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Local fields generated by 3-division points of elliptic curves
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Abstract: We determine all the extensions generated by 3-division points of elliptic curves
over the fields of p-adic numbers. As application, we construct GL2(F3)-extensions over the field
of rational numbers with given finitely many local conditions.
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1. Introduction. Let E be an elliptic curve
defined over the field Q of rational numbers. We
denote by El the set of l-division points of E for a
prime l. We put K(l) = Q(El). We denote by G(l) =
Gal(K(l)/Q) the Galois group of K(l) over Q. We
think that G(l) is a subgroup of the general linear
group GL2(Fl) of degree 2 over the finite field Fl of l

elements, because El is isomorphic to a vector space
of dimension 2 over Fl.

We know that the action of σ ∈ G(l) ⊂ GL2(Fl)
on an l-th primitive root ζl of unity is determined
by ζσ

l = ζdet σ
l . Thus we see that the fixed field of

G(l)∩SL2(Fl) is Q(ζl), where SL2 is the special linear
group of degree 2.

We denote by L(s, E/Q) =
∑∞

n=1 ann−s the
Hasse-Weil zeta function of E over Q. We know
that ap mostly describes the decomposition law of a
prime p of K(l)/Q (cf. Shimura [9]).

For example in the case of l = 2, Koike [3]
proved that ap ≡ bp mod 2 for good primes p �= 2,
where L(s, ρ, K(2)/Q) =

∑∞
n=1 bnn−s is the Artin L-

function for the 2-dimensional irreducible represen-
tation ρ of GL2(F2). Naito [7] got a similar result in
the case of l = 3. In the case of l = 2, GL2(F2) is
isomorphic to the symmetric group S3 of degree 3.
Let K/Q be a Galois extension whose Galois group
is isomorphic to S3. We can find a polynomial f(X)
of degree 3 with rational coefficients such that K is
the decomposition field over Q of f(X) = 0. Let E

be the elliptic curve defined by y2 = f(x). We see
K = Q(E2). Therefore the theorem of Koike [3]
is regarded as a decomposition law of primes of
Galois extensions whose Galois groups are isomor-
phic to S3. Next we consider the case of l = 3. Let
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K/Q be a Galois extension whose Galois group is
isomorphic to GL2(F3). When is there an elliptic
curve E defined over Q such that K = Q(E3)? We
see that a necessary condition for existence of such
an elliptic curve is that K contains a certain cubic
root by considering the equation of x-coordinates of
3-division points. Lario and Rio [4, 5] got some suf-
ficient conditions.

We consider local cases in this note. Let Kp be
a Galois extension over the field Qp of p-adic num-
bers for a prime p whose Galois group Gal(Kp/Qp) is
isomorphic to a subgroup G of GL2(F3). From now
on, we call such a Galois extension a G-extension, for
simplicity. We determine all such Kp which contains
ζ3 with ζσ

3 = ζdet σ
3 for σ ∈ Gal(Kp/Qp) ⊂ GL2(F3).

Recently Bayer and Rio [1] determined all such ex-
tensions over Q2 without the condition ζσ

3 = ζdet σ
3 .

They also computed irreducible equations and the
discriminants of those fields.

Next we examine whether there exists an ellip-
tic curve E such that Kp = Qp(E3). We get such
curves satisfying some congruence conditions in pos-
sible cases. We get two examples K2 such that there
exists no elliptic curve E over Q2 satisfying K2 =
Q2(E3).

As application of these results, we can construct
infinitely many GL2(F3)-extensions over Q satisfy-
ing decomposing conditions for given finitely many
primes by using these results in local cases.

2. Results in local cases. We list all sub-
groups G of GL2(F3) up to conjugacy. The order of
G is divisible by 3 in (1), . . . , (4-2) and (5). That in
other cases is not divisible by 3. We remark that the
order of GL2(F3) is 48 = 24 · 3. We denote by Cn

(resp. Dn) the cyclic group (resp. the dihedral group)
of order n. In each case, we list all Galois extensions
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Kp containing ζ3 whose Galois group Gal(Kp/Qp)
is isomorphic to G satisfying ζσ

3 = ζdet σ
3 for σ ∈

Gal(Kp/Qp). At last we give elliptic curves E such
that Kp = Qp(E3) in the possible cases. In only
two extensions for p = 2 in (6), there exists no such
elliptic curve.

