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A remark on rational octic reciprocity

By Soonhak Kwon
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Abstract: We present a new type of rational octic reciprocity law, which is different from
the one discovered by Williams.
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Let p and q be distinct primes congruent to 1
(mod 8). Write

p = a2
1 + b2

1 = a2
2 + 2b2

2, q = c2
1 + d2

1 = c2
2 + 2d2

2,

where ai, bi, ci, di, i = 1, 2 are integers and a1, c1 are
odd. For a prime r and an integer a, define (a/r)4 =
+1 if a is a quartic residue (mod r) and (a/r)4 = −1
otherwise. In a similar way, define (a/r)8 and (a/r)2.
Assume (p/q)4 = (q/p)4 = 1. A rational octic reci-
procity law proved independently by Williams[5] and
Wu[6] says(

p

q

)
8

(
q

p

)
8

=
(

a1d1 − b1c1

q

)
4

(
a2d2 − b2c2

q

)
2

.

Since p, q ≡ 1 (mod 8), we may also express p and q

as

p = a2
3 − 2b2

3, q = c2
3 − 2d2

3,

for some integers a3, b3, c3, d3. Then a computa-
tional evidence says that the following statement is
also true.

Theorem.(
p

q

)
8

(
q

p

)
8

=
(

a1d1 − b1c1

q

)
4

(
a3d3 − b3c3

q

)
2

.

It is our purpose to prove above statement. Note
that, because of the existence of the fundamental
unit ε = 1 +

√
2, there are infinitely many choices of

a3, b3, c3, d3. Also notice that ((a1d1−b1c1)/q)2 = 1
by Burde’s rational biquadratic reciprocity law. We
will give two proofs of above theorem. The first proof
uses Jacobi sum technique which is applied in the
paper of Williams [5]. The second proof follows the
idea of Helou[2], where he avoids Jacobi sum argu-
ment and uses Eisenstein’s general octic reciprocity.
Let ζ = ζ8 be a primitive 8th root of unity. We have
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the cyclotomic field Q(ζ) = Q(
√

2,
√
−1) and the

group of units Q(ζ)× = 〈ζ, ε〉 where ε = 1+
√

2. The
Galois group Gal(Q(ζ)/Q) consists of the elements
σs with σs(ζ) = ζs where s = 1, 3, 5, 7. We say α ∈
Z[ζ] is primary if α ≡ 1 (mod 2 + 2ζ). It is easy to
see that for any α ∈ Z[ζ] with odd norm, there is
a unit u ∈ Q(ζ)× such that uα is primary. There
are infinitely many choices of such u because ε4 ≡ 1
(mod 2 + 2ζ). To prove the theorem, we will use the
property of primary primes above p and q, which at
first restricts the choices of ai, bi, ci, di, i = 1, 2, 3.
However, it will be easily seen that the theorem is
independent of such choices.

First proof. Let π = π1 ∈ Z[ζ] be a primary
prime above p. Letting πs = σs(π), we see that all
πs are primary and p = π1π3π5π7. Let χ = χπ be
the residue character (·/π)8 of order 8 on Fp. Then
we have the following well known relation between
Gauss and Jacobi sums,

G(χ)8 = χ(−1)pJ(χ, χ)J(χ, χ2) · · · J(χ, χ6).

Also using the well known expression of Jacobi sums
J(χ, χj), j = 1, 2, . . . , 6, we have (see [4] or [5])

G(χ)8 = π7
1π5

3π3
5π7 = pπ6

1π4
3π2

5 .

From the observations ζ3 + ζ =
√
−2, ζ2 =

√
−1 and

ζ + ζ−1 =
√

2, we may write π1π3 = a2 + b2

√
−2,

π1π5 = a1 + b1

√
−1 and π1π7 = a3 + b3

√
2. Then we

get

p = a2
1 + b2

1 = a2
2 + 2b2

2 = a2
3 − 2b2

3.

Note that above integers a1, b1, a2, b2 may have
different signs from the corresponding ones in the
theorem. Also note that a1 ≡ 1 (mod 4) since π is
primary. Now from

G(χ) =
p−1∑
x=0

χ(x) exp(2πx
√
−1/p),
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we find

G(χ)q−1 ≡
(

q

p

)
8

(mod q).

