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On holomorphic curves extremal for the truncated defect relation
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Abstract: We consider a holomorphic curve from the complex plane into the complex
projective space of odd dimension and give some results on truncated defects when the truncated
defect relation is extremal.
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1. Introduction. Let f = [f1, . . . , fn+1] be
a transcendental holomorphic curve from C into
the n-dimensional complex projective space Pn(C)
with a reduced representation (f1, . . . , fn+1) : C →
Cn+1 − {0}, where n is a positive integer. We
suppose throughout the paper that f is linearly
non-degenerate over C; namely, f1, . . . , fn+1 are
linearly independent over C. For a vector a =
(a1, . . . , an+1) ∈ Cn+1−{0}, let δ(a, f) and δn(a, f)
be the deficiency and the truncated deficiency of a

with respect to f respectively (see [7, Introduction]).
We have that 0 ≤ δ(a, f) ≤ δn(a, f) ≤ 1. Let X be a
subset of Cn+1 − {0} in N -subgeneral position such
that #X ≥ N + 1, where N is an integer satisfying
N ≥ n.

Cartan ([1], N = n) and Nochka ([4], N > n)
gave the following

Theorem A (the truncated defect relation)
(see [2, Corollary 3.3.9]). For any q elements aj

(j = 1, . . . , q) of X (2N − n + 1 ≤ q ≤ ∞), we
have the inequality:

q∑
j=1

δn(aj , f) ≤ 2N − n + 1.

We are interested in the holomorphic curve f

extremal for the truncated defect relation:

(1)
q∑

j=1

δn(aj , f) = 2N − n + 1.

In [6, Theorems 5.1, 6.1] we proved the following
theorem when n is even:
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Theorem B. Suppose that there are vectors
a1, . . . ,aq of X such that (1) holds, where 2N −
n + 1 < q ≤ ∞. If N > n = 2m (m ∈ N), then
#{aj | δn(aj , f) = 1} > (2N − n + 1)/(n + 1).

In [8, Theorem 3.1] we proved a theorem for the
holomorphic curve f with maximal deficiency sum
with respect to δ(a, f) when n is odd and q < ∞.

The purpose of this paper is to give a result
when N > n, n is odd and (1) holds, which is an
improvement of [8, Theorem 3.1].

2. Preliminaries and lemma. Let f , X

etc. be as in Section 1, q an integer satisfying 2N −
n + 1 ≤ q < ∞ and we put Q = {1, 2, . . . , q}. Let
{aj | j ∈ Q} be a subset of X. For a non-empty
subset P of Q, we denote by V (P ) the vector space
spanned by {aj | j ∈ P} and by d(P ) the dimension
of V (P ). We put O = {P ⊂ Q | 0 < #P ≤ N + 1}.

Lemma 2.1 (see [2, (2.4.3), p. 68]). If P ∈ O,
then #P − d(P ) ≤ N − n.

For {aj | j ∈ Q}, let ω : Q → (0, 1] be the
Nochka weight function and θ the reciprocal num-
ber of the Nochka constant given in [2, p. 72]. We
need the following properties of them:

Lemma 2.2 (see [2, Theorem 2.11.4]).
(a) 0 < ω(j)θ ≤ 1 for all j ∈ Q;
(b) If P ∈ O, then

∑
j∈P ω(j) ≤ d(P ).

Definition 2.1 ([5, Definition 1]). We put

λ = min
P∈O

d(P )/#P and σ(j) = λ (j ∈ Q).

Then, λ and σ have the following properties.
Lemma 2.3 ([5, Proposition 2]).

(a) 1/(N − n + 1) ≤ λ ≤ (n + 1)/(N + 1);
(b) For any P ∈ O,

∑
j∈P σ(j) ≤ d(P ).

Remark 2.1.
(a) If λ < (n + 1)/(2N − n + 1), then

λ = min1≤j≤q ω(j), ω(j) = λ and θω(j) < 1
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(j ∈ P0) for an element P0 ∈ O satisfying
λ = d(P0)/#P0.

(b) If λ ≥ (n + 1)/(2N − n + 1), then ω(j) = 1/θ =
(n + 1)/(2N − n + 1) (j = 1, . . . , q).
(See the proof of [2, Proposition 2.4.4, p. 68] and

the definitions of ω(j) and θ ([2, p. 72]).)
We introduce the following class of mappings

from Q to (0, 1]:
Definition 2.2. W =

{
τ : Q → (0, 1]

∣∣ ∀P ∈
O,

∑
j∈P τ(j) ≤ d(P )

}
.