Let K/Qp be a Galois extension. We put F the
maximal unramified extension in K/Qp. We see that
F/Qp is a cyclic extension. We put e = [K : F ] and
f = [F : Qp]. If K/Qp is tamely ramified, K/F is a
cyclic extension and e divides pf − 1. Therefore it is
easy to list all G-extensions in the cases of p �= 2, 3.
We see by ζ3 ∈ K and ζσ

3 = ζdet σ
3 that G is contained

in SL2(F3) if and only if p ≡ 1 mod 3.
We define an elliptic curve E by the equation

dy2 = 4x3 − g2x − g3, (d, g2, g3 ∈ Zp),

where Zp is the ring of p-adic integers. The equation
of x-coordinates of E3 is as follows:

f(x) = x4 − g2

2
x2 − g3x − g2

2

48

=


x2 −

√
g2−∆1/3

3
x − 2∆1/3+g2

12
− g3

2
√

g2−∆1/3

3




×

x2 +

√
g2−∆1/3

3
x − 2∆1/3+g2

12
+

g3

2
√

g2−∆1/3

3




= 0,

where ∆ = g2
3 − 27g3

2.

Therefore x-coordinates of 3-division points are
independent on d. Moreover we see that ∆1/3 is con-
tained in the field generated by all the x-coordinates
of E3.

Now we describe data. We use α and β as p-adic
units in this section.

(1) G = GL2(F3). We see that this case occurs
in only p = 2 by considering a ramification. Weil
[10] proved that there exist three Galois extensions
M/Q2 whose Galois groups are isomorphic to the
symmetric group S4 of degree 4, which is isomorphic
to GL2(F3)/{±1}. Such fields are

M1 = Q2

(
ζ3,

3
√

2,

√
3(1 + 3

√
2)

)
,

M2 = Q2

(
ζ3,

3
√

2,

√
1 + 3

√
2
2
)

and

M3 = Q2

(
ζ3,

3
√

2,

√
3(3 + 3

√
2 + 3

√
2
2
)
)

.

M1 and M2 have four quadratic extensions K whose
Galois group over Q2 are isomorphic to GL2(F3)
respectively. But M3 has no such extension. Fur-
thermore he gave elliptic curves E satisfying K =
Q2(E3). We give another elliptic curves in this note.
We see that M1 is generated by the x-coordinates of
3-division points of the elliptic curve with g2 = 2α

(α ≡ 3 mod 4) and g3 = 2β, and M2 is similarly
generated with g2 = 22α (α ≡ 3 mod 4) and g3 =
22β. We can construct four K by taking d as d ≡
1, 3 mod 23 and d ≡ 2, 6 mod 24, respectively.

(2) G = SL2(F3). It must be p ≡ 1 mod 3.
But we see that this case occurs in the case of p = 2
by considering a ramification. So it never occurs.

(3) G = B =
{(∗ ∗

0 ∗
)

∈ GL2(F3)
}

. B is

isomorphic to the dihedral group D12 of order 12. It
must be p �≡ 1 mod 3. In p �= 2, 3, K = Qp(ζ3, 6

√
p)

is the only one D12-extension. We get an elliptic
curve E by putting g2 = p2α, g3 = pβ and d �≡
0 mod p satisfying K = Qp(E3). We remark that a
D12-extension is the compositum of an S3-extension
and a quadratic extension. Hence we simultaneously
deal the case of p = 2, 3 in (4-1).

(4-1) G =
{(∗ ∗

0 1

)
∈ GL2(F3)

}
or

{(
1 ∗
0 ∗

)
∈ GL2(F3)

}
. Both of them are isomor-

phic to S3. It must be p �≡ 1 mod 3. In p �= 2, 3,
K = Qp(ζ3, 3

√
p) is the only one S3-extension. We

get an elliptic curve E satisfying K = Qp(E3) by
putting g2 = p3α, g3 = p2β and d �≡ 0 mod p, where
−β mod p is a quadratic residue. If d mod p is a
quadratic residue, the Galois group of Qp(E3)/Qp is{(

1 ∗
0 ∗

)}
. Otherwise it is

{(∗ ∗
0 1

)}
.

