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Abstract: Let L be a very ample line bundle on a smooth complex projective variety X of
dimension ≥ 6. We classify the polarized manifolds (X,L) such that there exists a smooth member
A of |L| endowed with a branched covering of degree four π : A→ Pn. The cases of deg π = 2 and
3 are already studied by Lanteri-Palleschi-Sommese. Recently the case of deg π = 5 is studied by
Amitani.
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1. Introduction. Let X be an (n + 1)-
dimensional smooth complex projective variety and
L a very ample line bundle on X. Consider the fol-
lowing condition:
(∗)d There exists a smooth member A ∈ |L| such that
there exists a finite surjective morphism π : A→ Pn

of degree d.
Needless to say, the following “obvious” pairs
(X,L) satisfy (∗)d: (Pn+1,OPn+1(d)) and
(Hn+1

d ,OHn+1
d

(1)), where Hn+1
d is a smooth

hypersurface of degree d in Pn+2.
It is an interesting subject to investigate, for a

fixed d, what kind of the “non-obvious” pairs show
up. In fact, classical results on surfaces with hyper-
elliptic curves as hyperplane sections (e.g. [3]) and
their revision made in the 1980’s called the atten-
tion to the problem of classifying pairs (X,L) with
(∗)d. The problem has been considered by several
authors according to the following values of (n, d):
(1, 2) (Serrano [15], Sommese-Van de Ven [16]), (1, 3)
(Fania [4]).

And, for small prime numbers d, the pairs (X,L)
satisfying (∗)d and n > d have been classified com-
pletely: For d = 2 and 3, Lanteri-Palleschi-Sommese
([11, 12]) classified the pairs. For d = 5, Amitani
([1]) classified the pairs recently.

Let q be the morphism associated to π∗OPn(1),
and assume t := h0(A, π∗OPn(1))−n− 1 > 0. Then
we have a factorization of π as follows:
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A
q //

π
**

q(A) ⊂ Pn+t

p :
The projection from a Pt−1

in Pn+t with q(A)∩Pt−1 = ∅.
��

Pn

In the case where d is a prime, it immediately follows
that q is birational onto its image q(A), which is a
variety of degree d. This plays a key role in the
classification problem for a small d.

Now then, for a composite number d, there may
exist pairs (X,L) with a non-birational morphism
q. Therefore it is natural to study the structures of
these pairs.

The purpose of this article is to give a complete
classification of the pairs (X,L) in case n > d = 4.
Our result is as follows:

Theorem 1.1. Let X be a smooth projective
variety with dimX = n + 1 > 5. Then there exists
a very ample line bundle L on X that satisfies the
condition (∗)4 if and only if (X,L) is one of the
following
(i) (Pn+1,OPn+1(4));
(ii) (Qn+1,OQn+1(2)), where Qn+1 is a smooth hy-

perquadric in Pn+2;
(iii) (Hn+1

4 ,OHn+1
4

(1));

(iv)
(
V n+1

2,2 ,OV n+1
2,2

(1)
)
, where V n+1

2,2 is a smooth
complete intersection of two hyperquadrics
in Pn+3;

(v) (Y, 4L), where (Y,L) is a Del Pezzo manifold of
degree one;

(vi) (Z, 2L), where (Z,L) is a Del Pezzo manifold
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of degree 2; or
(vii) (W12,OW12(4)), where W12 is a smooth hyper-

surface of degree 12 in the weighted projec-
tive space P(4, 3, 1n+1) with its ample invertible
sheaf OW12(1).
No less than three “non-obvious” pairs (v)–(vii)

show up. The pair (vi) is a unique one with a non-
birational morphism q: We see that q(A) is a smooth
hyperquadric in this case.

Our basic strategy is to reduce to Fujita’s classi-
fication theory of polarized varieties, which leads us
to study the structure of (X,L) with a non-birational
morphism q.

