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1. Introduction. The purpose of the pre-
sent paper is to announce a conditional stability esti-
mate for an inverse problem of elastostatic measure-
ment which we state in the following.

Let Q be a cube in R? given by
(1) Q={zcR®: || < H (i=1,2,3)}

for a positive number H, and let D be a subdomain
of Q such that D C €, where D means the clo-
sure of D. We assume that the domain D is star-
shaped with respect to the origin of R3, and we
regard the domain Q \ D as a reference configura-
tion of a homogeneous and isotropic elastic mate-
rial in natural state, the Lamé constants of which
are A and p. We also regard the domain D as a
cavity which is unknown in our inverse problem.
Let u(z) = (uM(z),u®(z),u® ()T denote the
displacement vector at a point x of the material, and
assume that no surface force is applied on 9D.

Our inverse problem is the identification of the
unknown cavity D by observing the displacement
and the surface traction over an open part of the
boundary of the cube 2. For this problem we show
a modulus of continuity of the mapping from the
observed data to the cavity in a certain class of reg-
ularity.

There have been various results on the condi-
tional stability for inverse problems by electrostatic
measurements (see e.g. [1] and its references). They
reduce the problems to Cauchy problems of a sin-
gle elliptic equation in order to determine unknown
subdomains. We have generalized some of the re-
sults to the case of a system of elliptic equations and
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We consider an inverse problem of identifying an unknown cavity within an
elastic material by a single boundary measurement.

For this problem we show a conditional

Inverse problem; Lamé system; conditional stability.

have succeeded in applying a method for electrostatic
measurement to elastostatic measurement.

The details will be published elsewhere.

2. The main result. We prepare some no-
tation and hypotheses to state our result. The main
result is Theorem 1.

For a point g € R? and a number r > 0, we
set B(wg,r) = {x € R : |z — zo| < 7}, where | - |
denotes the Euclidean norm. We use the capital B
to denote the unit ball B(0,1). For two sets P and
Q Cc R? P € @Q means P C Q. For a R3-valued
function w, Vu denotes the Jacobian matrix of u.
Define the linearized strain tensor e(u) of u by

1 ™= L (900 ¢ u®
e(u) := 5 (Vu+Vu') = 5 (&u + 0ju >l7j,
where 9; = 9/0x; (i = 1,2,3). Let A and p be two
real numbers and define the stress tensor o(u) and

the Lamé system L by

(2) o(u) := A(divu)I + 2ue(u),
(3) L := pAT + (A + p)grad div,

where I denotes the identity matrix.

Let Q be the cube given by (1). Suppose that
one of the six faces of the cube, say 0 QN{z3 = —H},
contains an open disk, which is denoted by I'" with
its radius Rp. Suppose the Lamé constants A and pu
satisfy

(4) w>0 and 2u+3X>0,

and the operator L defined by (3) is strongly elliptic.
For j = 1,2, let D; be a subdomain of € given
in the form

Dj—{xeR?’:x;éQ 2| < p; <x>}u{0},

|x
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where the function p; € C1(B) is supposed to satisfy
(5) po < pj(x) <p° (z€0B),

for some fixed numbers R > 0 and 0 < pg < p° < H.
We set Q; := Q\ D; and assume that functions
u; € C3(Q; : R?) satisfies, for j = 1,2,

(6) Lu;=0in9Q;, o(uj)n=0ondD;,

Vpjllcowny < R

where n denotes the outward unit normal. We sup-
pose moreover that u; satisfies, for j =1, 2,

(7) ||ujHCS(§Tj) SE,
(8) |divau;| > monT,

for some fixed numbers £ > 0 and m > 0. The pair
(Dj,u;) is said to satisfy the “a priori assumption”
when D; and w; satisfy the hypotheses above.

Our main result is as follows:

Theorem 1. There exist numbers K > 0 and
0 < eg < e~ depending only on E, H, m, R, Rr, ),
i, po and p°, such that the following holds: Suppose
that two pairs (D1,w1) and (D2, us) satisfy the a
priori assumption, and that the Cauchy data (f;,g;)
of uj is given on ' (j =1,2), i.e.,

uj=f;, o(uj)n=g; onT.

Then we have
lp1r = pallcoom) < K (Inln|Inel) ™"

fore:=|f1 = Faollzem) + lg91 — g2llL=(r) < €0

3. Lemmas. In this section we give three
lemmas, which are keys for our proof of the main
result. These lemmas lead us to a proof of the theo-
rem by an idea similar to that proposed in [1].

Let w = (uM,u®,u®)T satisfy the Lamé sys-
tem Lu = 0 in a domain G of R?, and define, for u,
a R*-valued function U = (Uy, Uy, Us, Uy)T by U; :=
u® (i =1,2,3) and Uy := divu. Then U satisfies a
system of equations

(9) ,U,AUZ + ()\ + M)81U4 =0
(A +2u)AU; = 0

(Z = 17 273)7

in the domain G.

We firstly give a conditional stability of the
Cauchy problem for the Lamé system, which can be
obtained by a Carleman estimate (see [3]) for the
system (9).