In p = 3, there exist four S3-extensions
K containing ζ3. They are K = Q3(ζ3,

3
√

2),
Q3(ζ3,

3
√

3), Q3(ζ3,
3
√

6) and Q3(ζ3,
3
√

12). Each
S3-extension over Q3 is extended to only one D12-
extension. By putting g2 = 33α and g3 ≡ 2 mod 32,

we get a
{(

1 ∗
0 ∗

)}
-extension (resp.

{(∗ ∗
0 1

)}
-

extension, D12-extension), if d ≡ 1 mod 3 (resp. d ≡
−1 mod 3, d ≡ 3 mod 32). These extensions con-
tain Q3(ζ3,

3
√

2). By putting g2 = 34α and g3 = 3β,
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we get a
{(

1 ∗
0 ∗

)}
-extension (resp.

{(∗ ∗
0 1

)}
-

extension, D12-extension), if d ≡ 0 mod 3, d �≡
0 mod 32 and −3β/d ≡ 1 mod 3 (resp. d ≡ 0 mod 3,
d �≡ 0 mod 32 and −3β/d ≡ −1 mod 3, d ≡
−β mod 3). We see that these extensions contain
Q3(ζ3,

3
√

3) (resp. Q3(ζ3,
3
√

6), Q3(ζ3,
3
√

12)) if β ≡
1 mod 32 (resp. β ≡ 2 mod 32, β ≡ 4 mod 32).

In p = 2, Q2(ζ3,
3
√

2) is the only one S3-exten-
sion. Then all D12-extensions are Q2(ζ3,

3
√

2,
√−1),

Q2(ζ3,
3
√

2,
√

2) and Q2(ζ3,
3
√

2,
√−2). We put g2 =

24α and g3 = 2β. We see that Q2(E3) is a

D12-extension Q2(ζ3,
3
√

2,
√−1) (resp. a

{(
1 ∗
0 ∗

)}
-

extension,
{(∗ ∗

0 1

)}
-extension) for d ≡ 2β mod 24

(resp. d ≡ −2β mod 24, d ≡ 6β mod 24). We see
Q2(E3) = Q2(ζ3,

3
√

2,
√

2) (resp. Q2(ζ3,
3
√

2,
√−2))

for d ≡ −β mod 23 (resp. d ≡ β mod 23).

(4-2) G =
〈(−1 −1

0 −1

)〉
. It is isomorphic to

C6.

(5) G =
〈(

1 1
0 1

)〉
. It is isomorphic to C3.

These two cases occur in p ≡ 1 mod 3. There
are four C3-extensions. They are Qp(

3
√

δ), Qp( 3
√

p),
Qp( 3

√
δp) and Qp( 3

√
δ2p), where δ is a p-adic unit

such that δ mod p is not a cubic residue. Each C6-
extension is the compositum of a C3-extension and
a quadratic extension. There are three quadratic ex-
tensions, Qp(

√
γ), Qp(

√
p) and Qp(

√
γp), where γ is

a p-adic unit such that γ mod p is not a quadratic
residue. We put g2 = pα and g3 = β, where β mod p

is not a cubic residue. We see that Qp(
3
√

δ) coin-
cides with the field generated by x-coordinates of
E3. We see that Qp(E3) is a C3-extension Qp(

3
√

δ), if
−β/d mod p is a quadratic residue. We also see that
Qp(E3) is a C6-extension containing Qp(

√
γ) (resp.

Qp(
√

p), Qp(
√

γp)), if −β/d mod p is not a quadratic
residue (resp. −β/d ≡ p mod p2, −β/d ≡ γp mod
p2). We put g2 = p3α and g3 = p2β. We see that
the extension generated by x-coordinates of E3 is
Qp( 3

√
p) (resp. Qp( 3

√
δp), Qp( 3

√
δ2p)), for β ≡ 1 mod

p (resp. β ≡ δ mod p, β ≡ δ2 mod p). If −β/d mod p

is a quadratic residue, Qp(E3) is a C3-extension.
If −β/d mod p is not a quadratic residue, Qp(E3)
is a C6-extension containing Qp(

√
γ). If −d/β ≡

p mod p2 (resp. −d/β ≡ pγ mod p2), Qp(E3) is a
C6-extension containing Qp(

√
p) (resp. Qp(

√
γp)).

