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Strong unique continuation property of two-dimensional

Dirac equations with Aharonov-Bohm fields
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Abstract: We study the unique continuation property of two-dimensional Dirac equations
with Aharonov-Bohm fields. Some results for the unperturbed Dirac operator are given by De
Carli-Ōkaji [2]. We are interested in the problem how the singularity of Aharonov-Bohm fields at
the origin influences the unique continuation property.
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1. Introduction. It is well known that, if
any harmonic function u(x) in a domain Ω ⊂ Rn

satisfies

∂α
x u(x0) = 0

for all multi-indices α at a point x0 ∈ Ω, then u(x)
vanishes identically in Ω. Recently, it is shown by
Grammatico [3] that, if Ω contains the origin and
u ∈ W 2,2

loc (Ω) (Sobolev space) satisfies

(1) |∆u| ≤ M

|x|2 |u(x)|+ C

|x| |∇u|

(a.e. on Ω) with M > 0 and 0 < C < 1/
√

2, and

(2) lim
ε→+0

ε−�

∫
|x|<ε

|u|2dx = 0,

then u(x) vanishes identically in Ω (one can see some
related works in the References of Grammatico [3]).
Then we say that the inequality (1) has the strong
unique continuation property. If u(x) satisfies (2),
u(x) is said to vanish of infinite order at the origin, or
to be flat at the origin. We can not expect the strong
unique continuation property for every C > 0. For
Alinhac-Baouendi [1] shows that, if C > 1, there is
a non-trivial complex-valued function v ∈ C∞(R2),
which is flat at the origin satisfying supp v = R2 and
(1) with M = 0 (see also Pan-Wolff [6]).

For corresponding problems to the Dirac opera-
tor
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L0 =
n∑

j=1

αjpj

(
pj =

1√−1
∂

∂xj
, n ≥ 2

)
,

where αj are N × N Hermitian matrices satisfying
αjαk + αkαj = 2δjkIN (N = 2[(n+1)/2]), De Carli-
Ōkaji [2] shows that, if a positive constant C < 1/2,
then the inequality

(3) |L0u| ≤ C

|x| |u| a.e. on Ω (u ∈ W 1,2
loc (Ω)N )

has the strong unique continuation property, where
|u| =

√|u1|2 + |u2|2 (see also Kalf-Yamada [4] and
Ōkaji [5]). The restriction on C < 1/2 is needed to
treat the angular momentum term (spin-orbit term)
but the radial part of L0. As is also pointed out by
De Carli-Ōkaji [2], the counter example by Alinhac-
Baouendi [1] implies that a certain restriction on the
constant C in (3) is also necessary. In fact, if we set

u1 := ∂ u = (∂1 − i∂2)v, u2 := ∂̄ u = (∂1 + i∂2)v,

then we can see that u1 and u2 �≡ 0 are flat at the
origin satisfying (1) with the same constant C > 1
(cf. Corollary below). It is an open problem what
happens for 1/2 ≤ C ≤ 1. In this note we inves-
tigate the strong unique continuation property for
2-dimensional Dirac operators with Aharonov-Bohm
efect, which is one of singular magnetic fields at
the origin, and give a perturbation to the spin-orbit
term. Our proof is given along the same line as in
De Carli-Ōkaji [2] and Kalf-Yamada [4].

2. The result. Let us consider 2-
dimensional Dirac operators with Aharonov-Bohm
fields

Lβ := σ · D = σ1D1 + σ2D2,
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where

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i

i 0

)
,

Dj := pj − bj(x) = −i
∂

∂xj
− bj(x),

b1(x) := −β
x2

|x|2 , b2(x) := β
x1

|x|2 ,

and β is a real number. Such a magnetic field has
a delicate singularity at the origin in spectral theory
(see, e.g., Tamura [7]).