Lemma 1.1. Assume that the domain G has
a boundary OG which contains an open part vy of the
plane {z3 = 0}. Let u € C3(G U 7 : R?) be a solu-
tion to the Cauchy problem

[Vol. 78(A),

Lu =0 in G,
u=Ff, oluyjn=g on .

Let wy and wy be two subdomains of G such that
w1 € wg € GU7. Then there exist numbers K > 0
and 0 < 7 < 1, depending on A, u, wi, wa, v and
|lwllcs @), such that we have

lw]l 1 () + | div ]| grw,) < Kn"

form = [IfllLe) + gl < 1.

In the next lemma, part (b) stands for a gener-
alization of the three balls theorem for the harmonic
functions (cf. [4]).

Lemma 1.2. Take a point xg € G and three
numbers r >0, f > 1, v > 1 such that Bz, fyr) €
G and pByr < 1. Then we have the following:

(a) Letv € C*(G : R) be a harmonic function
on G. Then we have, for 1o =1n~vy/In B,

l0ll2(Bwo,819) < IO (5 1012 (B 59m)-

(b) Let uw € C*(G : R*) satisfy Lu = 0 in G
and let U be defined above. Then there exist numbers
K >0and 0 < 7 < 1, depending only on 3, v, A
and p, such that

U L2(Bx0.6m) < KNUNL2 (800 1012 (52057

Finally, we give an estimate for the sup-norm
of the gradient VU in terms of the L%-norm of U.
We are led to the estimate by Schauder and local
boundedness estimates for solutions to elliptic equa-
tions (e.g. [5]).

Lemma 1.3. Let U € C*(G : R*) satisfy (9)
in G and take a point xg € G and numbers 0 < r; <
ro < 1 such that B(xg,r2) € G. Then there exists a
positive number K depending on A and p such that

K|U||L2(B(0,r2))
(7,2 _ 7‘1)7/2 :

4. A sketch of a proof for the main result.
In this section the capital letters Ky, Ks,..., Kig
represent numbers depending only on the parame-
ters fixed in §2.

Set Q12 := Q1NN = Q\ (D; UD,), and assume
D1 # Ds. Without loss of generality we further as-
sume that

VU Lo (B(zo,r)) <

p12 = [lp1 — p2llL=@B) = P2(y0) — p1(y0) >0

for some yy € 0B.
We observe that the domains D;, ; and {212
satisfy a cone property stated below. For z € R3\{0}



No. 2]

and 0 < 0 < 7/2, let C5(x) denote a cone defined

by

Cy () ={y €eR®: +u - (y —x) > |z|ly — x| cos b},

and let H(z) be the half space
Hz)={yeR’:z-y >0}

denotes the inner product in R3. Then the
cone property is as follows: there exists a number
0 < 6 < 7/2, depending only on pg, p and R in (5),
such that

Here -

(10) Cy (z)NQ CQ; and C, (z)NH(x) C D;

hold for all x € 0D; and j = 1,2. Using the same
value of 6, we have

(11) C;F(LL') N C Qo
for all x € 002N OD;, j =1, 2.

From Green’s formula (e.g. [6]) and (6), we have

(12) /Q “© {\(divuy)? 4 2ue(u) : e(ur)dr

< area(0Ds) - sup |ug|- sup |o(ui)n|,
Q 9012M0 Dy
where A : B denotes the sum ijzl ai;jbi; for two

matrices A = (a;;) and B = (b;;). By setting u :=
U1 — us on 1o, we obtain

(13) /\ (diven)2de < K lo(w)nl| L oau)
Ql 912

for some number K; > 0. We remark that we use
(4), (12) and the a priori assumption. For sufficiently
small £, we can derive an estimate

(14) [Vl 60,5 < Ka|lneg| 5

for some numbers K > 0 and 0 < K3 < 1. Here we
use Lemma 1.1 — Lemma 1.3, (7) and (11) (cf. [1]).
Consider the domain
. m
G = {x € Oyt dist(z, ) < ok
and note that GG contains a ball whose radius can be
estimated in terms of E, m and H — p°. Then, by
(10) and (11), there exists a number K, > 0 such
that B(y,4p) C Q1 \ Q12 and B(z,4p) C G for

r3 < —,00} ’
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p = Kymin{l, p12},

— p1(Wo)yo + p2(yo)yo
y L 2 b

and for some z € G.
Since divu; is harmonic in 4, repeated use of
Lemma 1.2 (cf. [2]) yields

(15) / (div uy)?da
B(z,p)

< Kp (/ (divuy)?da
B(yo,p)

for some numbers K5, K¢ > 0 and K7 € R. Since
we have (13)—(15) and since |divu| > m/2 in G by
(7) and (8), we reach

p° < Kg(Ko|In e| = )exp(=Ko/p+K7)

)CXP(—KG/P+K7)

for some numbers Kg, K9 > 0. If ¢ is sufficiently
small, the inequality above means

p < Kipp(Inln|Ing|)~*

for some K19 > 0. Thus we obtain Theorem 1 by an
appropriate choice of the number &g.
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