(6) G =
〈

a =
(

1 1
1 0

)
, b =

(−1 0
1 1

)〉
with

a8 = b2 = 1, b−1ab = a3. It is isomorphic to the
semi-dihedral group SD16 of order 16. We see that
this case occurs in only p = 2 by considering a ram-
ification. Let K be an SD16-extension. Let M be
the 〈a4〉-fixed subfield of K/Qp. We see that M is a
D8-extension over Q2. Naito [6] determined all such
extensions. By the action of the Galois group on
ζ3, K must be a cyclic extension of degree 8 over a
quadratic field other than Q2(ζ3). We see that M is
a cyclic extension over k. We see k = Q2(

√−1) or
Q2(

√−5) by Naito [6].
By local class field theory and computation of

k×/(k×)8, where k = Q2(
√−1) or Q2(

√−5), we can
determine all D8-extensions M which have quadratic
extensions K which are cyclic of degree 8 over
Q2(

√−1) (resp. Q2(
√−5)) such that Gal(K/Q2) ∼=

SD16. These are M = Q2

(√
3 + 2

√−5,
√

5
)
,

Q2

(√
4 +

√−5,
√

5
) (

resp. Q2

(√
3 + 2

√−1,
√

5
)
,

Q2

(√
2 +

√−1,
√

5
))

.
The compositum of two SD16-extensions whose

intersection is a D8-extension is an SD16 × C2-
extension. If there exists an SD16-extension con-
taining M , we find another SD16-extension in the
compositum of it and a quadratic extension over Q2.

If K = Q2(E3) for an elliptic curve E, we see
that M is the field generated by all the x-coordinates
of E3. We put g2 = 2aα and g3 = 2bβ.

In the first place, we consider the case of
3a < 2b. We get SD16-extensions K which are
cyclic over Q2(

√−1) in the case of 2b − 3a ≥ 3.
We get M = Q2

(√
3 + 2

√−5,
√

5
) (

resp. M =

Q2

(√
4 +

√−5,
√

5
))

by putting a = 2, b = 5

and α ≡ 1 mod 23 (resp. a = 1, b = 4 and α ≡
±1 mod 23). We get two SD16-extensions by putting
d ≡ ±1 mod 22 or d ≡ 2 mod 22 in each case. We get
all SD16-extensions which are cyclic over Q2(

√−1).
We get SD16-extensions K which are cyclic over
Q2(

√−5) in the case of 2b − 3a = 2. We get M =
Q2

(√
3 + 2

√−1,
√

5
)

for any 2-adic integers α and
β. We get two SD16-extensions by putting d ≡
±1 mod 22 or d ≡ 2 mod 22, respectively. We see
[Q2(E3) : Q2] ≤ 8 in the case of 2b−3a = 1, where we
denote by [Q2(E3) : Q2] the degree of Q2(E3)/Q2.

In the second place, we consider the case of 3a >

2b. We see that b is divisible by 3, if and only if
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∆1/3 ∈ Q2. We see [Q2(E3) : Q2] ≤ 8 in the case
of a − (2/3)b ≥ 2. In the case of a − (2/3)b = 1, we
get SD16-extensions which are cyclic over Q2(

√−5)
(resp. Q2(

√−1)) for α ≡ −1 mod 22 (resp. α ≡
1 mod 22). We get M = Q2

(√
3 + 2

√−1,
√

5
)

for

α ≡ −1 mod 22.
In the last place, we consider the case of 3a =

2b. We see that ∆1/3 ∈ Q2 if and only if α3−27β2 =
23cγ for a positive integer c and a 2-adic unit γ. By
calculating f(x), we see that

√
2 +

√−1 never ap-
pear in the field generating by x-coordinates of E3.

Therefore these two SD16-extensions which
contain Q2

(√
2 +

√−1,
√

5
)

never coincide with
Q2(E3) for any elliptic curves E.

(7-1) G =
〈(

1 1
1 0

)〉
. It is isomorphic to

C8. This case occurs in p ≡ 2 mod 3. The com-
positum of two C8-extensions whose intersection is a
C4-extension is a C8 × C2-extension. Therefore we
find another C8-extension containing the same C4-
extension by composing a quadratic extension over
Qp.

For p ≡ 1 mod 4, there exist four C8-extensions.
We construct two C4-extensions by adding x-
coordinates of E3. By putting g2 = pα and g3 =
p3β, the field generated by x-coordinates of E3 is a
C4-extension. We get two C8-extension by taking d

as a p-adic unit and a prime element, respectively.
We also get another C4-extension by putting g2 = α

and g3 = p2β. We see that it is unramified over Qp.
We get an unramified C8-extension by taking a p-
adic unit d such that d mod p is a quadratic residue.
We also get another C8-extension by taking d as a
prime element.