Put β̃ := β − [β], where [·] is Gauss’s symbol.
Theorem 1. Let Ω be a connected open set in

R2 containing the origin. If u ∈ W 1,2
loc (Ω)2 is flat at

the origin and

(4) |Lβ u| ≤ C0

|x| |u|

a.e. on Ω for a positive constant C0 < γ(β) with

γ(β) :=




1 − 2β̃

2

(
0 ≤ β̃ <

1
4

)
,

β̃

(
1
4

≤ β̃ <
1
2

)
,

1 − β̃

(
1
2

≤ β̃ <
3
4

)
,

2β̃ − 1
2

(
3
4

≤ β̃ < 1
)

,

then u vanishes identically on Ω.
Corollary. Let Sβ := D2

1 + D2
2 be the

Schrödinger operator. Let Ω be an open set contain-
ing the origin. If v ∈ W 2,2

loc (Ω) is flat at the origin
satisfying

(5) |Sβv| ≤ C0

|x| |Dv|

a.e. on Ω for a positive constant C0 < γ(β),
then v vanishes identically on Ω, where |Dv| :=√|D1v|2 + |D2v|2.

For the proof of Corollary, let us put u1 := (D1−
iD2)v and u2 := (D1 + iD2)v. Since v is flat at the
origin, we can show that D1v and D2v are flat at the
origin by using (5). Therefore, u1 and u2 are flat at
the origin and satisfy

D1v =
u1 + u2

2
, D2v = −u1 − u2

2i
,

D1D2v = D2D1v.

Moreover, we have

|Lβu| =
√

2 |(D2
1 + D2

2)v| ≤
√

2 C0

|x| |Dv|

=
C0√
2 |x|

√
|u1 − u2|2 + |u1 + u2|2

=
C0

|x| |u|,

which gives from Theorem 1 that u1 = u2 ≡ 0 and
(∂v/∂r) ≡ 0 in Ω. Since v is flat at the origin, we
have v ≡ 0.

3. Proofs. Here we introduce some nota-
tions. Let

Dr :=
2∑

j=1

xj

r
Dj , σr =

2∑
j=1

xj

r
σj,

S :=
1
2

− iσ1σ2(x1D2 − x2D1)

=
1
2

+ σ3(x1p2 − x2p1 − β),

where

σ3 := −iσ1σ2 =
(

1 0
0 −1

)
.

The spin-orbit operator S is written by polar coor-
dinates x1 = r cos θ and x2 = r sin θ as

(6) S =




1
2

− β − i
∂

∂θ
0

0
1
2

+ β + i
∂

∂θ


 ,

which can be regarded as a self-adjoint operator on
L2(S1)2. Then we have

σ · D = σr

(
Dr +

i

r
S

)
, σ2

r = I,(7)

σrDr = Drσr, σrS = −Sσr , DrS = SDr ,(8)

D2
r ≥ 1

4r2
(9)

on C∞
0 (R2 \ {0})2. The last inequality can be shown

by a commutator relation[
Dr,

1
r

]
=

i

r2
.

Lemma 2. For a real number m we put

A := σ · D − i
m

r
σr.

Then we have

(10) A∗A ≥ 1
r2

(
S − m− 1

2

)2
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on C∞
0 (R2 \ {0})2, and the spectrum σ(S) consists

of discrete eigenvalues

(11)
{

n +
1
2

± β
∣∣ n ∈ Z

}
.

Proof. The properties (7), (8) and (9) give

A∗A =
[
σr

(
Dr +

i

r
S

)
+

im

r
σr

]

·
[
σr

(
Dr +

i

r
S

)
− im

r
σr

]

=
[
Dr − i

r
(S − m)

] [
Dr +

i

r
(S − m)

]

= D2
r − 1

4r2
+

1
r2

(
S − m − 1

2

)2

≥ 1
r2

(
S − m− 1

2

)2

,

which shows (10). Since S has a complete orthonor-
mal eigenfunctions in L2(S1)2,

1√
2π

(
einθ

0

)
,

1√
2π

(
0

e−inθ

)
(n ∈ Z),

we obtain (11).
Lemma 3. There exists a sequence of positive

numbers mj (j = 1, 2, · · ·) with mj → ∞ as j → ∞
such that

‖r−mj(σ · D)u‖ ≥ γ(β)‖r−mj −1u‖
for any u ∈ W 1,2(R2)2 whose support does not in-
clude a neighborhood of the origin, where γ(β) is
what is defined in Theorem 1.

