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Abstract:
the one discovered by Williams.

Key words:

Let p and ¢ be distinct primes congruent to 1
(mod 8). Write

p=ai+bi =a; +2b5, gq=ci+di=c+2d3,

where a;, b;, ¢;, d;, i = 1, 2 are integers and a4, ¢; are
odd. For a prime r and an integer a, define (a/r)y =
+1if a is a quartic residue (mod r) and (a/r)y = —1
otherwise. In a similar way, define (a/r)s and (a/r)s.
Assume (p/q)s = (q¢/p)s = 1. A rational octic reci-
procity law proved independently by Williams[5] and
Wu[6] says

(5), (). (#557), (=2=2)
q/)8 \P/g q 4 q 2

Since p, ¢ = 1 (mod 8), we may also express p and ¢
as

p=a§—2b§, qzc%—?d%,

for some integers as, b3, c3, d3. Then a computa-
tional evidence says that the following statement is
also true.

Theorem.

(5).(5) = () (=)
q)s\p)s q s q 5

It is our purpose to prove above statement. Note
that, because of the existence of the fundamental
unit € = 14 /2, there are infinitely many choices of
as, b3, C3, d3. Also notice that ((a1d1 —blcl)/q)g =1
by Burde’s rational biquadratic reciprocity law. We
will give two proofs of above theorem. The first proof
uses Jacobi sum technique which is applied in the
paper of Williams [5]. The second proof follows the
idea of Helou[2], where he avoids Jacobi sum argu-
ment and uses Eisenstein’s general octic reciprocity.
Let ¢ = (g be a primitive 8th root of unity. We have
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the cyclotomic field Q(¢) = Q(v/2,v/—1) and the
group of units Q(¢)* = ((,€) where € = 1++/2. The
Galois group Gal(Q(¢)/Q) consists of the elements
os with 04(¢) = ¢° where s = 1,3,5,7. We say a €
Z[¢] is primary if « =1 (mod 2 4 2¢). It is easy to
see that for any « € Z[(] with odd norm, there is
a unit u € Q(¢)* such that ua is primary. There
are infinitely many choices of such u because ¢* = 1
(mod 2+ 2¢). To prove the theorem, we will use the
property of primary primes above p and ¢, which at
first restricts the choices of a;, b;, ¢;, d;, i = 1, 2, 3.
However, it will be easily seen that the theorem is
independent of such choices.

First proof. Let m = m € Z[(] be a primary
prime above p. Letting 7y = os(7), we see that all
ms are primary and p = mymgmsmr. Let x = x, be
the residue character (-/m)s of order 8 on F,. Then
we have the following well known relation between
Gauss and Jacobi sums,

G(X)® = x(=1)pI (6 )T (6 X) - T (6 X0
Also using the well known expression of Jacobi sums
JOx:x?), j=1,2,...,6, we have (see [4] or [5])

G(x)® = n{mimamr = primsms.
From the observations (3 +¢ = /=2, (2 = v/—1 and
¢+ ¢ = V2, we may write T3 = ag + bav/—2,
w75 = aj +biv/—1 and mym7 = as + b3v/2. Then we
get

p:af—l—b%:a%—i—?b%:ag—%g.

Note that above integers ai, by, ao, bo may have
different signs from the corresponding ones in the
theorem. Also note that a; = 1 (mod 4) since 7 is
primary. Now from

G(x) = ix(w) exp(2mzy/~1/p),
=0
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we find

p
Letting A be a primary prime above ¢ in Q(¢),

(),

Gl = (q) (mod g).

G(x)" ' =G (¥ /8 (mod A)

G( )8 8)(q 1)/8

(mod \)

(

(primsmins )(q R (mod A)
(PPrin2a8)a=D/8  (mod \)
(prita2z8)@=D/8  (mod \)

because (p) =1.
q/4

_ <p) (7)) @D/ ()@ D/2 (mod ).
4/

Note that T3y — 0'3(7T17T5) = a; — blx/f].. Thus
writing Aos(A) = ¢; —dyv/—1 and using v—1 = ¢1d}
(mod ¢; — dy+/—1) with dydj =1 (mod ¢q), we have

a; —biv/—1
(mamp) @~ D/4 = (W) (mod A),
4

(=)

4
(&1—b1€1d1)
4
( > (a1d1—b101)
4 —div—-1/4

o () (ald1b101>
q /4 q 4.

