# A remark on rational octic reciprocity 

By Soonhak Kwon<br>Department of Mathematics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, S. Korea<br>(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 2002)


#### Abstract

We present a new type of rational octic reciprocity law, which is different from the one discovered by Williams.


Key words: Reciprocity; octic; power residue.

Let $p$ and $q$ be distinct primes congruent to 1 $(\bmod 8)$. Write

$$
p=a_{1}^{2}+b_{1}^{2}=a_{2}^{2}+2 b_{2}^{2}, \quad q=c_{1}^{2}+d_{1}^{2}=c_{2}^{2}+2 d_{2}^{2}
$$

where $a_{i}, b_{i}, c_{i}, d_{i}, i=1,2$ are integers and $a_{1}, c_{1}$ are odd. For a prime $r$ and an integer $a$, define $(a / r)_{4}=$ +1 if $a$ is a quartic residue $(\bmod r)$ and $(a / r)_{4}=-1$ otherwise. In a similar way, define $(a / r)_{8}$ and $(a / r)_{2}$. Assume $(p / q)_{4}=(q / p)_{4}=1$. A rational octic reciprocity law proved independently by Williams[5] and Wu[6] says

$$
\left(\frac{p}{q}\right)_{8}\left(\frac{q}{p}\right)_{8}=\left(\frac{a_{1} d_{1}-b_{1} c_{1}}{q}\right)_{4}\left(\frac{a_{2} d_{2}-b_{2} c_{2}}{q}\right)_{2} .
$$

Since $p, q \equiv 1(\bmod 8)$, we may also express $p$ and $q$ as

$$
p=a_{3}^{2}-2 b_{3}^{2}, \quad q=c_{3}^{2}-2 d_{3}^{2}
$$

for some integers $a_{3}, b_{3}, c_{3}, d_{3}$. Then a computational evidence says that the following statement is also true.

## Theorem.

$$
\left(\frac{p}{q}\right)_{8}\left(\frac{q}{p}\right)_{8}=\left(\frac{a_{1} d_{1}-b_{1} c_{1}}{q}\right)_{4}\left(\frac{a_{3} d_{3}-b_{3} c_{3}}{q}\right)_{2}
$$

It is our purpose to prove above statement. Note that, because of the existence of the fundamental unit $\epsilon=1+\sqrt{2}$, there are infinitely many choices of $a_{3}, b_{3}, c_{3}, d_{3}$. Also notice that $\left(\left(a_{1} d_{1}-b_{1} c_{1}\right) / q\right)_{2}=1$ by Burde's rational biquadratic reciprocity law. We will give two proofs of above theorem. The first proof uses Jacobi sum technique which is applied in the paper of Williams [5]. The second proof follows the idea of Helou[2], where he avoids Jacobi sum argument and uses Eisenstein's general octic reciprocity. Let $\zeta=\zeta_{8}$ be a primitive 8 th root of unity. We have

[^0]the cyclotomic field $\mathbf{Q}(\zeta)=\mathbf{Q}(\sqrt{2}, \sqrt{-1})$ and the group of units $\mathbf{Q}(\zeta)^{\times}=\langle\zeta, \epsilon\rangle$ where $\epsilon=1+\sqrt{2}$. The Galois group $\operatorname{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q})$ consists of the elements $\sigma_{s}$ with $\sigma_{s}(\zeta)=\zeta^{s}$ where $s=1,3,5,7$. We say $\alpha \in$ $\mathbf{Z}[\zeta]$ is primary if $\alpha \equiv 1(\bmod 2+2 \zeta)$. It is easy to see that for any $\alpha \in \mathbf{Z}[\zeta]$ with odd norm, there is a unit $u \in \mathbf{Q}(\zeta)^{\times}$such that $u \alpha$ is primary. There are infinitely many choices of such $u$ because $\epsilon^{4} \equiv 1$ $(\bmod 2+2 \zeta)$. To prove the theorem, we will use the property of primary primes above $p$ and $q$, which at first restricts the choices of $a_{i}, b_{i}, c_{i}, d_{i}, i=1,2,3$. However, it will be easily seen that the theorem is independent of such choices.