The strategy is roughly summarized as follows:
As we will see in the section 3, it follows that
Pic(X) = Z[H], where H is the ample genera-
tor. And we can show that invariants of (X,H) are
small. Therefore the classification theory is appli-
cable except certain polarized manifolds with sec-
tional genera g(X,H) = 3, ∆-genera and degrees
(I) ∆(X,H) = Hn+1 = 1 or (II) 2. The classification
problem of polarized manifolds with these invariants,
in general, are yet to be solved completely (cf. [7,
(6.18), (10.10)]).

As for (I), it turns out that (X,H) is not sec-
tionally hyperelliptic. Furthermore, we find that a
curve which is an intersection of n-general members
of |H| is a smooth plane quartic. In this case, we can
determine the structure of (X,H) by using a new
method developed in [1].

As for (II), we can prove that this case is ruled
out by using the Riemann-Roch theorem for curves
and the double point formula for surfaces, success-
fully (see Proposition 3.2).

After the present paper was written up, I found
that Antonio Lanteri has obtained a similar classifi-
cation result in [10, Theorem 3.4] by using the same
arguments to rule out some “a priori” possible cases
in the section 3 of the present paper. In fact, I found
out that Proposition 3.2 and the argument in the
proof were the same as [10, Lemma 3.3]. But his
classification result contains one doubtful case: In
fact, for the case (vii) in Theorem 1.1, his result has
given only some invariants. In contrast, our theorem
reveals the structure of a unique polarized manifold
appearing in the case. So our classification result is
complete.

Notations, terminologies and conventions.
In this article, we work over the complex number field
C. We use the standard notation from algebraic ge-

ometry as in [8] and also use the terminologies for po-
larized varieties as in [7]. For an integer r ≥ 1, a line
bundle L on a manifold M is said to be r-generated
if the graded ring R(M,L) :=

⊕
i≥0H

0(M, iL) is
generated by the global sections of L, . . . , rL (see [9,
Definition 2.1]).

2. Three special examples : The ‘if ’ part.
In this section we only consider the three special
classes (v)–(vii) of polarized manifolds appearing in
Theorem 1.1 because one can easily check that the
cases (i)–(iv) satisfy the assertion.

Example 1. Let (X,L) = (Y, 4L), where
(Y,L) is an (n+ 1)-dimensional Del Pezzo manifold
of degree one, i.e., −KY = nL with Ln+1 = 1. We
have ∆(Y,L) = 1. As in the proof of [12, (1.2)], we
see that 4L is very ample. Therefore it follows from
[1, Proposition 3.2] that there exists a four-sheeted
cover of Pn that is a member of |4L|.

Example 2. Let (X,L) = (Z, 2L), where
(Z,L) is an (n + 1)-dimensional Del Pezzo mani-
fold of degree 2, i.e., −KY = nL with Ln+1 =
2. Then, from [7, (8.11)], (Z,L) is a double cov-
ering of Pn+1 branched along a smooth hypersur-
face of degree 4 and L is the pull-back of OPn+1(1).
The graded ring R(Z,L) is 2-generated since (Z,L)
is a smooth weighted hypersurface of degree 4 in
P(2, 1n+2). We obtain that 2L is very ample by com-
bining the spannedness of L and [9, Corollary 2.3].
Therefore there exists a smooth member A ∈ |2L|
that is a double covering of Qn. By projecting Qn

from a point of Pn+1 \Qn to Pn, we see that A is a
four-sheeted cover of Pn.

Example 3. Let (X,L) = (W12,OW12(4)),
where W12 is a smooth weighted hypersurface of de-
gree 12 in P(4, 3, 1n+1). By easy calculations, we
obtain that ∆(W12,OW12(1)) = OW12(1)n+1 = 1.
From [6, §13], we see that Bs |OW12(1)| consists of
a single point, which is denoted by p. We obtain a
smooth four-sheeted cover of Pn that is contained in
|OW12(4)| by combining [1, Proposition 3.2] and the
following lemma:

Lemma 2.1. The line bundle OW12(4) is very
ample.