Letting λ be a primary prime above q in Q(ζ),(
q

p

)
8

≡G(χ)q−1≡G(χ)8{(q−1)/8} (mod λ)

≡ (G(χ)8π8
7)(q−1)/8 (mod λ)

≡ (pπ6
1π4

3π2
5π8

7)(q−1)/8 (mod λ)

≡ (p3π4
1π2

3π6
7)(q−1)/8 (mod λ)

≡ (pπ4
1π2

3π6
7)(q−1)/8 (mod λ)

because
(

p

q

)
4

=1.

≡
(

p

q

)
8

(π3π7)(q−1)/4(π1π7)(q−1)/2 (mod λ).

Note that π3π7 = σ3(π1π5) = a1 − b1

√
−1. Thus

writing λσ5(λ) = c1−d1

√
−1 and using

√
−1 ≡ c1d

′
1

(mod c1 − d1

√
−1) with d1d

′
1 ≡ 1 (mod q), we have

(π3π7)(q−1)/4 ≡
(

a1 − b1

√
−1

c1 − d1

√
−1

)
4

(mod λ),

where (
a1 − b1

√
−1

c1 − d1

√
−1

)
4

=
(

a1 − b1c1d
′
1

c1 − d1

√
−1

)
4

=
(

d1

c1 − d1

√
−1

)
4

(
a1d1 − b1c1

c1 − d1

√
−1

)
4

=
(

d1

q

)
4

(
a1d1 − b1c1

q

)
4

.

Since c1 − d1

√
−1 is primary, i.e. c1 ≡ 1 (mod 4),

d1 ≡ 0 (mod 4), using a biquadratic reciprocity law,
it is routine to check that (d1/q)4 = 1 (see [3], pp.
122–123). Also using the fact that p, q ≡ 1 (mod 8)
and (q/p)4 = 1 = (p/q)4, one easily deduce that the
expression ((a1 − b1

√
−1)/(c1 − d1

√
−1))4 is inde-

pendent of the signs of a1, b1, c1, d1. For example,
((a1 − b1

√
−1)/(c1 − d1

√
−1))4((a1 + b1

√
−1)/(c1 −

d1

√
−1))4 = (p/(c1 − d1

√
−1))4 = (p/q)4 = 1. In

a similar way, writing λσ7(λ) = c3 + d3

√
2 and ex-

pressing
√

2 as
√

2 ≡ −c3d
′
3 (mod c3 + d3

√
2) with

d3d
′
3 ≡ 1 (mod q), we have

(π1π7)(q−1)/2 ≡

(
a3 + b3

√
2

c3 + d3

√
2

)
2

(mod λ),

where

(
a3 + b3

√
2

c3 + d3

√
2

)
2

=
(

a3 − b3c3d
′
3

c3 + d3

√
2

)
2

=
(

d3

c3 + d3

√
2

)
2

(
a3d3 − b3c3

c3 + d3

√
2

)
2

=
(

d3

q

)
2

(
a3d3 − b3c3

q

)
2

=
(

a3d3 − b3c3

q

)
2

.

It is also clear that above expression is independent
of the signs of a3, b3, c3, d3 because (p/q)2 = 1 and
p, q ≡ 1 (mod 8). Moreover, if A3, B3, C3, D3 are
any integers satisfying

p = A2
3 − 2B2

3 , q = C2
3 − 2D2

3,

then we have

A3 + B3

√
2 = ±ε2m(a3 ± b3

√
2),

C3 + D3

√
2 = ±ε2n(c3 ± d3

√
2),

for some integers m and n. Therefore(
A3D3 −B3C3

q

)
2

=

(
A3 + B3

√
2

C3 + D3

√
2

)
2

=

(
±ε2m(a3 ± b3

√
2)

±ε2n(c3 ± d3

√
2)

)
2

=

(
±ε2m(a3 ± b3

√
2)

c3 ± d3

√
2

)
2

=

(
a3 + b3

√
2

c3 + d3

√
2

)
2

=
(

a3d3 − b3c3

q

)
2

.

Now, the proof is complete after we replace
(π3π7)(q−1)/4 and (π1π7)(q−1)/2 by the correspond-
ing residue symbols ((a1d1 − b1c1)/q)4 and ((a3d3 −
b3c3)/q)2 in the expression(

q

p

)
8

≡
(

p

q

)
8

(π3π7)(q−1)/4(π1π7)(q−1)/2 (mod λ).