First proof. Let $\pi=\pi_{1} \in \mathbf{Z}[\zeta]$ be a primary prime above $p$. Letting $\pi_{s}=\sigma_{s}(\pi)$, we see that all $\pi_{s}$ are primary and $p=\pi_{1} \pi_{3} \pi_{5} \pi_{7}$. Let $\chi=\chi_{\pi}$ be the residue character $(\cdot / \pi)_{8}$ of order 8 on $\mathbf{F}_{p}$. Then we have the following well known relation between Gauss and Jacobi sums,

$$
G(\chi)^{8}=\chi(-1) p J(\chi, \chi) J\left(\chi, \chi^{2}\right) \cdots J\left(\chi, \chi^{6}\right)
$$

Also using the well known expression of Jacobi sums $J\left(\chi, \chi^{j}\right), j=1,2, \ldots, 6$, we have (see [4] or [5])

$$
G(\chi)^{8}=\pi_{1}^{7} \pi_{3}^{5} \pi_{5}^{3} \pi_{7}=p \pi_{1}^{6} \pi_{3}^{4} \pi_{5}^{2}
$$

From the observations $\zeta^{3}+\zeta=\sqrt{-2}, \zeta^{2}=\sqrt{-1}$ and $\zeta+\zeta^{-1}=\sqrt{2}$, we may write $\pi_{1} \pi_{3}=a_{2}+b_{2} \sqrt{-2}$, $\pi_{1} \pi_{5}=a_{1}+b_{1} \sqrt{-1}$ and $\pi_{1} \pi_{7}=a_{3}+b_{3} \sqrt{2}$. Then we get

$$
p=a_{1}^{2}+b_{1}^{2}=a_{2}^{2}+2 b_{2}^{2}=a_{3}^{2}-2 b_{3}^{2}
$$

Note that above integers $a_{1}, b_{1}, a_{2}, b_{2}$ may have different signs from the corresponding ones in the theorem. Also note that $a_{1} \equiv 1(\bmod 4)$ since $\pi$ is primary. Now from

$$
G(\chi)=\sum_{x=0}^{p-1} \chi(x) \exp (2 \pi x \sqrt{-1} / p)
$$

we find

$$
G(\chi)^{q-1} \equiv\left(\frac{q}{p}\right)_{8} \quad(\bmod q)
$$

Letting $\lambda$ be a primary prime above $q$ in $\mathbf{Q}(\zeta)$,

$$
\begin{aligned}
\left(\frac{q}{p}\right)_{8} & \equiv G(\chi)^{q-1} \equiv G(\chi)^{8\{(q-1) / 8\}} \quad(\bmod \lambda) \\
& \equiv\left(G(\chi)^{8} \pi_{7}^{8}\right)^{(q-1) / 8} \quad(\bmod \lambda) \\
& \equiv\left(p \pi_{1}^{6} \pi_{3}^{4} \pi_{5}^{2} \pi_{7}^{8}\right)^{(q-1) / 8} \quad(\bmod \lambda) \\
& \equiv\left(p^{3} \pi_{1}^{4} \pi_{3}^{2} \pi_{7}^{6}\right)^{(q-1) / 8} \quad(\bmod \lambda) \\
& \equiv\left(p \pi_{1}^{4} \pi_{3}^{2} \pi_{7}^{6}\right)^{(q-1) / 8} \quad(\bmod \lambda) \\
& \quad \text { because }\left(\frac{p}{q}\right)_{4}=1 \\
& \equiv\left(\frac{p}{q}\right)_{8}\left(\pi_{3} \pi_{7}\right)^{(q-1) / 4}\left(\pi_{1} \pi_{7}\right)^{(q-1) / 2} \quad(\bmod \lambda)
\end{aligned}
$$