Proof . We obtain the conclusion with the fol-
lowing steps:
(a) Bs |OW12(4)| = ∅;
(b) The morphism ϕ := ϕOW12 (4) associated to

OW12(4) is injective;
(c) The linear system |OW12(4)| separates the tan-
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gent vectors.
From the 4-generatedness of R(W12,OW12(1))

and [9, Theorem 2.2], ϕ is an embedding outside the
single point p. Let x, y, zj (0 ≤ j ≤ n) generate the
graded ring R(W12,OW12(1)), where wt(x, y, zj) =
(4, 3, 1) for all j.

(a) It follows that H0(OW12(4)) is generated
by the sections

x, yz0, . . . , yzn, zj1 · · · zj4 ,

with 0 ≤ j1 ≤ · · · ≤ j4 ≤ n.

Therefore we see that

Bs |OW12(4)| = (x = 0) ∩

 ⋂
0≤j≤n

(zj = 0)

 ,

which is empty since W12 does not meet the singular
points of P(4, 3, 1n+1).

(b) If we assume ϕ(p) = ϕ(q) for some q ∈
W12, then we find that zj = 0 for any 0 ≤ j ≤ n,
which implies q ∈ Bs |OW12(1)|. Thus p = q.

(c) For a non-zero tangent vector τ ∈ Tp(W12),
we need to show that there exists a section σ ∈
H0(OW12(4)) satisfying the following conditions:

σ(p) = 0 and dσ(τ) 6= 0.

We show that σj := yzj satisfies the above con-
ditions for some 0 ≤ j ≤ n. The former holds be-
cause zj(p) = 0 for all j. We prove that the latter
holds by contradiction. Assume that there exists a
non-zero τ ∈ Tp(W12) with dσj(τ) = 0 for all j.
Since dσj(τ) = y(p) dzj(τ) and y(p) 6= 0, we see that
dzj(τ) = 0 for all j. Thus we have

τ ∈ Tp(Γ), where Γ :=
⋂

1≤j≤n

(zj = 0).

It follows from dz0(τ) = 0 that Γ · OW12(1) ≥ 2,
which contradicts OW12(1)n+1 = 1. This completes
the proof.

3. The ‘only if ’ part. Let (X,L) satisfy
n > 4 and (∗)4. And let π : A→ Pn denote the finite
morphism of degree 4. Then a Barth-type theorem of
Lazarsfeld [13, Theorem 1] implies that H2(A,Z) ∼=
H2(Pn,Z) ∼= Z and H1(A,OA) = 0. Therefore we
have Pic(A) ∼= Z, generated by π∗OPn(1). The Lef-
schetz hyperplane section theorem implies Pic(X) ∼=
Z. We denote by H the ample generator of Pic(X);
we have HA = π∗OPn(1). Thus we can write L = lH
with some l > 0. Since lHn+1 = Hn

A = 4, we see that

Hn+1 = 1, 2 or 4.

Combining the ampleness of HA and the fact that ∆-
genus is non-negative for every polarized manifold [7,
Chapter I (4.2)], we see

n+ 1 ≤ h0(A,HA) ≤ n+ 4.

In this section, we investigate the polarized
manifolds in question case by case.

The case of h0(A,HA) = n + 4. Since
∆(A,HA) = 0 and Pic(A) ∼= Z, it follows from [7,
Chapter I (5.10)] that (A,HA) is either (Pn,OPn(1))
or (Qn,OQn(1)). Moreover, since Hn

A = 4, we get a
contradiction. Hence this case does not occur.

The case of h0(A,HA) = n+ 3. We see that
(A,HA) has a regular ladder by the argument as in
the proof of [1, Lemma 5.1]. Then we obtain that
g(A,HA) ≥ ∆(A,HA) = 1 by the Riemann-Roch
theorem. Therefore we see g(A,HA) = 1 by com-
bining 4 = Hn

A > 2∆(A,HA) = 2 and [7, Chap-
ter I (3.5.3)]. This implies that (A,HA) is a Del
Pezzo manifold of degree 4, which is

(
V n

2,2,OV n
2,2

(1)
)

due to [7, (8.11)].
For (l,Hn+1) = (1, 4), L = H gives an embed-

ding of X into Pn+3. Hence it follows from [14,
Corollary 3.8] that (X,L) ∼=

(
V n+1

2,2 ,OV n+1
2,2

(1)
)
. We

are in the case (iv) in Theorem 1.1.
For (l,Hn+1) = (2, 2), we see that h0(X,H) =

n + 3 from the Kodaira vanishing theorem. Since
∆(X,H) = 0 and Hn+1 = 2, we have (X,L) ∼=
(Qn+1,OQn+1(2)). Hence we are in the case (ii).