Second proof. Let n be a positive integer and
let p, q be distinct primes of Q which are congruent
to 1 (mod n). Note that such primes p, q split com-
pletely in Q(ζn). Let π, λ be primes of Q(ζn) lying
above p, q. Suppose that π = f(ζn) for some polyno-
mial f ∈ Z[x]. Let z be a rational integer such that
z ≡ ζn (mod λ). Helou [2] found the following result
and used it to give unified proofs of rational cubic,
quartic and octic reciprocity laws.
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Proposition.( q

π

)
n

( p

λ

)−1

n
= e(q, π)

(m

λ

)
n

,

where e(q, π) = (q/π)n(π/q)−1
n and m is a rational

integer determined by

m ≡
∏
k

f(zk)k′−1 (mod q),

where the product runs through all 1 5 k < n with
gcd(k, n) = 1 and kk′ ≡ 1 (mod n).

Helou applied above result for the case n = 8
and derived( q

π

)
8

( p

λ

)−1

8
= e(q, π)

(
f(z3)f(z5)2f(z7)3

λ

)
4

.

Assuming π is primary, he showed that e(q, π) =
1 using Eisenstein’s general octic reciprocity law.
Therefore, since we have assumed (q/p)4 = 1 =
(p/q)4,(

q

p

)
8

(
p

q

)
8

=
( q

π

)
8

( p

λ

)
8

=
(

f(z3)f(z5)2f(z7)3

λ

)
4

.

The right part of above expression can be rewritten
as (

f(z3)f(z5)2f(z7)3

λ

)
4

=
(

f(z)4f(z3)f(z5)2f(z7)3

λ

)
4

=
(

pf(z)3f(z5)f(z7)2

λ

)
4

=
(

f(z)f(z5)
λ

)
4

(
f(z)f(z7)

λ

)
2

.

Now letting σs ∈ Gal(Q(ζ)/Q), ζ = ζ8 be as in the
first proof, we have σsf(ζ) = f(ζs) for s = 1, 3, 5, 7.
Note that

f(ζ)f(ζ5) = f(ζ)σ5(f(ζ)) = πσ5(π) = a1 + b1

√
−1,

and

f(ζ)f(ζ7) = f(ζ)σ7(f(ζ)) = πσ7(π) = a3 + b3

√
2.

Write also

λσ5(λ) = c1 + d1

√
−1, λσ7(λ) = c3 + d3

√
2.

Then the proof is complete as soon as we show(
f(z)f(z5)

λ

)
4

=
(

a1d1 − b1c1

q

)
4

,

(
f(z)f(z7)

λ

)
2

=
(

a3d3 − b3c3

q

)
2

.

Since
√
−1 ≡ −c1d

′
1 (mod c1 + d1

√
−1) where

d1d
′
1 ≡ 1 (mod q),(

f(z)f(z5)
λ

)
4

=
(

f(ζ)f(ζ5)
λ

)
4

=
(

a1 + b1

√
−1

c1 + d1

√
−1

)
4

=
(

a1 − b1c1d
′
1

c1 + d1

√
−1

)
4

=
(

d1

c1 + d1

√
−1

)
4

(
a1d1 − b1c1

c1 + d1

√
−1

)
4

=
(

d1

q

)
4

(
a1d1 − b1c1

q

)
4

=
(

a1d1 − b1c1

q

)
4

.

Since
√

2 ≡ −c3d
′
3 (mod c3 + d3

√
2) where d3d

′
3 ≡ 1

(mod q),(
f(z)f(z7)

λ

)
2

=
(

f(ζ)f(ζ7)
λ

)
2

=

(
a3 + b3

√
2

c3 + d3

√
2

)
2

=
(

a3 − b3c3d
′
3

c3 + d3

√
2

)
2

=
(

d3

c3 + d3

√
2

)
2

(
a3d3 − b3c3

c3 + d3

√
2

)
2

=
(

d3

q

)
2

(
a3d3 − b3c3

q

)
2

=
(

a3d3 − b3c3

q

)
2

.

An obvious corollary is the following.

Corollary. Let p, q be distinct primes congru-
ent to 1 (mod 8). Write

p = a2
2 + 2b2

2 = a2
3 − 2b2

3, q = c2
2 + 2d2

2 = c2
3 − 2d2

3,

where ai, bi, ci, di, i = 2, 3 are integers. Suppose
that (p/q)4 = (q/p)4 = 1. Then(

a2d2 − b2c2

q

)
2

=
(

a3d3 − b3c3

q

)
2

.
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