For p ≡ 3 mod 4, there exist two C8-extensions.
We can prove that there exist α, u ∈ F×

p (α �= u)
such that α3 −u3 is a quadratic residue but not α−
u. By putting g2 ≡ α mod p and g3 ≡ β mod p, we
get two C8-extensions, where β satisfies 27β2 ≡ α3−
u3 mod p. We remark that it is unramified by taking
d as d mod p is a quadratic residue. We also get
another C8-extension by taking d as a prime element.

For p = 2, there are eight C8-extensions. By
putting g2 = 2α (α ≡ 1 mod 23) and g3 = 22β, we
get a C4-extension by adding x-coordinates of E3.
We also get the unramified C4-extension by putting
g2 = 22α (α ≡ 1 mod 22) and g3 = β (β ≡ ±1 mod
23). We get four C8-extensions Q2(E3) by taking
d ≡ 1 mod 23, d ≡ −1 mod 23, d ≡ 2 mod 24 and

d ≡ −2 mod 24, respectively in each case.

(7-2) G =
〈

a =
(

1 −1
−1 −1

)
, b =

(−1 0
1 1

)〉

with a4 = b2 = 1, b−1ab = a−1. It is isomor-
phic to the dihedral group D8 of degree 8. This
case occurs in p ≡ 2 mod 3. Moreover we see p ≡
3 mod 4 or p = 2 by Naito [6]. In p �= 2, by
putting g2 = pα, g3 = p3β and d �≡ 0 mod p, we
see that Qp(E3) is a D8-extension. We know by
Naito [6] that there exists only one D8-extension
for p ≡ 3 mod 4. For p = 2, there exist eigh-
teen D8-extensions. By putting g2 = 2α (α ≡
−1 mod 23) and g3 = 22β, we get two D8-extension
Q2(E3) for d ≡ 1 mod 23, d ≡ −1 mod 23, respec-

tively. They are Q2

(
ζ3,

√√−2(1 +
√−2)

)
and

Q2

(
ζ3,

√√−2(1 + 3
√−2)

)
. Other D8-extentions

do not satisfy the condition ζσ
3 = ζdet σ

3 .

(7-3) G = SD16 ∩ SL2(F3). It is isomorphic
to the quaternion group Q8 of order 8. It occurs in
p ≡ 1 mod 3. Fujisaki [2] proved that p satisfies p ≡
3 mod 4 or p = 2 and that there exists only one Q8-
extension for odd prime p. He explicitly constructed
them. By putting g2 = pα and g3 = p3β, we see that
Qp(E3) is the Q8-extension.

(8-1) G =
〈(

1 −1
−1 −1

)〉
. It is isomorphic to

C4. It occurs in p ≡ 1 mod 3. For p ≡ 3 mod 4, there
exist two C4-extensions. By putting g2 = α and
g3 = p2β such that (1 − ζ3/3)α mod p is a quadratic
residue, we get an unramified C4-extension Qp(E3)
for a p-adic unit d such that d mod p is a quadratic
residue. We get another C4-extension for a prime
element d. For p ≡ 1 mod 4, there exist six C4-
extensions. By putting g2 = α and g3 = p2β, where
α mod p is not a quadratic residue, we get an unram-
ified C4-extension Qp(E3) for a p-adic unit d, which
is a quadratic residue of modulo p. We get another
C4-extension for a prime element d. By putting g2 =
pα and g3 = p3β, we get a C4-extension Qp(E3).
We get four such extensions as we take α mod p and
d mod p to be a quadratic residue or not respectively.

(8-2) G =
〈(−1 0

0 1

)
,

(−1 0
0 −1

)〉
. It is

isomorphic to C2 × C2.