For (l,Hn+1) = (4, 1), we see that this case does
not occur as follows: Since h0(X,H) = n + 3, we
obtain that ∆(X,H) = −1, which is absurd.

The case of h0(A,HA) = n + 2. For
(l,Hn+1) = (1, 4), we have h0(X,H) = n + 3 by
the Kodaira vanishing theorem. Hence we obtain
that ∆(X,H) = 2. Combining dimX > 5 and [7,
(10.8.1)], we see that (X,L) ∼=

(
Hn+1

4 ,OHn+1
4

(1)
)
.

Thus we are in the case (iii) in the Theorem.
For (l,Hn+1) = (2, 2), we have h0(X,H) = n+

2, hence ∆(X,H) = 1. It follows from [7, (6.13)] that
(X,L) ∼= (Z, 2L). Thus we are in the case (vi).

For (l,Hn+1) = (4, 1), we have ∆(X,H) = 0.
Therefore (X,L) ∼= (Pn+1,OPn+1(4)), which is the
case (i).

The case of h0(A,HA) = n+ 1. Since Hn
A =

4, we have l 6= 1, hence
(I) ∆(X,H) = Hn+1 = 1;

(II) ∆(X,H) = Hn+1 = 2.
Let H1, . . . ,Hn ∈ |H| be general members, and
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put Xk :=
⋂

k≤i≤nHi for every 1 ≤ k ≤ n. Then
each Xk is a k-dimensional submanifold of X due
to [6, (13.1)] and [5, (4.1)]. Moreover, by combining
H1(X,OX) = 0 and the Lefschetz-type theorem [7,
(7.1.4)], we see that the ladder {Xk}1≤k≤n+1 is reg-
ular, where we put Xn+1 := X. Therefore we have
h0(Xk,HXk

) = k for all 1 ≤ k ≤ n + 1. Since LX1

is very ample and has degree 4, we have g(X,H) =
g(X1) = 1 or 3. Then we argue case by case.

For the case g(X,H) = 1, we are in the case (I)
by [7, (12.3)] and Pic(X) ∼= Z. Hence (X,H) is a
Del Pezzo manifold of degree one, which is the case
(v) in the Theorem.

For the case g(X,H) = 3 and (I), we are in the
case (vii) from the following

Proposition 3.1. Assume that g(X,H) = 3
and (I). Then (X,H) ∼= (W12,OW12(1)), where
W12 ⊂ P(4, 3, 1n+1) is a smooth weighted hypersur-
face of degree 12.

Proof . We first note that X1 is isomorphic to a
plane quartic curve because of g(X1) = 3. Next, we
will show that
(1) R(X1,HX1) ∼= C[x, y, z]/(F12), where

wt(x, y, z) = (4, 3, 1) and F12 = x3 + y4 +
zψ11 for some homogeneous polynomial ψ11 ∈
C[x, y, z] of degree 11; and

(2) The restriction map ρ : R(X2,HX2) →
R(X1,HX1) is surjective.

It suffices to prove the above: In fact, from (1) and
(2), we see that X2 is a weighted hypersurface of
degree 12 in P(4, 3, 12), and therefore the assertion
follows from [14, Proposition 3.10].

(1) We find the generators of R(X1,HX1) and
the relations among them by using the Riemann-
Roch theorem for X1. By the sectional genus for-
mula, we obtain KX1 = 4HX1 . Therefore we have

h0(lHX1) = h0((4− l)HX1) + l − 2.

For all l ≥ 5, we see h0(lHX1) = l − 2. For l ≤ 4,
we get the following table because of the well-known
fact that a smooth plane quartic has no g1

2 .
Let z be a basis of the vector space H0(HX1).