Note that $\pi_{3} \pi_{7}=\sigma_{3}\left(\pi_{1} \pi_{5}\right)=a_{1}-b_{1} \sqrt{-1}$. Thus writing $\lambda \sigma_{5}(\lambda)=c_{1}-d_{1} \sqrt{-1}$ and using $\sqrt{-1} \equiv c_{1} d_{1}^{\prime}$ $\left(\bmod c_{1}-d_{1} \sqrt{-1}\right)$ with $d_{1} d_{1}^{\prime} \equiv 1(\bmod q)$, we have

$$
\left(\pi_{3} \pi_{7}\right)^{(q-1) / 4} \equiv\left(\frac{a_{1}-b_{1} \sqrt{-1}}{c_{1}-d_{1} \sqrt{-1}}\right)_{4} \quad(\bmod \lambda)
$$

where

$$
\begin{aligned}
& \left(\frac{a_{1}-b_{1} \sqrt{-1}}{c_{1}-d_{1} \sqrt{-1}}\right)_{4} \\
= & \left(\frac{a_{1}-b_{1} c_{1} d_{1}^{\prime}}{c_{1}-d_{1} \sqrt{-1}}\right)_{4} \\
= & \left(\frac{d_{1}}{c_{1}-d_{1} \sqrt{-1}}\right)_{4}\left(\frac{a_{1} d_{1}-b_{1} c_{1}}{c_{1}-d_{1} \sqrt{-1}}\right)_{4} \\
= & \left(\frac{d_{1}}{q}\right)_{4}\left(\frac{a_{1} d_{1}-b_{1} c_{1}}{q}\right)_{4} .
\end{aligned}
$$

Since $c_{1}-d_{1} \sqrt{-1}$ is primary, i.e. $c_{1} \equiv 1(\bmod 4)$, $d_{1} \equiv 0(\bmod 4)$, using a biquadratic reciprocity law, it is routine to check that $\left(d_{1} / q\right)_{4}=1$ (see [3], pp. $122-123)$. Also using the fact that $p, q \equiv 1(\bmod 8)$ and $(q / p)_{4}=1=(p / q)_{4}$, one easily deduce that the expression $\left(\left(a_{1}-b_{1} \sqrt{-1}\right) /\left(c_{1}-d_{1} \sqrt{-1}\right)\right)_{4}$ is independent of the signs of $a_{1}, b_{1}, c_{1}, d_{1}$. For example, $\left(\left(a_{1}-b_{1} \sqrt{-1}\right) /\left(c_{1}-d_{1} \sqrt{-1}\right)\right)_{4}\left(\left(a_{1}+b_{1} \sqrt{-1}\right) /\left(c_{1}-\right.\right.$ $\left.\left.d_{1} \sqrt{-1}\right)\right)_{4}=\left(p /\left(c_{1}-d_{1} \sqrt{-1}\right)\right)_{4}=(p / q)_{4}=1$. In a similar way, writing $\lambda \sigma_{7}(\lambda)=c_{3}+d_{3} \sqrt{2}$ and expressing $\sqrt{2}$ as $\sqrt{2} \equiv-c_{3} d_{3}^{\prime}\left(\bmod c_{3}+d_{3} \sqrt{2}\right)$ with $d_{3} d_{3}^{\prime} \equiv 1(\bmod q)$, we have

$$
\left(\pi_{1} \pi_{7}\right)^{(q-1) / 2} \equiv\left(\frac{a_{3}+b_{3} \sqrt{2}}{c_{3}+d_{3} \sqrt{2}}\right)_{2} \quad(\bmod \lambda)
$$

where

$$
\begin{aligned}
\left(\frac{a_{3}+b_{3} \sqrt{2}}{c_{3}+d_{3} \sqrt{2}}\right)_{2} & =\left(\frac{a_{3}-b_{3} c_{3} d_{3}^{\prime}}{c_{3}+d_{3} \sqrt{2}}\right)_{2} \\
& =\left(\frac{d_{3}}{c_{3}+d_{3} \sqrt{2}}\right)_{2}\left(\frac{a_{3} d_{3}-b_{3} c_{3}}{c_{3}+d_{3} \sqrt{2}}\right)_{2} \\
& =\left(\frac{d_{3}}{q}\right)_{2}\left(\frac{a_{3} d_{3}-b_{3} c_{3}}{q}\right)_{2} \\
& =\left(\frac{a_{3} d_{3}-b_{3} c_{3}}{q}\right)_{2}
\end{aligned}
$$

