-\psi \omega^{-1}(l)\right)\right) B_{1, \psi \omega^{-1},}$,
where l runs over all prime divisors of m. This proves the assertion (ii).

By the above lemma, we can rewrite the sufficient condition for $\lambda_{\chi}=0$ in Proposition 1 as follows:

Lemma 3. Assume $\chi \omega^{-1}(p) \in \boldsymbol{\mu}_{p^{\infty}}$ and $\chi \omega^{-1}(p) \neq 1$. We write $\chi=\psi \rho$ as above. The following hold:
(i) $\lambda_{\chi}^{*}=1$ if and only if $\lambda_{\psi}^{*}=1$ and $\psi \omega^{-1}(l) \neq 1$ for any prime number l such that $\rho(l)=0$.
(ii) $B_{1, \chi \omega^{-1}}$ is a p-unit if and only if $B_{1, \psi \omega^{-1}}$ is a p-unit and $\psi \omega^{-1}(l) \neq 1$ for any prime number l such that $\rho(l)=0$.
Using Chebotarev density theorem, we will show the following:

Lemma 4. Let ψ be an even Dirichlet character of the first kind of order prime to p which is distinct from a power of ω. Let r and s be integers such that $r \geq s \geq 0$ and $r \geq 1$. Then there exist infinitely many characters ρ such that
$\left(\mathrm{a}^{\prime}\right) \rho$ is of the first kind of order p^{r},
(b^{\prime}) $\rho(p)$ is a primitive p^{s}-th root of unity,
(c') $\psi \omega^{-1}(l) \neq 1$ for any prime number l such that $\rho(l)=0$.
By Proposition 1, Lemmas 3 and 4, we obtain the following.

Proposition 5. Let ψ be an even Dirichlet character of the first kind of order prime to p such that $\psi \omega^{-1}(p)=1$ and $r \geq s \geq 1$ integers. We assume that $\lambda_{\psi}^{*}=1$ or $B_{1, \psi \omega^{-1}}$ is a p-unit. Then there exist infinitely many even characters χ such that
(a) $\chi=\psi \rho$ with a character ρ of the first kind of order p^{r},
(b) $\chi \omega^{-1}(p)$ is a primitive p^{s}-th root of unity,
(c) $\lambda_{\chi}=0$.

Indeed, let ρ be a character satisfying the conditions $\left(\mathrm{a}^{\prime}\right),\left(\mathrm{b}^{\prime}\right)$ and $\left(\mathrm{c}^{\prime}\right)$ in Lemma 4 and put $\chi=\psi \rho$. Then the condition (b^{\prime}) implies (b) in Proposition 5. Combining the condition (c^{\prime}), the assumption that $\lambda_{\psi}^{*}=1$ (resp. $B_{1, \psi \omega^{-1}}$ is a p-unit) and Lemma 3, we have $\lambda_{\chi}^{*}=1$ (resp. $B_{1, \chi \omega^{-1}}$ is a p-unit). Thus, by Proposition 1, we obtain $\lambda_{\chi}=0$.

Proof of Lemma 4. We give a proof when $s \geq 1$. Let F be the abelian field corresponding to $\psi \omega^{-1}$, and we put $L=\mathbf{Q}\left(\zeta_{p^{r}}, p^{1 / p^{r-s+1}}\right)$ and $L^{\prime}=\mathbf{Q}\left(\zeta_{p^{r}}, p^{1 / p^{r-s}}\right)$. Here ζ_{m} denotes a primitive m-th root of unity for any integer $m \geq 1$. By the assumption that ψ is distinct from a power of ω, we have $F \not \subset L^{\prime}$. Thus we can take $\delta \in \operatorname{Gal}(F L / \mathbf{Q})$ satisfying $\left.\delta\right|_{F} \neq 1,\left.\delta\right|_{L} \neq 1$ and $\left.\delta\right|_{L^{\prime}}=1$. Let \mathfrak{l} be a prime of $F L$ such that the Frobenius $\delta_{\mathfrak{l}}$ of \mathfrak{l} in $\operatorname{Gal}(F L / \mathbf{Q})$ coincides with δ and l the prime number below \mathfrak{l}. Chebotarev density theorem guarantees the existence of infinitely many such l. By $\left.\delta_{\mathfrak{l}}\right|_{L} \neq 1$ and $\left.\delta_{\mathfrak{r}}\right|_{L^{\prime}}=1$, we obtain $l \equiv 1 \bmod p^{r}$, $p \in\left((\mathbf{Z} / l \mathbf{Z})^{\times}\right)^{p^{r-s}}$ and $p \notin\left((\mathbf{Z} / l \mathbf{Z})^{\times}\right)^{p^{r-s+1}}$, that is, $l \equiv 1 \bmod p^{r}$ and $p^{r-s} \|\left[(\mathbf{Z} / l \mathbf{Z})^{\times}:\langle p\rangle\right]$. Let $k^{(l)}$
be the cyclic extension of \mathbf{Q} of degree p^{r} contained in $\mathbf{Q}\left(\zeta_{l}\right)$ and ρ_{l} a Dirichlet character corresponding to $k^{(l)}$. Then ρ_{l} satisfies ($\left.\mathrm{a}^{\prime}\right)$. By using a canonical isomorphism from $(\mathbf{Z} / l \mathbf{Z})^{\times}$to $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{l}\right) / \mathbf{Q}\right)$, we have $p^{r-s} \|\left[(\mathbf{Z} / l \mathbf{Z})^{\times}:\langle p\rangle\right]$ if and only if the order of the decomposition group of p in $\operatorname{Gal}\left(k^{(l)} / \mathbf{Q}\right)$ is p^{s}, i.e., $\rho_{l}(p)$ is a primitive p^{s}-th root of unity. Hence ρ_{l} satisfies (b^{\prime}). On the other hand, by $\left.\delta_{l}\right|_{F} \neq 1$, we have $\psi \omega^{-1}(l) \neq 1$, that is, ρ_{l} satisfies $\left(\mathrm{c}^{\prime}\right)$.

