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Prime geodesic theorem via the explicit formula of Ψ for hyperbolic 3-manifolds
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Abstract: We obtain a lower bound for the error term of the prime geodesic theorem for
hyperbolic 3-manifolds. Our result is Ω±(x(log log x)1/3/ log x). We also generalize Sarnak’s upper
bound O(x(5/3)+ε) to compact manifolds.

Key words: Lower bound; prime geodesic theorem; explicit formula.

1. Introduction. To estimate the error
term of the prime geodesic theorem is one of central
subjects in the spectral theory of hyperbolic man-
ifolds. For a (d + 1)-dimensional hyperbolic mani-
fold with Γ being the fundamental group, the prime
geodesic theorem is

πΓ(x) = li(xd) +
M∑

n=1

li(xsn) + (error),(1.1)

where πΓ(x) is the number of prime geodesics P

whose length l(P ) satisfies that N(P ) := el(P ) ≤
x, and s1, . . . , sM are the zeros of the Selberg zeta
function Z(s) in the interval (d/2, d).

In this paper, we give estimates of the error term
in (1.1) for 3-dimensional hyperbolic manifolds. The
main theorem is as follows:

Theorem 1.1. When Γ ⊂ PSL(2,C) is a co-
compact subgroup, or a cofinite subgroup satisfying
that

∑
γn>0 x

βn−1/γn
2 = O(1/(1 + (log x)3)) where

βn + iγn are poles of the scattering determinant,

πΓ(x) = li(x2) +
M∑

n=1

li(xsn) + Ω±

(
x(log log x)1/3

log x

)
as x→∞.

The conjectural exponent of x in the error term
in (1.1) is d/2. Theorem 1.1 gives a sharp estimate
in that sense.

Remark 1. Theorem 1.1 is a generalization of
the result in Hejhal [5], in which he obtained a lower
bound in 2-dimensional cases i.e. d = 1.

Remark 2. The assumption in Theorem 1.1
for noncocompact cases is satisfied by Bianchi groups
Γ associated to imaginary quadratic number fields
K = Q(

√−D), i.e.
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Γ = ΓD = PSL(2, OK)

=
{(

a b

c d

) ∣∣∣∣ a, b, c, d ∈ OK , ad− bc = 1
}/

{±1},

where OK is the ring of integers of K.
2. Selberg zeta function. We first intro-

duce the Selberg zeta function of Γ for a 3-
dimensional hyperbolic manifold.

Throughout this paper we put G to be
PSL(2,C) and Γ to be a cofinite subgroup of G. Let
j be an element in the quaternion field which satisfies
j2 = −1, ij = −ji, and let H be the 3-dimensional
hyperbolic space:

H := {v = z + yj | z = x1 + x2i ∈ C, y > 0}
with the Riemannian metric

dv2 =
dx1

2 + dx2
2 + dy2

y2
.

It induces a hyperbolic distance d(v, v′) given by

cosh d(v, v′) =
|z − z′|2 + y2 + y′2

2yy′
,

where v = z + yj and v′ = z′ + y′j. The volume
measure is given by

dx1dx2dy

y3
.

The group PSL(2,C) acts on H transitively by(
a b

c d

)
(v) := (av + b)(cv + d)−1

=
(az + b)(cz + d) + ac̄y2 + yj

|cz + d|2 + |c|2y2
.

The Laplacian for H is defined by

∆ := −y2

(
∂2

∂x1
2

+
∂2

∂x2
2

+
∂2

∂y2

)
+ y

∂

∂y
.



No. 7] Prime geodesic theorem 131

We denote the eigenvalues of ∆ by 0 = λ0 < λ1 ≤
λ2 ≤ · · · ≤ λM ≤ 1 < λM+1 · · · .

For conjugacy classes we give the classification.
Definition 2.1. An element P ∈ Γ − {1} is

called
parabolic iff | tr(P )| = 2 and tr(P ) ∈ R,
hyperbolic iff | tr(P )| > 2 and tr(P ) ∈ R,
elliptic iff | tr(P )| < 2 and tr(P ) ∈ R,

and loxodromic in all other cases. An element of
PSL(2,C) is called parabolic, elliptic, hyperbolic,
loxodromic if its preimages in SL(2,C) have this
property. A conjugacy class {P} in Γ is called hy-
perbolic, elliptic, parabolic if each P in the class has
this property.