For example the Nochka weight function ω (by
Lemma 2.2 (b)) and σ given in Definition 2.1 (by
Lemma 2.3 (b)) are in W.

Lemma 2.4. For any τ ∈ W it holds that
(a) ([6, Lemma 2.9])

∑q
j=1 τ(j)δn(aj , f) ≤ n + 1.

In particular ,
(b) ([2, Th. 3.3.8])

∑q
j=1 ω(j)δn(aj , f) ≤ n + 1.

Lemma 2.5 ([6, Corollary 2.2]). Suppose that
N > n and that for a1, . . . ,aq ∈ X, the equality (1)
holds. For j ∈ Q if θω(j) < 1, then δn(aj , f) = 1.

Corollary 2.1. Suppose that N > n ≥ 2 and
that for a1, . . . ,aq ∈ X (q < ∞), the equality (1)
holds. If the inequality (∗) λ < (n+1)/(2N −n+1)
holds, then there exists a non-empty subset P0 ∈ O
satisfying
(a) d(P0)/#P0 < (n + 1)/(2N − n + 1);
(b) δn(aj , f) = 1 (j ∈ P0).
In particular ,

#{j ∈ Q | δn(aj , f) = 1} > (2N − n + 1)/(n + 1).

Proof . By the definition of λ and the inequal-
ity (∗), there is a set P0 ∈ O such that

d(P0)/#P0 = λ < (n + 1)/(2N − n + 1).

By (∗) and Remark 2.1 (a), we have ω(j) = λ < θ−1

(j ∈ P0), so that θω(j) < 1 (j ∈ P0). By Lemma 2.5,
δn(aj , f) = 1 (j ∈ P0) since (1) is assumed. As

#P0 = d(P0)/λ >
2N − n + 1

n + 1
d(P0) ≥

2N − n + 1
n + 1

,

we have our corollary.
Let F be a family of non-empty subsets of X.
Definition 2.3 ([8, Definition 2.2]). We say

that two sets P1, P2 ∈ F have a relation P1 ∼ P2

if and only if either (i) P1 ∩P2 6= ∅ or (ii) there exist
sets R1, . . . , Rs ∈ F such that

Rj−1∩Rj 6= ∅ (1 ≤ j ≤ s+1), R0 = P1, Rs+1 = P2.

Lemma 2.6 ([8, Lemma 2.8]). The relation
“∼” in F is an equivalence relation.

Proof . As the proof is not given in [8], we give
it here.

(i) The relation “∼” is reflexive. It is trivial
that for any P ∈ F , P ∼ P .

(ii) The relation “∼” is symmetric. We prove
that for P1, P2 ∈ F , if P1 ∼ P2, then P2 ∼ P1.

Case 1: P1 ∩ P2 6= ∅. Then, P2 ∩ P1 6= ∅ and
we have P2 ∼ P1.

Case 2: There exist sets R1, . . . , Rs ∈ F such
that Rj−1 ∩ Rj 6= ∅ (1 ≤ j ≤ s + 1), where R0 = P1

and Rs+1 = P2. Put Rs+1−j = Tj (0 ≤ j ≤ s + 1).
Then, T1, . . . , Ts ∈ F , Tj−1 ∩ Tj 6= ∅ (1 ≤ j ≤ s + 1),
T0 = P2 and Ts+1 = P1. This means that P2 ∼ P1.

(iii) The relation “∼” is transitive. We prove
that for P1, P2, P3 ∈ F , if P1 ∼ P2 and P2 ∼ P3 then
P1 ∼ P3.

Case 1: P1 ∩ P2 6= ∅ and P2 ∩ P3 6= ∅. We
put R1 = P2. then R1 satisfies the condition (ii) of
Definition 2.3 and so P1 ∼ P3.

Case 2: P1 ∩ P2 6= ∅ and there exist sets
T1, . . . , Tt ∈ F such that Tj−1 ∩ Tj 6= ∅ (1 ≤ j ≤
t + 1), where T0 = P2 and Tt+1 = P3. In this case,
we put

R0 = P1, R1 = P2, Rj+1 = Tj (1 ≤ j ≤ t + 1).

Then, the sets R0, R1, . . . , Rt+2 satisfy the condi-
tion (ii) of Definition 2.3 and so P1 ∼ P3.

Case 3: There exist sets S1, . . . , Ss ∈ F such
that Sj−1 ∩ Sj 6= ∅ (1 ≤ j ≤ s + 1), where S0 = P1,
Ss+1 = P2 and P2 ∩ P3 6= ∅. In this case we have
P1 ∼ P3 as in Case 2.