Since ¢; — dy/—1 is primary, i.e. ¢; = 1 (mod 4),
dy =0 (mod 4), using a biquadratic reciprocity law,
it is routine to check that (d1/q)sa = 1 (see [3], pp.
122-123). Also using the fact that p, ¢ =1 (mod 8)
and (¢/p)a =1 = (p/q)4, one easily deduce that the
expression ((a; — byv/—1)/(c1 — div/—1))4 is inde-
pendent of the signs of a1, b1, ¢1, di. For example,
((a1 = biv=1)/(c1 = div=1))a((a1 + b1v/~=1)/(e1 =
div-1))s = (p/(c1 —divV/-1))s = (p/q)a = 1. In
a similar way, writing Ao7(\) = c3 + d3v/2 and ex-
pressing v/2 as /2 = —czd} (mod ¢z + d3v/2) with
dsdy =1 (mod ¢), we have

5
(mimp)@=D/2 = <M> (mod ),
2

where

3+ d3V/2

where
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(13+b3
63+d3

az — b363d3>
3 +d3V2

N
<c3 + dgf) (czﬁ;ﬁ\/{a)
asds — bscs
g;fm, )
q 2

It is also clear that above expression is independent
of the signs of as, bs, c3, d3 because (p/q)2 = 1 and
p, ¢ = 1 (mod 8). Moreover, if Az, Bs, C3, D3 are
any integers satisfying

p:Ag—2B§7 q:C:?—2D§7

then we have

Az + Bg\/i = :f:€2m(a3 + bg\/i),
Cs+ D3\[2 = :|:62n(63 + dg\/i),

for some integers m and n. Therefore

A3D3 — B3C3
( q )2

B As + B3v/2 B +e27 (a3 + b3\/2)

B <03+D3\/§> B <ie2n(C3id3ﬂ)>

_ :|:€2m(a3 + b3\/§) _ as + b3\/§
c3 £ d3V/2 c3 + d3V/2

_ <a3d3 - b303)
q 2.

Now, the proof is complete after we replace
(m3m7) =D/ and (my77)(@=1/2 by the correspond-
ing residue symbols ((a1dy — bic1)/q)s and ((asds —
bscs)/q)2 in the expression

(q>85 (2)8 (mamr) @ D/ () @ D/2 (mod N).

p

O

Second proof. Let m be a positive integer and
let p,q be distinct primes of Q which are congruent
to 1 (mod n). Note that such primes p, ¢ split com-
pletely in Q((,). Let 7, A be primes of Q(({,) lying
above p, g. Suppose that 7 = f((,) for some polyno-
mial f € Z[z]. Let z be a rational integer such that
2z = (¢, (mod A). Helou [2] found the following result
and used it to give unified proofs of rational cubic,
quartic and octic reciprocity laws.
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Proposition.

(2, (), =wn(5),

where e(q,m) = (¢/m)n(7/q);"
integer determined by

me

where the product runs through all 1 < k < n with
gced(k,n) =1 and kk' =1 (mod n).

Helou applied above result for the case n = 8
and derived

— ZS 25 2 2’7 3
(2,(3), o (L)

Assuming 7 is primary, he showed that e(q,7) =
1 using Eisenstein’s general octic reciprocity law.

and m is a rational

¥ =1 (mod g),

'(Tl;er)efore, since we have assumed (¢/p)s = 1 =
b/q)4,
(). ()= (.5,
_ (R
A 4

The right part of above expression can be rewritten
as

(f(zs)f(z5)2f(z7)3>

Now letting o5 € Gal(Q(¢)/Q), ¢ = (g be as in the
first proof, we have osf(¢) = f(¢®) for s = 1,3,5,7.
Note that

FOF(E°) = F(Qas(f(Q)) = mos(m) = a1 + bivV—1,
and

FOFET) = F(Qor(f(Q)) = mor(m) = az + bsV2.
Write also

Aos(\) =1 +divV—1, Aor(A) =3 + dsV/2.

Then the proof is complete as soon as we show

<f(z)§(z5))4 _ <a1d1 ;b101>47
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(f(z)f(z7))2 _ <a3d3 - b303>2.

Since +/—1 —c1dy (mod ¢; + div/—1) where
didi =1 (m
(F5),- (59,

ar + by >

c1 + d1

ay — b101d1 )
C1 =+ d1 4

(15
(i
(e
(i), (G5,
(5
(

>

od g),

> <a1d1 - blc1>
4

a1d1 — b101>

Since V2 =

(mod q),

("5,

—czdfy (mod c3 + d3\/§) where dsdj =1

),
asz + b3\[>
c3 + d3V/2

(F5
<
c;g%>
(o7
(%

) <a3d3 - b303>
c3+ d3 c3 + d3V/2
) (a3d3 - b303)
2

_ (a3d3 — bgCg) D
q 2

An obvious corollary is the following.

Corollary. Let p, q be distinct primes congru-
ent to 1 (mod 8). Write

—a2—|—2b2—a3 2b3, q—c2+2d2—c3 2d

where a;, b;, ¢;, d;, i = 2, 3 are integers. Suppose

that (p/q)a = (q/p)a = 1. Then

(agdg - b262> - <a3d3 — bgcg)
q 2 q 2 .
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