Choose y ∈ H0(3HX1) such that H0(3HX1) =
〈y, z3〉. Similarly, choose x ∈ H0(4HX1) such that

Table

l h0(lHX1) l h0(lHX1)
1 1 3 2
2 1 4 3

H0(4HX1) = 〈x, yz, z4〉. From now on, we proceed
in two steps.

Step 1. We claim that the graded ring
R(X1,HX1) is generated by three elements x, y, z.
Indeed, it suffices to show that there exist some
monomials in x, y, z which form a basis of H0(lHX1)
for each l ≥ 5.

We use induction on l. By the assumption (I),
we see that Bs |H| is a single point p. Note that each
monomial in x, y contained in H0(lHX1) has a pole
of order exactly l at p. When l = 5, we see that
the monomials xz, yz2, z5 are linearly independent
by comparing their orders of poles at p, hence form
a basis of H0(5HX1).

Suppose that the assertion holds for l − 1 ≥ 5.
Note that h0(lHX1) = h0((l−1)HX1)+1. It is easily
shown that

for two coprime positive integers a, b and an
integer l with l ≥ (a−1)(b−1), the equation
ai+ bj = l has at least one solution (i, j) of
non-negative integers.

Set (a, b) = (4, 3). Then, due to l ≥ 6, there ex-
ists at least one section written as xiyj (i, j ≥ 0) in
H0(lHX1), not contained in zH0((l−1)HX1). Hence
H0(lHX1) = Cxiyj⊕zH0((l−1)HX1). From the in-
duction hypothesis, the assertion holds for l. This
proves our claim.

By Step 1, there exists a surjective homomor-
phism of graded rings

Φ: C[x, y, z] → R(X1,HX1).

Step 2. We show that there exists an irre-
ducible homogeneous polynomial F12 of degree 12
in C[x, y, z] such that Ker(Φ) = (F12). Indeed, there
exist no relations of degree l < 12 since the equation
4i + 3j = l has at most one solution (i, j) of non-
negative integers. For l = 12, there are exactly 11
monomials in x, y, z of degree 12. On the other hand,
h0(12HX1) = 10. Therefore there exists one relation
F12 of degree 12, which is written as

F12 = x3 + y4 + zψ11(x, y, z)

after we replace x and y by suitable scalar multiples,
where ψ11 is a homogeneous polynomial in x, y, z of
degree 11.

It turns out that F12 is irreducible as follows.
We can show that x3+y4 is irreducible, immediately.
Write F12 = P1(x, y, z)P2(x, y, z) with some P1, P2 ∈
C[x, y, z]. Without loss of generality, we may assume
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P1(x, y, 0) = 1. Hence P1(x, y, z) = 1+zξ1 and P2 =
x3 + y4 + zξ2, where ξ1, ξ2 are polynomials in x, y, z.
We have

ψ11(x, y, z) = ξ1(x3 + y4 + zξ2) + ξ2.

It follows that ξ1 = 0. Indeed, otherwise, the highest
term of the right-hand side has degree ≥ 12, which
is absurd. Therefore F12 is irreducible.

Moreover, combining this and the fact that
ht(Ker(Φ)) ≤ dimC[x, y, z] − dimR(X1,HX1) = 1,
we obtain Ker(Φ) = (F12). Thus (1) is proved.

(2) It suffices to prove that R(X2,HX2) is
Cohen-Macaulay, which is equivalent to finding a reg-
ular sequence of length dimR(X2,H2) = 3 contained
in R(X2,HX2)+ :=

⊕
l>0H

0(X2, lHX2).
Before proving this, we fix our notation: Let

s = {s0, . . . , sN} be a minimal set of generators of
R(X2,HX2). Then there exists an isomorphism

R(X2,HX2) ∼= C[s0, . . . , sN ]/Is,

where Is is the homogeneous ideal defining X2.
First we find a regular sequence of length

2 contained in R(X2,HX2)+ as follows: Since
h0(X2,HX2) = 2, we see that H0(HX2) has a ba-
sis {s, t} satisfying

ρ(s) = z and (t)0 = X1.