It is also clear that above expression is independent of the signs of $a_{3}, b_{3}, c_{3}, d_{3}$ because $(p / q)_{2}=1$ and $p, q \equiv 1(\bmod 8)$. Moreover, if $A_{3}, B_{3}, C_{3}, D_{3}$ are any integers satisfying

$$
p=A_{3}^{2}-2 B_{3}^{2}, \quad q=C_{3}^{2}-2 D_{3}^{2},
$$

then we have

$$
\begin{aligned}
& A_{3}+B_{3} \sqrt{2}= \pm \epsilon^{2 m}\left(a_{3} \pm b_{3} \sqrt{2}\right) \\
& C_{3}+D_{3} \sqrt{2}= \pm \epsilon^{2 n}\left(c_{3} \pm d_{3} \sqrt{2}\right)
\end{aligned}
$$

for some integers $m$ and $n$. Therefore

$$
\begin{aligned}
& \left(\frac{A_{3} D_{3}-B_{3} C_{3}}{q}\right)_{2} \\
= & \left(\frac{A_{3}+B_{3} \sqrt{2}}{C_{3}+D_{3} \sqrt{2}}\right)_{2}=\left(\frac{ \pm \epsilon^{2 m}\left(a_{3} \pm b_{3} \sqrt{2}\right)}{ \pm \epsilon^{2 n}\left(c_{3} \pm d_{3} \sqrt{2}\right)}\right)_{2} \\
= & \left(\frac{ \pm \epsilon^{2 m}\left(a_{3} \pm b_{3} \sqrt{2}\right)}{c_{3} \pm d_{3} \sqrt{2}}\right)_{2}=\left(\frac{a_{3}+b_{3} \sqrt{2}}{c_{3}+d_{3} \sqrt{2}}\right)_{2} \\
= & \left(\frac{a_{3} d_{3}-b_{3} c_{3}}{q}\right)_{2}
\end{aligned}
$$

Now, the proof is complete after we replace $\left(\pi_{3} \pi_{7}\right)^{(q-1) / 4}$ and $\left(\pi_{1} \pi_{7}\right)^{(q-1) / 2}$ by the corresponding residue symbols $\left(\left(a_{1} d_{1}-b_{1} c_{1}\right) / q\right)_{4}$ and $\left(\left(a_{3} d_{3}-\right.\right.$ $\left.\left.b_{3} c_{3}\right) / q\right)_{2}$ in the expression

$$
\left(\frac{q}{p}\right)_{8} \equiv\left(\frac{p}{q}\right)_{8}\left(\pi_{3} \pi_{7}\right)^{(q-1) / 4}\left(\pi_{1} \pi_{7}\right)^{(q-1) / 2} \quad(\bmod \lambda)
$$

Second proof. Let $n$ be a positive integer and let $p, q$ be distinct primes of $\mathbf{Q}$ which are congruent to $1(\bmod n)$. Note that such primes $p, q$ split completely in $\mathbf{Q}\left(\zeta_{n}\right)$. Let $\pi, \lambda$ be primes of $\mathbf{Q}\left(\zeta_{n}\right)$ lying above $p, q$. Suppose that $\pi=f\left(\zeta_{n}\right)$ for some polynomial $f \in \mathbf{Z}[x]$. Let $z$ be a rational integer such that $z \equiv \zeta_{n}(\bmod \lambda)$. Helou [2] found the following result and used it to give unified proofs of rational cubic, quartic and octic reciprocity laws.

## Proposition.

$$
\left(\frac{q}{\pi}\right)_{n}\left(\frac{p}{\lambda}\right)_{n}^{-1}=e(q, \pi)\left(\frac{m}{\lambda}\right)_{n}
$$

where $e(q, \pi)=(q / \pi)_{n}(\pi / q)_{n}^{-1}$ and $m$ is a rational integer determined by

$$
m \equiv \prod_{k} f\left(z^{k}\right)^{k^{\prime}-1} \quad(\bmod q)
$$

where the product runs through all $1 \leqq k<n$ with $\operatorname{gcd}(k, n)=1$ and $k k^{\prime} \equiv 1(\bmod n)$.

