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Invariants of two dimensional projectively Anosov diffeomorphisms
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Abstract: We define invariants of two dimensional projectively Anosov diffeomorphisms.
More precisely, we show the space of circles tangent to the invariant subbundle has a kind of
Morse decomposition and the homotopy type of its one point compactification is preserved under
any homotopy of projectively Anosov diffeomorphisms. We also calculate the invariants for some
examples.
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1. Introduction. Let M be a manifold and
‖ ·‖ a norm on the tangent bundle TM . For a diffeo-
morphism f on M and its invariant set Λ, we call a
continuous splitting TM |Λ = Eu ⊕ Es a dominated
splitting associated to f on Λ if Df preserves both
Eu and Es and there exist two constants C > 0 and
λ ∈ (0, 1) such that

‖Dfn |Es(z)‖ · ‖(Dfn |Eu(z))−1‖ < Cλn

for all z ∈ Λ and n ≥ 1. A non-trivial dominated
splitting TM = Eu

f ⊕ Es
f on the whole manifold is

called a projectively Anosov splitting (or a simply PA
splitting) associated to f . We say a diffeomorphism
f is projectively Anosov (or simply PA) when f pos-
sesses a PA splitting. Let PAr(M) be the set of all
PA diffeomorphisms on M . It is known that the PA
splitting Eu

f ⊕Es
f is unique for every two dimensional

PA diffeomorphism f .
A continuous family {ft}t∈[0,1] of C1 diffeomor-

phisms is called a PA homotopy if all ft is contained
in PA1(M). The main aim of this paper is to define
invariants of two dimensional PA diffeomorphisms
which are preserved under PA homotopies and to
investigate their properties. Since the two dimen-
sional torus T2 is the only orientable surface which
admits PA diffeomorphisms, we focus on PA diffeo-
morphisms on T2.

Originally, Mitsumatsu [4] and Eliashberg and
Thurston [2] have introduced the concept of PA
(or conformally Anosov) systems for three dimen-
sional flows in order to investigate contact structures.
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They have given a natural correspondence between
three dimensional PA flows and bi-contact struc-
tures, which are pairs of mutually transverse positive
and negative contact structures. Their correspon-
dence induces a one-to-one correspondence between
homotopy classes of them. In this view point, the
study of PA homotopy invariants of two dimensional
PA diffeomorphisms is a first step to classify three
dimensional PA flows and bi-contact structures.

The simplest invariant of PA diffeomorphisms is
the homotopy class as a continuous map. Since Eu

f

is continuous with respect to f , the homotopy class
of Eu

f as a line field on T2 is also an invariant. One
of the natural problem is to find other non-trivial
invariants. As we see later, the invariants defined
here distinguish two PA diffeomorphisms of which
subbundles Eu are contained in a same homotopy
class of line fields.

To state our results, we introduce some def-
initions. We refer [3] for the standard terms on
dynamical systems. A diffeomorphism f is called
non-degenerate if all periodic points are hyperbolic
in the sense of dynamical systems. Note that non-
degenerate diffeomorphisms are generic in the space
of Cr PA diffeomorphisms by Kupka-Smale’s the-
orem. We say an integer homology class a ∈
H1(T2,Z) is prime when a 	= na′ for all n ≥ 2 and
a′ ∈ H1(T2,Z). For every topological space X, let
X ∪ {∞} denote the one point compactification of
X. We say PA diffeomorphism f is orientable when
both subbundles of the PA splitting are orientable
and Df preserves orientations of them.

Let C̃(Eu) denote the set of all C1 maps γ
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from the circle S1 to T2 which satisfy that γ̇(t) ∈
Eu(γ(t))\ {0} for all t ∈ S1 . The group Diff1

+(S1) of
the orientation preserving diffeomorphism on the cir-
cle acts on C̃(Eu) by the composition from right. Let
C(Eu) denote the quotient space C̃(Eu)/Diff1

+(S1)
and πc the quotient map. The space C(Eu) is metriz-
able, and hence, is a Hausdorff topological space. For
every a ∈ H1(T2,Z), we let Ca(Eu) = πc(C̃(Eu)∩a).