Proof. Let ϕ ∈ C∞
0 (R2 \ {0})2. In view of

Lemma 2 we have∫
R2

r−2m|σ ·Dϕ|2dx

=
∫
R2

∣∣A (r−mϕ
)∣∣2 dx

≥ min
n∈Z

|n ± β − m|2
∫
R2

r−2m−2|ϕ|2dx

for any ϕ ∈ C∞
0 (R2 \ {0})2 and m ∈ R. Seeing

the definition of γ(β) in Theorem 1, we can find a
sequence mj → ∞ such that

min
n∈Z

|n ± β − mj |2 = γ(β).

For a given u ∈ W 1,2(R2)2 whose support does not
include a neighborhood of the origin, there exists a
sequence {ϕj}j=1,2,··· ⊂ C∞

0 (R2 \ {0})2 such that

ϕj → u in W 1,2(R2) (j → ∞), which completes the
proof.

Lemma 3 yields the following

Lemma 4. Suppose that u ∈ W 1,2
loc (Ω)2 is flat

at the origin with (4). Let BR0 := {x ∈ R2 : |x| <

R0} ⊂ Ω. For any R1 < R0 there exists a positive
constant C1 = C1(R0, R1) independent of mj such
that

[γ(β)2 − C2
0 ]
∫

BR1

r−2mj−2|u|2 dx(12)

≤ 2C2
0

∫
R1<|x|<R0

r−2mj−2|u|2 dx

+ C1

∫
R1<|x|<R0

r−2mj |u|2 dx,

where mj is the one given in Lemma 3.

Proof. Fix 0 < R1 < R0 and take δ > 0 and a
smooth function χδ ∈ C∞

0 (0, R0) such that

χδ(r) =

{
1 (δ ≤ r ≤ R1)

0 (r ≤ δ/2)

and

|χ′
δ(r)| ≤

{
C2δ

−1 (δ/2 ≤ r ≤ δ)

C2 (R1 ≤ r ≤ R0)

for a positive constant C. Then Lemma 3 and the
condition (4) yield

γ(β)2
∫

δ≤r≤R1

r−2mj−2|u|2 dx(13)

≤ γ(β)2
∫

r−2mj−2|χδu|2 dx

≤
∫

|r−2mj(σ ·D)(χδu)|2 dx

≤ 2
∫

δ/2≤r≤δ

r−2mj
[
C2

2δ−2 + C2
0r−2

] |u|2 dx

+ C2
0

∫
δ≤r≤R1

r−2mj−2|u|2 dx

+ 2
∫

R1≤r≤R2

r−2mj
[
C2

2 + C2
0r−2

] |u|2 dx.

Since u is flat at the origin, the last three integrals
tend to zero if δ → 0. Therefore we have (12) with
C1 = 2C2

2 .

Proof of Theorem 1. Let BR0 ⊂ Ω and take
0 < R2 < R1 < R0. In view of (12) we have
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[γ(β)2 − C2
0 ]
(

R1

R2

)2mj
∫

BR2

|u|2
r2

dx

≤ [γ(β)2 − C2
0 ]R2mj

1

∫
BR1

r−2mj−2|u|2 dx

≤ 2C2
0R

2mj

1

∫
R1<|x|<R0

r−2mj−2|u|2 dx

+ C1R
2mj

1

∫
R1<|x|<R0

r−2mj |u|2 dx

≤ 2C2
0

∫
R1<|x|<R0

|u|2
r2

dx

+ C1

∫
R1<|x|<R0

|u|2 dx.

Making mj → ∞, we have u ≡ 0 in BR2 . Since R1

and R2 are arbitrary, we have u ≡ 0 in BR0 .
Assume that there is x0 ∈ Ω with |x0| = R0.

The condition (3) yields

|L0u| ≤ C0 + |β|
|x| |u| in Ω.

Set xε = (1 − ε)x0 for 0 < ε < R0. If

0 < ρ <
R0 − ε

1 + 2(C0 + |β|) ,

then we can find a positive constant C ′ < 1/2 such
that

|L0u| ≤ C ′

|x − xε| |u| in Ω ∩ Bρ(xε),

where Bρ(xε) is the open ball with radius ρ and cen-
ter xε. This fact implies, by De Carli-Ōkaji [2],

u ≡ 0 in Ω ∩ BR1 ,

where R1 := R0

[
1 + {2(C0 + |β|) + 1}−1

]
. By re-

peating this procedure we have u ≡ 0 in Ω.
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