Case 4: There exist sets S1, . . . , Ss ∈ F such
that Sj−1 ∩ Sj 6= ∅ (1 ≤ j ≤ s + 1), where S0 =
P1, Ss+1 = P2 and there exist sets T1, . . . , Tt ∈ F
such that Tj−1 ∩ Tj 6= ∅ (1 ≤ j ≤ t + 1), where
T0 = P2 and Tt+1 = P3. In this case, we put R0 =
P1, Rj = Sj (1 ≤ j ≤ s), Rs+1 = P2, Rs+1+j =
Tj (1 ≤ j ≤ t), Rs+t+2 = P3. Then the sets
R0, R1, . . . , Rs+t+2 satisfy the condition (ii) of Defi-
nition 2.3 and so P1 ∼ P3.

3. Extremal case I: q < ∞. Let f , X,
δn(a, f), O etc. be as in Section 1 or 2. The pur-
pose of this section is to give a result when n is odd
and the trucated defect relation is extremal for q =
#{a ∈ X | δn(a, f) > 0} < ∞. We put

{a ∈ X | δn(a, f) > 0} = {a1,a2, . . . ,aq}.

We suppose that
(3.i) N > n = 2m− 1 (m ∈ N);
(3.ii)

∑q
j=1 δn(aj , f) = 2N − n + 1.
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From (3.ii), the number q must satisfy the in-
equality 2N −n+1 ≤ q < ∞. We can apply lemmas
in Section 2. We note that (n + 1)/(2N − n + 1) =
m/(N −m + 1) as n = 2m− 1.

From Lemma 2.3 (b), Lemma 2.4 (a) and the
assumption (3.ii), we obtain the inequality λ ≤
m/(N −m + 1).

First, we have the following
Lemma 3.1. If λ < m/(N−m+1), then there

exists P0 ∈ O satisfying δn(aj , f) = 1 (j ∈ P0) and

#P0 = d(P0)/λ >
2N − n + 1

n + 1
d(P0) ≥

2N − n + 1
n + 1

.

Proof . By Lemma 2.3 (a) we have m ≥ 2, so
that n = 2m− 1 ≥ 3. We can apply Corollary 2.1 to
obtain this lemma.

Next, we consider the case when λ =
m/(N − m + 1). We note that ω(j) = λ (j ∈ Q)
by Remark 2.1 (b). Put

O1 = {P ∈ O | d(P )/#P = λ = m/(N −m + 1)}.

Note that O1 is non-empty and finite. We apply
Definition 2.3 and Lemma 2.6 to F = O1 and classify
O1 by the equivalence relation “∼.” We put

O1/∼ = {P1, . . . ,Pp};

Mk =
⋃

P∈Pk

P (k = 1, . . . , p).

The method used in [8, Section 3] is applicable
to this case and we obtain the followings. As in [8,
Proposition 3.5] we have the following

Lemma 3.2.
(a) Mk ∈ O1 (1 ≤ k ≤ p);
(b) p ≥ 2;
(c) Mk ∩M` = ∅ (k 6= `) and
(d) d(Mk) = m, #Mk = N −m + 1 (1 ≤ k ≤ p).

Put Qo =
⋃p

k=1 Mk. As in [8, Proposition 3.6]
we have the following

Lemma 3.3.
(a) Q = Qo;
(b) (N −m + 1)|q and p = q/(N −m + 1).

As in [8, Proposition 3.7] we have the following
Lemma 3.4. Any m elements of {a1, . . . ,aq}

are linearly independent .
Summarizing Lemmas 3.1, 3.2, 3.3 and 3.4 we

obtain the following
Theorem 3.1. Suppose that

(i) N > n = 2m− 1 (m ∈ N);

(ii) δn(aj , f) > 0 (j = 1, . . . , q; q < ∞) and
q∑

j=1

δn(aj , f) = 2N − n + 1.