Theorem A (The invariance of cohomology).
Let f0 and f1 be C2 non-degenerate orientable PA
diffeomorphisms on T2, Eu

i ⊕ Es
i the PA splitting

associated to fi for each i = 0, 1, and a ∈ H1(T2,Z)
a prime homology class. Suppose that f0 and f1 are
PA homotopic. Then, the pairs (Ca(Eu

0 ) ∪ {∞},∞)
and (Ca(Eu

1 ) ∪ {∞},∞) are homotopy equivalent.
In particular, the compactly supported cohomology
groups H∗

c (Ca(Eu
0 )) and H∗

c (Ca(Eu
1 )) are isomorphic.

A PA-diffeomorphism f induces a natural ac-
tion C(f) on the space C(Eu) by C(f)(πc(γ)) =
πc(f ◦ γ). We define the index ind c of a periodic
point c = πc(γ) of C(f) by the number of t ∈ S1

such that γ(t) is a repelling periodic point. It is easy
to see that the index of c does not depend on the
choice of γ ∈ π−1

c (c).
Theorem B (The Morse decomposition). Let

f be a C2 non-degenerate orientable PA diffeomor-
phism on T2, TM = Eu ⊕ Es the PA splitting
associated to f, and a ∈ H1(T2,Z) a prime homol-
ogy class. Then, Wu(c; C(f)) is homeomorphic to the
open disk of dimension ind c for all c ∈ Per(C(f))
and the decomposition

Ca(Eu) =
⋃
Wu(c; C(f))

gives a CW complex structure on Ca(Eu), where
Per(C(f)) denotes the set of periodic points of C(f),
Wu(c; C(f)) denotes the unstable set of c for C(f),
and the union runs over C ∈ Per(C(f)) ∩ Ca(Eu).

In Section 2, we give some examples of PA dif-
feomorphisms on T2 and calculate the invariants.
Section 3 is devoted to the outline of proofs of
Theorem A and Theorem B. The details of the proofs
and some applications of the invariants will be given
in [1].

To end this section, we pose a question. As we
see in Section 2, if f is an Anosov diffeomorphism,
then H∗

c (Ca(Eu
f )) vanishes for all a ∈ H1(T2,Z). By

Theorem A, H∗
c (Ca(Eu

g )) vanishes for any C2 non-
degenerate PA diffeomorphism g which is PA ho-
motopic to f . Our question is the converse of this

observation.
Question. If H∗

c (Ca(Eu
f )) vanishes for all a ∈

H1(T2,Z), then is the map f PA homotopic to an
Anosov diffeomorphism?

2. Examples.
2.1. Anosov diffeomorphisms. Let f be

an Anosov diffeomorphism on T2 and TM = Eu ⊕
Es the Anosov splitting. It is easy to see that Eu ⊕
Es is the PA splitting, and hence, f is a PA diffeo-
morphism. Since no circle tangent to Eu exists, we
obtain that Ca(Eu) = ∅ for all a ∈ H1(T2; Z).

2.2. Eliashberg-Thurston’s example.
The following example is given by Eliashberg and
Thurston [2].

We identify T2 with (R2 \ {0})/((x, y) ∼
(2x, 2y)). Fix α > 1. We define a diffeomorphism
fα on T2 by fα(x, y) = (αx, α−1y) for all (x, y) ∈
T2. Let Eu and Es be the subbundles of T2 parallel
to the x-axis and the y-axis respectively. It is easy
to see that Eu ⊕Es is the PA splitting associated to
fα.

Note that Per(f2) is the union of four circles
given by the x-axis and the y-axis and Per(fα) is
empty if αn 	∈ Z for all n. It implies that fα changes
its dynamical properties at α = 2. In particular, the
dynamics is not invariant under PA homotopy.