We may assume that s contains these two elements.
It is easy to check that t, s ∈ R(X2,HX2)+ form a
regular sequence of length 2.

Next, we find an R(X2,HX2)/(t, s)-regular ele-
ment. One needs some information about generators
of Is. For each l ≥ 0, let

ρl : H0(lHX2) � H0(lHX2)/〈t〉 ↪→ H0(lHX1).

denote the restriction map. We proceed in two steps.
Step 1. We show that the ideal Is has no gen-

erators in degrees ≤ 4 as follows: Firstly, we see that

(A) Im(ρ4) = H0(4HX2)

combining h0(4HX1) = 3, the very ampleness of L =
4H and the irrationality of X1.

Subsequently, we find a basis of H0(lHX2) for
each 1 ≤ l ≤ 4.

For l = 1, there exist no relations in H0(HX2)
by virtue of the minimality of s.

For l = 2, there are no relations: In fact, it fol-
lows that H0(2HX2) = 〈s2, st, t2〉. Indeed, for any
η ∈ H0(2HX2), we can write ρ2(η) = cz2 with some

c ∈ C. Therefore we see that η is a linear combina-
tion of s2, st, t2. These three monomials are linearly
independent because each order of pole along X1 dif-
fers from that of the others.

For l = 3, we note that 1 ≤ rank(ρ3) ≤
h0(3HX1) = 2. We argue whether there are relations
or not, case by case. We first suppose rank(ρ3) =
1. Then, by the same argument as in the case l =
2, we see H0(3HX2) = 〈s3, s2t, st2, t3〉, which as-
serts that there are no relations. By (A), there
exist sections u, v ∈ H0(4HX2) such that ρ4(u) =
x, ρ4(v) = yz. It is easy to see that H0(4HX2) =
〈u, v, s4, s3t, s2t2, st3, t4〉, therefore there are no rela-
tions in H0(4HX2).

Next, suppose that rank(ρ3) = 2. Let w denote
a section such that ρ3(w) = y. Then we see that

H0(3HX2) = 〈w, s3, s2t, st2, t3〉,
H0(4HX2) = 〈u, sw, tw, s4, s3t, s2t2, st3, t4〉,

where u is a section such that ρ4(u) = x. Therefore
there exist no relations. In this way, it turns out that
Is has no generators in degrees ≤ 4.

Step 2. We claim that there exists an
R(X2,HX2)/(t, s)-regular element. Let u denote a
section of H0(4HX2) such that ρ4(u) = x. We
assert that u is R(X2,HX2)/(t, s)-regular. In-
deed, Proj(R(X2,HX2)/(t, s)) is an integral scheme
p because of H2

X2
= 1. Thus we see that

(R(X2,HX2)/(t, s))+ has no zero-divisors. Let
m be a homogeneous element of degree a in
R(X2,HX2)/(t, s) such that um = 0. If a > 0, we
have m = 0 obviously. If a = 0, then we obtain a = 0
by Step 1. Therefore our claim is proved.

Consequently, due to (1) and (2), the proposi-
tion is proved.

For the case g(X,H) = 3 and (II), we
have KX = (2 − n)H. Hence it follows that
H1(X3,mHX3) = 0 for all m ≥ 0. We also see that
the restriction map

(B) %m : H0(X2,mHX2) → H0(X1,mHX1)

is surjective for all m ≥ 0.
Proposition 3.2. Assume that g(X,H) = 3

and (II). Then L = 2H is not very ample.
Proof . Using (B), we obtain that

h0(X2, 2HX2) = h0(X1, 2HX1) + 2 = 5. Sup-
pose that L is very ample. Then we see that LX2

gives an embedding of X2 into P4. But the double
point formula for surfaces (see [2, Lemma 8.2.1])
L2

X2
(L2

X2
− 5) − 10(g(X2, LX2) − 1) + 12χ(OX2) −
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2K2
X2

= 0 implies that −7 + 3pg(X2) = 0, which is
absurd.

Therefore we see that this case cannot occur,
which completes the proof of the Theorem.
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