Then, for the set Q = {1, . . . , q}, either (I)
or (II) given below holds:
(I) #{j ∈ Q | δn(aj , f) = 1} > 2N−n+1

n+1 .
(II) q is divisible by N − m + 1 and for p =

q/(N − m + 1), there are mutually disjoint
subsets M1, . . . ,Mp of Q satisfying

(a) Q =
⋃p

k=1 Mk;
(b) d(Mk) = m, #Mk = N −m + 1 (1 5 k 5 p);
(c) any m elements of {a1, . . . ,aq} are linearly

independent.
4. Extremal case II: q = ∞. Let f,X

etc. be as in Section 1 or 2. As in the case of mero-
morphic functions (see [3, p. 79]), the set Y = {a ∈
X | δn(a, f) > 0} is at most countable. We treated
the case when Y is a finite set in Section 3. In this
section, we suppose that Y is not finite and we put
Y = {aj | j ∈ N}, where N is the set of positive
integers. We put

O∞ = {P ⊂ N | 0 < #P ≤ N + 1}

and for any non-empty finite subset P of N, we
use V (P ) and d(P ) as in Section 2. We put µ =
minP∈O∞ d(P )/#P . Note that the set {d(P )/#P |
P ∈ O∞} is a finite set. We have the following
(4.a) ([5, p. 144]) 1

N−n+1 ≤ µ ≤ n+1
N+1 ;

(4.b) ([6, Lemma 4.1])
∑∞

j=1 δn(aj , f) ≤ (n + 1)/µ.
From now on throughout this section we suppose

that
(4.i) N > n = 2m− 1 (m ∈ N);
(4.ii)

∑∞
j=1 δn(aj , f) = 2N − n + 1.

From (4.ii) and (4.b), we have the following in-
equality:

µ ≤ (n + 1)/(2N − n + 1).

First, we have the following
Proposition 4.1. If µ < (n+1)/(2N−n+1),

then

#{j ∈ N | δn(aj , f) = 1} > (2N − n + 1)/(n + 1).

(For the proof of this proposition, see the latter
half of the Proof of [6, Theorem 6.1, p. 17]. Note
that m ≥ 2 by (4.a).)

Next, we consider the case µ = (n + 1)/(2N −
n + 1). Note that µ = (n + 1)/(2N − n + 1) =
m/(N −m + 1). We put
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F0 =
{

P ∈ O∞
∣∣∣∣ d(P )/#P = µ =

m

N −m + 1

}
,

which is not empty. Corresponding to [8, Proposi-
tions 3.2–3.7], we obtain the following propositions.

Proposition 4.2. For any P ∈ F0, d(P ) ≤ m

and #P ≤ N −m + 1.
Proof . Let P be in F0. Then, #P = d(P )/µ

and so we have the inequality

#P − d(P ) = d(P )(N − n)/m ≤ N − n

by Lemma 2.1 and n = 2m − 1. This implies that
d(P ) ≤ m and #P ≤ N −m + 1.

Proposition 4.3. For any element P0 of F0,
{P ∈ F0 | P − P0 6= ∅} 6= ∅.

Proof . Let P0 be an element of F0 and put

F1 = {P ∈ O∞ | P − P0 6= ∅}.

Then, F1 6= ∅ since #P0 5 N −m + 1 < ∞. As the
set {d(P )/#P | P ∈ F1} is finite, we put

µ1 = min
P∈F1

d(P )/#P.

Then, we have that µ = µ1. In fact, the inequality
µ ≤ µ1 holds by the definition of µ. Suppose that
µ < µ1 and let ε be any number satisfying

(2) 0 < ε < 1− µ/µ1

and P1 ∈ F1 satisfying d(P1)/#P1 = µ1. We choose
a positive integer q satisfying
(4.c) P0 ∪ P1 ⊂ Q = {1, 2, . . . , q};
(4.d)

∑q
j=1 δn(aj , f) > 2N − n + 1− ε

and 2N − n + 1 < q < ∞. For this Q, we use θq, ωq

and λq instead of θ, ω and λ in Section 2 respec-
tively. By the choice of q in (4.c), µ = λq and by
Remark 2.1 (b) for j ∈ Q

(3) ωq(j) = µ = m/(N −m + 1)

and so we have from (4.d)

(4)
q∑

j=1

ωq(j)δn(aj , f) > n + 1− εµ.

Put

τ(j) =

{
µ (j ∈ P0)
µ1 (j ∈ Q− P0).

Then, the function τ : Q → (0, 1] belongs to W. In
fact, for any element P of O∞ such that P ⊂ Q,
(a) when P ⊂ P0,∑

j∈P

τ(j) = µ#P ≤ (d(P )/#P )#P = d(P );

(b) when P − P0 6= ∅,∑
j∈P

τ(j) ≤ µ1#P ≤ (d(P )/#P )#P = d(P ).

By Lemma 2.4 (a), (3) and (4) we obtain the
inequality

q∑
j=1

τ(j)δn(aj , f) ≤ n + 1 <

q∑
j=1

µδn(aj , f) + εµ,

which reduces to the inequality

(5) (µ1 − µ)
∑

j∈Q−P0

δn(aj , f) < εµ.