Fix α > 1 so that αn 	∈ Z for all n. Since
Per(fα) is empty, the map fα is non-degenerate. We
define two C1 maps γ and γ′ from S1 = R/Z to
T2 by γ(t) = (2t, 0) and γ′(t) = (−2t, 0). Let a ∈
H1(T2,Z) be the homology class represented by γ.
It is easy to see that Ca(Eu) consists of two index
zero fixed points πc(γ) and πc(γ′) of C(fα). Hence,
we obtain that H0

c (Ca(Eu)) ∼= Z2 and H∗
c (Ca(Eu)) ∼=

{0} for ∗ 	= 0. We could also see that Ca′(Eu) = ∅,
and hence, H∗

c (Ca′ (Eu)) ∼= {0} for all a′ 	= ±a.
2.3. Noda’s example. The following is a

small modification of the example given by Noda [5].
Define two contact forms α and β on the

three dimensional torus R3/(2πZ)3 by α(x, y, z) =
dx + ε sinx · dy − cosx · dz and β(x, y, z) =
dy + ε sin y · dx − cos y · dz. The vector field v

given by vε(x, y, z) = (sinx − ε cosx sin y, sin y −
ε cos y sinx, 1− ε2 cosx cos y) is contained in Kerα∩
Ker β. Note that the flow generated by vε has a
cross section T2 × {0} for any ε ∈ (−1, 1). Since
(Kerα,Kerβ) is a bi-contact structure for any ε ∈
(0, 1), the result of Mitsumatsu [4] and Eliashberg
and Thurston [2] implies that the flow is projectively
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Fig. 1. Phase portrait of g0 and gε.

Anosov, and hence, the return map gε on T2 × {0}
is a PA diffeomorphism.

Since v0(x, y, z) = (− sinx,− siny, 1), the re-
turn map g0 has the phase portrait as in Fig. 1 (a).
Hence, we obtain the phase portrait of gε, which is a
perturbation of g0, as in Fig. 1 (b).

In the Fig. 1, black balls and a white ball mean
an attracting fixed point and a repelling fixed point
respectively. Let c0, c1 and c′ are the elements
of C(Eu) and a and a′ are homology class given
in Fig. 1. It is easy to see that Per(Ca(Eu)) con-
sists of the index zero fixed point c′. By Theo-
rem B, we obtain that Ca(Eu) = {c′}. In partic-
ular, H0

c(Ca(Eu)) ∼= Z and H∗
c (Ca(Eu)) ∼= {0} for

any ∗ 	= 0. It is also easy to see that Per(Ca+a′(gε))
consists of c0 and c1 and ind ci = i for each i =
0, 1. By Theorem B, the space C′

a+a(Eu) is a CW
complex with a one dimensional cell and a zero di-
mensional cell. Hence, Ca+a′ (Eu) is homeomorphic
to S1. In particular, H∗

c (Ca+a′ (Eu)) ∼= Z for ∗ = 0, 1
and H∗

c (Ca+a′ (Eu)) ∼= {0} otherwise.
Define a covering map πm,n on T2 by

πm,n(x, y) = (mx, ny) for every m, n ≥ 1. Let gm,n

be a lift of gε by πm,n and Eu
m,n⊕Es

m,n the PA split-
ting associated to gm,n. We can see that Ca(Eu

m,n)
and Ca′ (Eu

m,n) consist of n and m elements of index 0
respectively. Hence, we obtain that H0

c (Ca(Eu
m,n)) ∼=

Zn and H0
c(Ca′(Eu

m,n)) ∼= Zm. By Theorem A, the
maps gm,n and gm′,n′ are PA-homotopic if and only
if (m, n) = (m′, n′). However, all Eu

m,n are homo-
topic as plane fields.

3. Outline of proof.
3.1. Theorem B. First, we give the outline

of the proof of Theorem B. The following is a deep
result of Pujals and Sambarino on surface dynamics.