The norm of a hyperbolic or loxodromic element
P is defined by N(P ) = |a(P )|2, if a(P ) ∈ C is the
eigenvalue of P ∈ G such that |a(P )| > 1.

Definition 2.2. An element P ∈ Γ − {1} is
called primitive iff it is not an essential power of any
other element. A conjugacy class {P} in Γ is called
primitive if each P in the class has this property.

For every hyperbolic matrix P ∈ Γ there exist
exactly one primitive hyperbolic element P0 ∈ Γ and
exactly one n ∈ N such that P = P0

n. We recognize
that πΓ(x) in Section 1 is the number of P0 which
is primitive hyperbolic or loxodromic and satisfies
N(P0) ≤ x.

Definition 2.3. For Re(s) > 2, the Selberg
zeta function for Γ is defined by

Z(s) :=
∏
{P0}

∏
(k,l)

(1 − a(P0)−2ka(P0)
−2l

N(P0)−s),

where the product on {P0} is taken over all primitive
hyperbolic or loxodromic conjugacy classes of Γ, and
(k, l) runs through all the pairs of positive integers
satisfying the following congruence relation: k ≡ l

(mod m(P0)) with m(P ) the order of the torsion of
the centralizer of P .

For the Selberg zeta function, Elstrodt,
Grunewald and Mennicke proved the following
Lemma.

Lemma 2.4 [2, p. 208, Lemma 4.2]. For Re(s)
> 2, we have

Z ′

Z
(s) =

∑
{P}

N(P ) logN(P0)
m(P )|a(P ) − a(P )−1|2N(P )−s,

where {P} runs through the hyperbolic or loxodromic
conjugacy classes of Γ and P0 is a primitive element
associated with P .

By comparing with the von-Mangoldt function
in the logarithmic derivative of the Riemann zeta
function, the following definition is natural.

Definition 2.5. For a hyperbolic or loxo-
dromic element P of Γ, we define

ΛΓ(P ) :=
N(P ) logN(P0)

m(P )|a(P ) − a(P )−1|2 ,

and

ΨΓ(x) :=
∑
{P}

N(P )≤x

ΛΓ(P ),

where {P} runs through hyperbolic or loxodromic
classes of Γ and P0 is a primitive element associated
with P .

Then we have
Z ′

Z
(s) =

∑
{P}

ΛΓ(P )N(P )−s.

Theorem 1.1 can be shown by using the explicit
formula for Ψ2(x) :=

∫ x

1
Ψ1(t)dt, where Ψ1(x) :=∫ x

1
ΨΓ(t)dt. Though Hejhal [5] used the explicit for-

mula for Ψ1(x), in our case the order of Z(s) is three
and abundance of the zeros of Z(s) gives rise to a
difficulty concerning the estimate of Ψ1(x). We over-
came it by considering Ψ2(x).

3. Outline of proofs. In noncocompact but
cofinite cases, we have to consider the contribution
from parabolic classes and continuous spectra. Since
we can omit the contribution of the continuous spec-
tra under the assumption in Theorem 1.1, it suffices
to give proofs for cocompact cases.

We introduce the following property of Z(s) for
cocompact Γ. Let sn = 1 + itn and s̃n = 1 − itn be
the zeros of Z(s), where tn :=

√
λn − 1.

Proposition 3.1. We have

Z ′

Z
(s) =

1
s− 2

+
∑

|s−sn|<1

1
s− sn

+
∑

|s−s̃n|<1

1
s− s̃n

+O(|s|2 + 1),

where the sums are taken over sn and s̃n with
Re(sn) = 1.

This proposition can be deduced from the deter-
minant expression of Z(s) in [7, p. 766, Theorem 4.4]
and the functional equation in [2, p. 209, Corollary
4.4].