As∑
j∈Q−P0

δn(aj , f) > 2N − n + 1− ε−#P0

≥ N −m + 1− ε,

from (5) we have the inequality

(µ1 − µ)(N −m + 1− ε) < εµ,

which reduces to the inequality

(1− µ/µ1)(N −m + 1) < ε,

which contradicts (2) as N − m ≥ 1. This implies
that the equality µ = µ1 must hold and P1 belongs
to F0 and satisfies that P1 − P0 6= ∅.

Proposition 4.4. Let P1 and P2 be in F0. If
P1 ∩ P2 6= ∅, then P1 ∪ P2 ∈ F0.

Proof . As P1, P2 ∈ F0,

(6) d(P1)/#P1 = d(P2)/#P2 = µ.

From Proposition 4.2 we obtain the inequality

(7) d(P1) + d(P2) ≤ 2m = n + 1.

As

(8) d(P1 ∪ P2) + d(P1 ∩ P2) ≤ d(P1) + d(P2)

(see [2, p. 68]) and d(P1∩P2) ≥ 1 by our assumption,
from (7) and (8) we obtain the inequality

d(P1 ∪ P2) ≤ n,

which implies that #(P1 ∪ P2) ≤ N so that
P1 ∪ P2 ∈ O∞.

Next, by the definition of µ, we have the inequal-
ities

(9) µ ≤ d(P1 ∪ P2)
#(P1 ∪ P2)

and µ ≤ d(P1 ∩ P2)
#(P1 ∩ P2)

.

We note that P1 ∩ P2 ∈ O∞ since
0 < #(P1 ∩ P2) ≤ N −m + 1 ≤ N .
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From (6), (8) and (9) we have the inequality

µ ≤ d(P1 ∪ P2)
#(P1 ∪ P2)

≤ d(P1) + d(P2)− d(P1 ∩ P2)
#P1 + #P2 −#(P1 ∩ P2)

≤ µ,

which implies that d(P1 ∪ P2)/#(P1 ∪ P2) = µ, so
that P1 ∪ P2 ∈ F0.

We apply Definition 2.3 and Lemma 2.6 to F =
F0 and classify F0 by the equivalence relation “∼.”
We put

F0/∼ = {P1, . . . ,Pp} (1 ≤ p ≤ ∞);

Mk =
⋃

P∈Pk

P (k = 1, . . . , p).

Corresponding to Lemma 3.2, we have the fol-
lowing

Proposition 4.5.
(a) Mk ∈ F0 (1 ≤ k ≤ p);
(b) p ≥ 2;
(c) Mk ∩M` = ∅ (k 6= `) and
(d) d(Mk) = m, #Mk = N −m + 1 (1 ≤ k ≤ p).

Proof . (a) First, we note that #Pk ≤ N−m+
1 by Propositions 4.2 and 4.4. By the definition of
the relation “∼” and by Proposition 4.4, we have this
assertion.

(b) As M1 belongs to F0, we apply Proposi-
tion 4.3 to M1. There exists an element P ∈ F0 such
that P −M1 6= ∅. In this case, P ∩M1 = ∅. In fact,
if P ∩M1 6= ∅, then, by the definition of the relation
“∼,” P ∼ M1. This means that P ∈ P1, and so
P ⊂ M1 by the definition of M1, which implies that
P −M1 = ∅. This is a contradiction. We have that
p ≥ 2.

(c) This is trivial from the definition of Mk.
(d) Suppose to the contrary that there exists

at least one k (1 ≤ k ≤ p) such that d(Mk) ≤ m −
1. For simplicity, we may suppose without loss of
generality that k = 1. Then, as

d(M1 ∪M2) + d(M1 ∩M2) ≤ d(M1) + d(M2)

(see [2, p. 68]), by Proposition 4.2 and (a) of this
proposition we have

d(M1) + d(M2) ≤ m− 1 + m = 2m− 1 = n,

which means that M1 ∪M2 ∈ O∞. As M1,M2 ∈ F0,
by the definition of µ we have

µ ≤ d(M1 ∪M2)
#(M1 ∪M2)

≤ d(M1) + d(M2)
#M1 + #M2

= µ.