For the case where $s=0$, one can show the assertion as above.

In conclusion, we remark on the case $\chi \omega^{-1}(p) \notin$ $\boldsymbol{\mu}_{p^{\infty}}$ (resp. $\chi \omega^{-1}(p)=1$). It is known and follows immediately from the formula for $L_{p}(0, \chi)$ (cf. [9, Theorem 5.11]) that $\lambda_{\chi}^{*}=0$ if and only if $B_{1, \chi \omega^{-1}}$ is a p-unit when $\chi \omega^{-1}(p) \notin \boldsymbol{\mu}_{p^{\infty}}$. Further, we can show that $\lambda_{\chi}=0$ if $B_{1, \chi \omega^{-1}}$ is a p-unit even when $\chi \omega^{-1}(p)=1$ (cf. e.g. [8]). Thus, by Lemmas 2, 4 and the comment above Proposition 1, we obtain the following:

Proposition 6. Let ψ be an even Dirichlet character of the first kind of order prime to p which is distinct from a power of ω and $r \geq 1$ an integer. We assume that $B_{1, \psi \omega^{-1}}$ is a p-unit (resp. $\lambda_{\psi}^{*}=1$ or $B_{1, \psi \omega^{-1}}$ is a p-unit) if $\psi \omega^{-1}(p) \neq 1$ (resp. $\left.\psi \omega^{-1}(p)=1\right)$. Then there exist infinitely many even characters χ such that
(a) $\chi=\psi \rho$ with a character ρ of the first kind of order p^{r},
(b) $\chi \omega^{-1}(p)=1$ if $\psi \omega^{-1}(p)=1$,
(c) $\lambda_{\chi}=0$.

Acknowledgements. I would like to thank Professor Humio Ichimura for various advice and for carefully reading the manuscript. I would also like to thank Dr. Yoshitaka Hachimori who gave me a hint of the proof of Lemma 4.

References

[1] Ferrero, B., and Washington, L. C.: The Iwasawa invariant μ_{p} vanishes for abelian number fields. Ann. of Math., 109, 377-395 (1979).
[2] Greenberg, R.: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263284 (1976).
[3] Mazur, B., and Wiles, A.: Class fields of abelian extensions of Q. Invent. Math., 76, 179-330 (1984).
[4] Ichimura, H., and Sumida, H.: On the Iwasawa invariants of certain real abelian fields II. Internat. J. Math., 7, 721-744 (1996).
[5] Iwasawa, K.: On \mathbf{Z}_{ℓ}-extension of algebraic number fields. Ann. of Math., 98, 246-326 (1973).
[6] Sinnott, W.: On p-adic L-functions and the Riemann-Hurwitz genus formula. Compositio Math., 53, 3-17 (1984).
[7] Tsuji, T.: On the Iwasawa λ-invariants of real abelian fields. (2000) (preprint).
[8] Tsuji, T.: On Iwasawa λ-invariants for odd Dirichlet characters (2001) (in preparation).
[9] Washington, L. C.: Introduction to Cyclotomic Fields. Grad. Texts in Math., vol. 83, Springer, Berlin-Heidelberg-New York (1982).

[^0]: 2000 Mathematics Subject Classification. Primary 11R23.