About the distribution of the imaginary parts of
the complex zeros of Z(s) for cocompact Γ, we have
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the following proposition.
Proposition 3.2 [2, p. 215, Theorem 5.6].

Suppose that T > 0, T �= tn, then for all n ≥ M +
1, the counting function N(T ) := �{n | n ≥ M +
1, tn < T} satisfies

N(T ) =
Vol(Γ\H)

6π2
T 3 +O(T 2) as T →∞,

where Vol(Γ\H) is the volume of the fundamental do-
main Γ\H.

Since we can express Ψ2(x) as

Ψ2(x) =
1

2πi

∫ c+∞i

c−∞i

xs+2

s(s+ 1)(s+ 2)
Z ′

Z
(s)ds,

by the standard method [6, p. 31, Theorem B], we
have the following theorem by Propositions 3.1 and
3.2.

Theorem 3.3. Let Ψ1(x) :=
∫ x

1
ΨΓ(t)dt.

Then we have

Ψ1(x) = αx+ βx log x+ α1

+
M∑

n=0

xsn+1

sn(sn + 1)
+

M∑
n=0

xs̃n+1

s̃n(s̃n + 1)

+
∑
tn≥0

xsn+1

sn(sn + 1)
+
∑
tn>0

xs̃n+1

s̃n(s̃n + 1)

with some constants α, β and α1, where sn = 1+ itn
and s̃n = 1− itn are the zeros of Z(s).

Under the notation in Theorem 3.3, we have a
relation between ΨΓ(x) and πΓ(x):

πΓ(x) −
(

M∑
n=0

li(xsn) +
M∑

n=0

li(xs̃n)

)

=
1

log x

{
ΨΓ(x) −

(
α+ β log x+ β +

M∑
n=0

xsn

sn

+
M∑

n=0

xs̃n

s̃n

)}
+O

(
x

log x

)
.

We reach Theorem 1.1 by estimating ΨΓ(x):

ΨΓ(x) = α+ β log x+ β +
M∑

n=0

xsn

sn

+
M∑

n=0

xs̃n

s̃n
+ Ω±

(
x(log log x)1/3

)
.

4. O-result. The upper estimates of the er-
ror term in (1.1) have been studied by many peo-
ple in the case of d = 1. For higher dimensional
cases, the only known result is Sarnak’s error term

O(x(5/3)+ε) in [10] for Γ = PSL(2, OK) with K be-
ing an imaginary quadratic field (�= Q(i),Q(

√−3))
of class number one. (Some conditional results are
obtained in [8].) We generalize Sarnak’s estimate to
cocompact groups and to general Bianchi groups by
using the ‘explicit formula’ of ΨΓ(x).

The explicit formula is as follows:
Theorem 4.1. Suppose that Γ is a cocompact

group or a Bianchi group. Let 1 ≤ T < x1/2. Then
we have

ΨΓ(x) =
1
2
x2 +

M∑
n=0

1
sn
xsn +

M∑
n=0

1
s̃n
xs̃n

+
∑

0<tn≤T

1
sn
xsn +

∑
0<tn≤T

1
s̃n
xs̃n +O

(
x2

T
log x

)
as x→ ∞, where sn = 1 + itn and s̃n = 1 − itn are
the zeros of Z(s) coming from discrete spectra.

Taking T = x1/3 gives

ΨΓ(x) =
1
2
x2 +

M∑
n=0

1
sn
xsn +

M∑
n=0

1
s̃n
xs̃n

+
∑

0<tn≤T

1
sn
xsn +

∑
0<tn≤T

1
s̃n
xs̃n +O(x(5/3)+ε).

From the relation

πΓ(x)− li(x2) =
∫ x

2

ΨΓ(u)du
u log2 u

+
2ΨΓ(x)− x2

2 log x

−
∫ x2

2

du

log2 u
+O(x),

we have the following theorem:
Theorem 4.2. When Γ ⊂ PSL(2,C) is a co-

compact subgroup or Γ = PSL(2, OK) with K an
imaginary quadratic field,

πΓ(x) = li(x2) +
M∑

n=1

li(xsn) +O(x(5/3)+ε)

as x→∞.
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