Helou applied above result for the case $n=8$ and derived

$$
\left(\frac{q}{\pi}\right)_{8}\left(\frac{p}{\lambda}\right)_{8}^{-1}=e(q, \pi)\left(\frac{f\left(z^{3}\right) f\left(z^{5}\right)^{2} f\left(z^{7}\right)^{3}}{\lambda}\right)_{4}
$$

Assuming $\pi$ is primary, he showed that $e(q, \pi)=$ 1 using Eisenstein's general octic reciprocity law. Therefore, since we have assumed $(q / p)_{4}=1=$ $(p / q)_{4}$,

$$
\begin{aligned}
\left(\frac{q}{p}\right)_{8}\left(\frac{p}{q}\right)_{8} & =\left(\frac{q}{\pi}\right)_{8}\left(\frac{p}{\lambda}\right)_{8} \\
& =\left(\frac{f\left(z^{3}\right) f\left(z^{5}\right)^{2} f\left(z^{7}\right)^{3}}{\lambda}\right)_{4}
\end{aligned}
$$

The right part of above expression can be rewritten as

$$
\begin{aligned}
& \left(\frac{f\left(z^{3}\right) f\left(z^{5}\right)^{2} f\left(z^{7}\right)^{3}}{\lambda}\right)_{4} \\
= & \left(\frac{f(z)^{4} f\left(z^{3}\right) f\left(z^{5}\right)^{2} f\left(z^{7}\right)^{3}}{\lambda}\right)_{4} \\
= & \left(\frac{p f(z)^{3} f\left(z^{5}\right) f\left(z^{7}\right)^{2}}{\lambda}\right)_{4} \\
= & \left(\frac{f(z) f\left(z^{5}\right)}{\lambda}\right)_{4}\left(\frac{f(z) f\left(z^{7}\right)}{\lambda}\right)_{2} .
\end{aligned}
$$

Now letting $\sigma_{s} \in \operatorname{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q}), \zeta=\zeta_{8}$ be as in the first proof, we have $\sigma_{s} f(\zeta)=f\left(\zeta^{s}\right)$ for $s=1,3,5,7$. Note that

$$
f(\zeta) f\left(\zeta^{5}\right)=f(\zeta) \sigma_{5}(f(\zeta))=\pi \sigma_{5}(\pi)=a_{1}+b_{1} \sqrt{-1}
$$

and

$$
f(\zeta) f\left(\zeta^{7}\right)=f(\zeta) \sigma_{7}(f(\zeta))=\pi \sigma_{7}(\pi)=a_{3}+b_{3} \sqrt{2} .
$$

Write also

$$
\lambda \sigma_{5}(\lambda)=c_{1}+d_{1} \sqrt{-1}, \quad \lambda \sigma_{7}(\lambda)=c_{3}+d_{3} \sqrt{2}
$$

Then the proof is complete as soon as we show

$$
\left(\frac{f(z) f\left(z^{5}\right)}{\lambda}\right)_{4}=\left(\frac{a_{1} d_{1}-b_{1} c_{1}}{q}\right)_{4}
$$

$$
\left(\frac{f(z) f\left(z^{7}\right)}{\lambda}\right)_{2}=\left(\frac{a_{3} d_{3}-b_{3} c_{3}}{q}\right)_{2}
$$