(9-1) G =
〈(−1 0

0 1

)〉
. It is isomorphic to

C2.
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These two cases occur in p ≡ 2 mod 3 or p = 3.
For an odd prime p ≡ 2 mod 3, we put g2 = p2α

and g3 ≡ t3 mod p for a p-adic unit t. We see that
Qp(E3) is a unique C2 × C2-extension for a prime
element d. We see Qp(E3) = Qp(ζ3) for a p-adic
unit d. For p = 2, we put g2 = 26α and g3 = 23β

(β ≡ 1 mod 24). We see Q2(E3) = Q2(ζ3,
√

6) (resp.
Q2(ζ3,

√
2), Q2(ζ3,

√−1), Q2(ζ3)) for d ≡ 1 mod 23

(resp. d ≡ 3 mod 23, d ≡ 2 mod 24, d ≡ 6 mod 24).
For p = 3, we put g2 = 34α and g3 ≡ t3 mod 310 for
a 3-adic unit t. We see Q3(E3) = Q3(ζ3,

√
3) (resp.

Q3(ζ3)) for a 3-adic unit d such that t/d ≡ 1 mod 3
(resp. t/d ≡ −1 mod 3).

(9-2) G =
〈(−1 0

0 −1

)〉
. It is isomorphic to

C2.

(10) G =
{(

1 0
0 1

)}
. These two cases occur

in p ≡ 1 mod 3. We put g2 = p2α and g3 ≡ t3 mod p

for a p-adic unit t. We see Qp(E3) = Qp

(√
(γ/t)p

)
for d ≡ γp mod p2. We see that Qp(E3) is an un-
ramified quadratic extension for a p-adic unit d such
that −t3/d mod p is not a quadratic residue. We see
Qp(E3) = Qp, if −t3/d mod p is a quadratic residue.

3. Application. We call {Gp, Ip, Vp} a ram-
ification triple of GL2(F3), if it satisfies the following
conditions:

1. Gp is a subgroup of GL2(F3), such that Gp ⊂
SL2(F3) (resp. Gp �⊂ SL2(F3)) for p ≡ 1 mod 3
(resp. p �≡ 1 mod 3),

2. Ip is a normal subgroup such that Gp/Ip is a
cyclic group,

3. Vp is a normal subgroup such that Ip/Vp is
a cyclic group and the order � | Ip/Vp | divides
p�|Gp/Ip| − 1,

4. Vp is a p-group.
Let Gp be a Galois group of a Galois exten-

sion Qp(E3)/Qp. Let Ip (resp. Vp) be an inertia
(resp. wild ramification) group of Gp. We see that
{Gp, Ip, Vp} is a ramification triple of GL2(F3). We
get:

Theorem. Let S be a finite set of primes. For
p ∈ S, let {Gp, Ip, Vp} be a ramification triple of
GL2(F3). Moreover we assume that � |Gp/Ip | is
even for p �≡ 1 mod 3. Then there exist infinitely
many Galois extensions K/Q satisfying the follow-
ing conditions:

1. Galois group of K/Q is isomorphic to GL2(F3),
2. ζσ

3 = ζdetσ
3 for σ ∈ Gal(K/Q),

3. For p ∈ S, the decomposition (resp. inertia, wild
ramification) group is conjugate to Gp (resp.
Ip, Vp).

Proof. We put K = Q(E3) for an elliptic curve
E defined over Q. We see that the Galois group G of
K/Q is a subgroup of GL2(F3) and ζσ

3 = ζdet σ
3 for

σ ∈ Gal(K/Q). If {Gp, Ip, Vp} is a ramification triple
of GL2(F3) satisfying the assumption in the theorem,
Gp occurs in one of the case (1), (2), . . . , or (10). We
remark that every SD16-extention in (7.2) has the
same ramification triple whether it is generated by
3-division points of an elliptic curve or not. We take
an elliptic curve E satisfying congruence conditions
of modulo a suitable power of p ∈ S as the previous
section, for each prime p ∈ S. We see that K satisfies
the third condition. Moreover we put Gq1 = C8,
Gq2 = B, for primes q1, q2 �∈ S. Consequently G

contains a subgroup which is isomorphic to C8. It
also contains a subgroup isomorphic to B. Hence we
get G = GL2(F3). Hence we get one extension K in
the theorem.

Next we prove that there exist infinitely many
such fields. If there exist only finite such extensions,
we put them K1, . . . , Kt. Let pi be a prime which
completely decomposes in Ki/Q. We take S con-
taining p1, . . . , pt. We put Gpi �= {1}. We take an
elliptic curve E as above discussion. We see that
K = Q(E3) is not K1, . . . , Kt. Thus we can con-
struct infinitely many K.
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