Proposition 3.1 (Pujals-Sambarino, [6]). Let
f be a C2 non-degenerate diffeomorphism on a com-

pact surface M . Suppose that there exists a domi-
nated splitting associated to f on the non-wandering
set Ω(f). Then, there exists a disjoint decomposition
Ω(f) = Ω0(f) � Ω1(f) � Ω2(f) such that

1. Ω1(f) is a hyperbolic set of saddle-type,
2. Ω0(f) is the union of finite number of attracting

periodic orbits and normally attracting embed-
ded circles with no periodic points, and

3. Ω2(f) is the union of finite number of repelling
periodic orbits and normally repelling embedded
circles with no periodic points.
Let Perk

h(f) be the set of all hyperbolic peri-
odic points with the k dimensional unstable man-
ifold. The following is a consequence of Proposi-
tion 3.1 and a variation of the C1 regularity theorem
for codimension one hyperbolic splittings.

Proposition 3.2. The subbundle Eu defines
C1 foliation Fu on T2 \ Ω0(f). Moreover, Fu con-
tains no closed leaves and if a leaf Fu(z) has fi-
nite length then the boundary ∂Fu(z) is contained
in Per0h(f).

For every f ∈ PA1(T2), we say a pair (eu, es)
of non-singular continuous vector fields is an orien-
tation of f when Reu ⊕ Res is the PA splitting as-
sociated to f . We call a triple (f, eu, es) an oriented
PA diffeomorphism on T2 if (eu, es) is an orientation
of f .

Fix (f, eu, es) ∈ PA2(T2) such that f is non-
degenerate. We define the space S(eu) by

S(eu) =
{
ξ ∈ C1([0, 1],T2)

∣∣
ξ̇(t) = a · eu(ξ(t)) for some a > 0

}
with C1-topology. Remark that the space S(eu) is
locally equi-continuous. Hence, it is locally compact
by the Ascoli-Arzelá theorem. The space S(eu) has
a natural composition ∗ of two paths and a natural
action S(f) of f .

For every compact subset Λ of T2, let S(eu,Λ)
be the subset of S(eu) consisting of the elements ξ
such that ξ(0), ξ(1) ∈ Λ. By Proposition 3.2, ifFu(z)
has finite length for a point z ∈ T2\Ω0(f) then there
exists the unique element (z)u of S(eu,Per0h(f)) such
that (z)u((0, 1)) = Fu(z). The followings are the key
lemmas to show Theorem B.

Lemma 3.3. For every ξ∈ S(eu,Ω0(f)) there
exist a sequence {zi} in T2 \ Ω0(f) and a sequence
{pi} in Per1h(f) ∪Per2h(f) such that ξ = (z1)u ∗ · · · ∗
(zn)u and (zi)u ∈ Wu(pi;S(f)). In particular, ξ ∈
Wu((p1)u ∗ · · · ∗ (pn)u;S(f)).
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Lemma 3.4. Let k = 1, 2 and p ∈ Perk
h(f).

Suppose that Wu(p; f) has finite length. Then,
(z)u ∈ Wu((p)u;S(f)) if and only if z ∈ Wu(p; f).
Moreover, in the case of k = 2, there exists a contin-
uous map µp from [−1, 1] to S(eu,Ω0(f)) such that
µp(0) = (p)u, µp |(−1,1) is a homeomorphism between
(−1, 1) and Wu((p)u;S(f)).

The above lemmas imply the existence of a CW
complex structure on S(eu,Per0h(f)).

Proposition 3.5. The space S(eu,Per0h(f))
has a CW complex structure

S(eu,Per0h(f)) =
⋃
Wu(ξ0;S(f)),

where the union runs over
ξ0 ∈ Per(S(f)) ∩ S(eu,Per0h(f)).

Moreover, the dimension of Wu(ξ0;S(f)) is equal to
the number of t ∈ S1 such that ξ0(t) ∈ Per2h(f).