Note that M1 ∩ M2 = ∅ by (c) of this proposition.
We have d(M1∪M2)/#(M1∪M2) = µ, which means

that M1 ∪M2 ∈ F0. Then, as

M1 ∼ M1 ∪M2 and M1 ∪M2 ∼ M2,

we have that M1 ∼ M2. This is a contradiction since
M1 ∈ P1 and M2 ∈ P2. This implies that d(Mk) =
m and #Mk = N −m + 1 (k = 1, . . . , p).

Put
⋃p

k=1 Mk = Qo. Then, we have the follow-
ing

Proposition 4.6. Qo = N.
Proof . Suppose to the contrary that Qo $ N.

Put F2 = {P ∈ O∞ | P − Qo 6= ∅}, which is not
empty by our assumption of this proof, and we put
µ2 = minP∈F2 d(P )/#P . Then, µ < µ2. In fact,
the inequality µ ≤ µ2 holds in general by the defini-
tion of µ. Suppose that µ = µ2. Then, there exists
an element P ∈ F2 satisfying d(P )/#P = µ2 = µ,
which means that P ∈ F0 and P − Qo 6= ∅. This
is a contradiction to the definition of Qo. We have
that µ < µ2. Let P0 ∈ F0 satisfying d(P0)/#P0 = µ,
qo the least number in N − Qo and ε any number
satisfying

(10) 0 < ε < (µ2/µ− 1)δn(aqo , f).

We choose a positive integer u satisfying
(4.e) P0 ⊂ Q = {1, 2, . . . , u} and u > qo;
(4.f)

∑u
j=1 δn(aj , f) > 2N − n + 1− ε

and 2N − n + 1 < u < ∞. For this Q, we use θu, ωu

and λu instead of θ, ω and λ in Section 2 respectively.
By the choice of u in (4.e), µ = λu and by Remark 2.1
(b) for j ∈ Q

(11) ωu(j) = µ = m/(N −m + 1)

and so we have from (4.f)

(12)
u∑

j=1

ωu(j)δn(aj , f) > n + 1− εµ.

Put

τ(j) =

{
µ (j ∈ Qo ∩Q)
µ2 (j ∈ Q−Qo).

Then, the function τ : Q → (0, 1] belongs to W (see
(a) and (b) in the Proof of Proposition 4.3). By
Lemma 2.4 (a), (11) and (12) we obtain the inequal-
ity

u∑
j=1

τ(j)δn(aj , f) ≤ n + 1 <

u∑
j=1

µδn(aj , f) + εµ,

which reduces to the inequality
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(µ2 − µ)
∑

j∈Q−Qo

δn(aj , f) < εµ,

so that we have the inequality

(µ2/µ− 1)δn(aqo , f) < ε,

which is a contradiction to (10). This means that
Qo = N.

Remark 4.1. p (= the number of elements
of F0/∼) = ∞.

In fact, if p < ∞, then by Propositions 4.5 (d)
and 4.6, #N = p(N −m + 1) < ∞, which is a con-
tradiction.

Proposition 4.7. Any m elements of
{aj | j ∈ N} are linearly independent .

Proof . Let b1, . . . , bm be any m vectors in {aj |
j ∈ N}. As m < ∞ there is a positive integer k such
that (∗) Mk∩{b1, . . . , bm} = ∅. We suppose without
loss of generality that k = 1. As d(M1) = m by
Propsition 4.5 (d), there are m linearly independent
vectors c1, . . . , cm in M1. As #M1 = N − m + 1,
(∗) implies that #(M1 ∪ {b1, . . . , bm}) = N + 1. As
X is in N−subgeneral position, there are n+1 = 2m

linearly independent vectors in M1 ∪ {b1, . . . , bm}.
This implies that n+1 vectors b1, . . . , bm, c1, . . . , cm

are linearly independent since d(M1) = m, and so
b1, . . . , bm are linearly independent.

Summarizing Propositions 4.1, 4.5, 4.7 and Re-
mark 4.1 we obtain the following

Theorem 4.1. Suppose that
(i) N > n = 2m− 1, where m ∈ N;
(ii) there exist an infinite number of vectors aj in

X satisfying δn(aj , f) > 0 (j ∈ N) and
∞∑

j=1

δn(aj , f) = 2N − n + 1.

Then, either (I) or (II) given below holds:
(I) #{j ∈ N | δn(aj , f) = 1} > 2N−n+1

n+1 .

(II) There are mutually disjoint subsets M1,

M2, . . . ,Mk, . . . of N satisfying
(a) N =

⋃∞
k=1 Mk,

(b) #Mk = N−m+1, d(Mk) = m (k = 1, 2, . . . )
and

(c) any m elements of {aj | j ∈ N} are linearly
independent.
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