Since $\sqrt{-1} \equiv-c_{1} d_{1}^{\prime}\left(\bmod c_{1}+d_{1} \sqrt{-1}\right)$ where $d_{1} d_{1}^{\prime} \equiv 1(\bmod q)$,

$$
\begin{aligned}
\left(\frac{f(z) f\left(z^{5}\right)}{\lambda}\right)_{4} & =\left(\frac{f(\zeta) f\left(\zeta^{5}\right)}{\lambda}\right)_{4} \\
& =\left(\frac{a_{1}+b_{1} \sqrt{-1}}{c_{1}+d_{1} \sqrt{-1}}\right)_{4} \\
& =\left(\frac{a_{1}-b_{1} c_{1} d_{1}^{\prime}}{c_{1}+d_{1} \sqrt{-1}}\right)_{4} \\
& =\left(\frac{d_{1}}{c_{1}+d_{1} \sqrt{-1}}\right)_{4}\left(\frac{a_{1} d_{1}-b_{1} c_{1}}{c_{1}+d_{1} \sqrt{-1}}\right)_{4} \\
& =\left(\frac{d_{1}}{q}\right)_{4}\left(\frac{a_{1} d_{1}-b_{1} c_{1}}{q}\right)_{4} \\
& =\left(\frac{a_{1} d_{1}-b_{1} c_{1}}{q}\right)_{4}
\end{aligned}
$$

Since $\sqrt{2} \equiv-c_{3} d_{3}^{\prime}\left(\bmod c_{3}+d_{3} \sqrt{2}\right)$ where $d_{3} d_{3}^{\prime} \equiv 1$ $(\bmod q)$,

$$
\begin{aligned}
\left(\frac{f(z) f\left(z^{7}\right)}{\lambda}\right)_{2} & =\left(\frac{f(\zeta) f\left(\zeta^{7}\right)}{\lambda}\right)_{2} \\
& =\left(\frac{a_{3}+b_{3} \sqrt{2}}{c_{3}+d_{3} \sqrt{2}}\right)_{2} \\
& =\left(\frac{a_{3}-b_{3} c_{3} d_{3}^{\prime}}{c_{3}+d_{3} \sqrt{2}}\right)_{2} \\
& =\left(\frac{d_{3}}{c_{3}+d_{3} \sqrt{2}}\right)_{2}\left(\frac{a_{3} d_{3}-b_{3} c_{3}}{c_{3}+d_{3} \sqrt{2}}\right)_{2} \\
& =\left(\frac{d_{3}}{q}\right)_{2}\left(\frac{a_{3} d_{3}-b_{3} c_{3}}{q}\right)_{2} \\
& =\left(\frac{a_{3} d_{3}-b_{3} c_{3}}{q}\right)_{2}
\end{aligned}
$$

An obvious corollary is the following.
Corollary. Let p, q be distinct primes congruent to $1(\bmod 8)$. Write
$p=a_{2}^{2}+2 b_{2}^{2}=a_{3}^{2}-2 b_{3}^{2}, \quad q=c_{2}^{2}+2 d_{2}^{2}=c_{3}^{2}-2 d_{3}^{2}$,
where $a_{i}, b_{i}, c_{i}, d_{i}, i=2,3$ are integers. Suppose that $(p / q)_{4}=(q / p)_{4}=1$. Then

$$
\left(\frac{a_{2} d_{2}-b_{2} c_{2}}{q}\right)_{2}=\left(\frac{a_{3} d_{3}-b_{3} c_{3}}{q}\right)_{2}
$$

Acknowledgements. This work was supported in part by KRF 1999-015-DP0008.

## References

[1] Burde, K.: Ein rationales biquadratisches reziprozitätsgesetz. J. Reine Angew. Math., 235, 175-184 (1969).
[ 2 ] Helou, C.: On rational reciprocity. Proc. Amer. Math. Soc., 108, 861-866 (1990).
[ 3 ] Ireland, K., and Rosen, M.: A Classical Introduction to Modern Number Theory. Springer, New York (1990).
[ 4 ] Lemmermeyer, F.: Reciprocity Laws: from Euler to Eisenstein. Springer, New York (2000).
[5] Williams, K.: A rational octic reciprocity law. Pacific J. Math., 63, 563-570 (1976).
[6] Wu, P.: A rational reciprocity law. Ph. D. thesis, Univ. Southern California (1975).


[^0]:    2000 Mathematics Subject Classification. Primary 11A15, 11R04.