Let Sc(eu,Λ) be the subset of S(eu,Λ) consist-
ing of the elements such that ξ(0) = ξ(1). By Propo-
sitions 3.1 and 3.2, every c = πc(γ) ∈ C(Eu) satis-
fies that either Im γ is an attracting embedded cir-
cle with an irrational rotation or Im γ contains at-
tracting periodic points. In the former case, we can
show that c is periodic, has the index zero and is iso-
lated in C(Eu). In the latter case, c is contained
in πc(Sc(±eu,Per0h(f))). When a ∈ H1(T2; Z) is
prime, πc is injective on Wu(ξ0;S(f)) for each ξ0 ∈
Per(S(f)) ∩ Sc(±eu,Per0h(f)) ∩ a. Hence, the CW
complex structure of Sc(±eu,Per0h(f)) ∩ a induce
that of Ca(Eu). It completes the proof of Theorem B.

3.2. Theorem A. Let {ft}t∈[0,1] be a PA
homotopy. For t∗ ∈ (0, 1) and N ≥ 1, we say a
fixed point p∗ of fN

t∗ exhibits a positive saddle-node
bifurcation when there exist a neighborhood U of p∗,
a positive number δ, and two continuous functions ps,
pu from [t∗, t∗ + δ] to U such that ps(t∗) = pn(t∗) =
p∗ is the unique fixed point of fN

t in U , there exist
no fixed points of fN

t in U for all t ∈ (t∗ − δ, t∗), and
ps(t) ∈ Per1h(ft) and pn(t) ∈ Per0h(ft) ∪ Per2h(ft) are
the only fixed points in U for all t ∈ (t∗, t∗ + δ).

A PA homotopy {ft}t∈[0,1] is called regular if
f0, f1 are non-degenerate, ft(z) is C2 with respect
to (z, t), Per(ft) contains at most one non-hyperbolic
periodic orbit, and it exhibits a saddle-node bifurca-
tion. Since PAr(T2) is open in Diffr(T2) for all r
and a saddle-node bifurcation is the only generic bi-
furcation that an orientable PA diffeomorphism ex-
hibits, every PA homotopy connecting two C2 non-
degenerate orientable PA diffeomorphisms can be

approximated by a regular PA homotopy. In par-
ticular, in order to show Theorem A, we have only
to consider regular PA homotopies.

For every Λ ⊂ T2, let C(Eu,Λ) be the set of all
πc(γ) ∈ C(Eu) such that Imγ ∩ Λ 	= ∅. Let Λu

sing(f)
denote the union of all f-periodic immersed circle
tangent to Eu

f which contains no hyperbolic periodic
points. We say a PA homotopy {ft}t∈[0,1] is a simple
PA homotopy when

1. there exist a regular PA homotopy {gt} and an
integerN ≥ 1 such that ft = gN

t for all t ∈ [0, 1],
2. there exists t∗ ∈ (0, 1) such that all fixed points

of ft are hyperbolic for any t 	= t∗,
3. any non-hyperbolic fixed point of ft∗ exhibit a

positive saddle-node bifurcation,
4. C(Eu

t∗ ,Per(ft∗)) ∩Per(C(f)) = C(Eu
t∗ , fix(ft∗)) ∩

fix(C(f)), and
5. there exists the unique continuation Λ(t) of

Λu
sing(ft∗) on [0, 1].

Proposition 3.6. Let {ft}t∈[0,1] be a regular
PA homotopy. For every t0 ∈ [0, 1], there exist a
neighborhood I of t0, a homeomorphism h from [0, 1]
to I, and an integer N ≥ 1 such that {fN

h(t)}t∈[0,1] is
a simple PA homotopy.

The proof is given by showing the boundedness
of the period of periodic embedded circles. By the
above proposition, we have only to consider simple
PA homotopies.

Proposition 3.7. Let {ft}t∈[0,1] be a simple
PA homotopy and Eu

t ⊕Es
t the PA splitting associ-

ated to ft. Then, (Ca(Eu
0 )∪ {∞},∞) and (Ca(Eu

1 )∪
{∞},∞) are homotopic for every prime homology
class a ∈ H1(T2; Z).

With a careful investigation of the continuation
of fixed points of C(ft∗), we obtain the information
on changing of the CW complex structures in Theo-
rem B under a simple homotopy. It makes us enable
to check the homotopy equivalence.

Theorem A is an immediate consequence of
Propositions 3.6 and 3.7.
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