Strong unique continuation property of two-dimensional Dirac equations with Aharonov-Bohm fields

By Makoto Ikoma and Osanobu Yamada
Department of Mathematical Sciences, Ritsumeikan University
Noji Higashi 1-chome, 1-1, Kusatsu, Shiga 525-8577
(Communicated by Shigefumi Mori, M. J. A., Nov. 12, 2003)

Abstract

We study the unique continuation property of two-dimensional Dirac equations with Aharonov-Bohm fields. Some results for the unperturbed Dirac operator are given by De Carli-Ōkaji [2]. We are interested in the problem how the singularity of Aharonov-Bohm fields at the origin influences the unique continuation property.

Key words: Aharonov-Bohm effect; Dirac operator; unique continuation.

1. Introduction. It is well known that, if any harmonic function $u(x)$ in a domain $\Omega \subset \mathbf{R}^{n}$ satisfies

$$
\partial_{x}^{\alpha} u\left(x_{0}\right)=0
$$

for all multi-indices α at a point $x_{0} \in \Omega$, then $u(x)$ vanishes identically in Ω. Recently, it is shown by Grammatico [3] that, if Ω contains the origin and $u \in W_{\mathrm{loc}}^{2,2}(\Omega)$ (Sobolev space) satisfies

$$
\begin{equation*}
|\Delta u| \leq \frac{M}{|x|^{2}}|u(x)|+\frac{C}{|x|}|\nabla u| \tag{1}
\end{equation*}
$$

(a.e. on Ω) with $M>0$ and $0<C<1 / \sqrt{2}$, and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow+0} \varepsilon^{-\ell} \int_{|x|<\varepsilon}|u|^{2} d x=0 \tag{2}
\end{equation*}
$$

then $u(x)$ vanishes identically in Ω (one can see some related works in the References of Grammatico [3]). Then we say that the inequality (1) has the strong unique continuation property. If $u(x)$ satisfies (2), $\overline{u(x)}$ is said to vanish of infinite order at the origin, or to be flat at the origin. We can not expect the strong unique continuation property for every $C>0$. For Alinhac-Baouendi [1] shows that, if $C>1$, there is a non-trivial complex-valued function $v \in C^{\infty}\left(\mathbf{R}^{2}\right)$, which is flat at the origin satisfying $\operatorname{supp} v=\mathbf{R}^{2}$ and (1) with $M=0$ (see also Pan-Wolff [6]).

For corresponding problems to the Dirac operator

[^0]$$
L_{0}=\sum_{j=1}^{n} \alpha_{j} p_{j} \quad\left(p_{j}=\frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_{j}}, \quad n \geq 2\right)
$$
where α_{j} are $N \times N$ Hermitian matrices satisfying $\alpha_{j} \alpha_{k}+\alpha_{k} \alpha_{j}=2 \delta_{j k} I_{N}\left(N=2^{[(n+1) / 2]}\right)$, De CarliÖkaji [2] shows that, if a positive constant $C<1 / 2$, then the inequality
(3) $\quad\left|L_{0} u\right| \leq \frac{C}{|x|}|u|$ a.e. on $\Omega \quad\left(u \in W_{\operatorname{loc}}^{1,2}(\Omega)^{N}\right)$
has the strong unique continuation property, where $|u|=\sqrt{\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}}$ (see also Kalf-Yamada [4] and Ökaji [5]). The restriction on $C<1 / 2$ is needed to treat the angular momentum term (spin-orbit term) but the radial part of L_{0}. As is also pointed out by De Carli-Ōkaji [2], the counter example by AlinhacBaouendi [1] implies that a certain restriction on the constant C in (3) is also necessary. In fact, if we set
$$
u_{1}:=\partial u=\left(\partial_{1}-i \partial_{2}\right) v, \quad u_{2}:=\bar{\partial} u=\left(\partial_{1}+i \partial_{2}\right) v
$$
then we can see that u_{1} and $u_{2} \not \equiv 0$ are flat at the origin satisfying (1) with the same constant $C>1$ (cf. Corollary below). It is an open problem what happens for $1 / 2 \leq C \leq 1$. In this note we investigate the strong unique continuation property for 2-dimensional Dirac operators with Aharonov-Bohm efect, which is one of singular magnetic fields at the origin, and give a perturbation to the spin-orbit term. Our proof is given along the same line as in De Carli-Ōkaji [2] and Kalf-Yamada [4].
2. The result. Let us consider 2dimensional Dirac operators with Aharonov-Bohm fields
$$
L_{\beta}:=\sigma \cdot D=\sigma_{1} D_{1}+\sigma_{2} D_{2}
$$
where
\[

$$
\begin{aligned}
& \sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}:=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \\
& D_{j}:=p_{j}-b_{j}(x)=-i \frac{\partial}{\partial x_{j}}-b_{j}(x) \\
& b_{1}(x):=-\beta \frac{x_{2}}{|x|^{2}}, \quad b_{2}(x):=\beta \frac{x_{1}}{|x|^{2}},
\end{aligned}
$$
\]

and β is a real number. Such a magnetic field has a delicate singularity at the origin in spectral theory (see, e.g., Tamura [7]).
$\operatorname{Put} \tilde{\beta}:=\beta-[\beta]$, where $[\cdot]$ is Gauss's symbol.
Theorem 1. Let Ω be a connected open set in \mathbf{R}^{2} containing the origin. If $u \in W_{\mathrm{loc}}^{1,2}(\Omega)^{2}$ is flat at the origin and

$$
\begin{equation*}
\left|L_{\beta} u\right| \leq \frac{C_{0}}{|x|}|u| \tag{4}
\end{equation*}
$$

a.e. on Ω for a positive constant $C_{0}<\gamma(\beta)$ with

$$
\gamma(\beta):=\left\{\begin{array}{c}
\frac{1-2 \tilde{\beta}}{2}\left(0 \leq \tilde{\beta}<\frac{1}{4}\right) \\
\tilde{\beta} \quad\left(\frac{1}{4} \leq \tilde{\beta}<\frac{1}{2}\right) \\
1-\tilde{\beta} \quad\left(\frac{1}{2} \leq \tilde{\beta}<\frac{3}{4}\right) \\
\frac{2 \tilde{\beta}-1}{2}\left(\frac{3}{4} \leq \tilde{\beta}<1\right)
\end{array}\right.
$$

then u vanishes identically on Ω.
Corollary. Let $S_{\beta}:=D_{1}^{2}+D_{2}^{2}$ be the Schrödinger operator. Let Ω be an open set containing the origin. If $v \in W_{\mathrm{loc}}^{2,2}(\Omega)$ is flat at the origin satisfying

$$
\begin{equation*}
\left|S_{\beta} v\right| \leq \frac{C_{0}}{|x|}|D v| \tag{5}
\end{equation*}
$$

a.e. on Ω for a positive constant $C_{0}<\gamma(\beta)$, then v vanishes identically on Ω, where $|D v|:=$ $\sqrt{\left|D_{1} v\right|^{2}+\left|D_{2} v\right|^{2}}$.

For the proof of Corollary, let us put $u_{1}:=\left(D_{1}-\right.$ $\left.i D_{2}\right) v$ and $u_{2}:=\left(D_{1}+i D_{2}\right) v$. Since v is flat at the origin, we can show that $D_{1} v$ and $D_{2} v$ are flat at the origin by using (5). Therefore, u_{1} and u_{2} are flat at the origin and satisfy

$$
\begin{gathered}
D_{1} v=\frac{u_{1}+u_{2}}{2}, \quad D_{2} v=-\frac{u_{1}-u_{2}}{2 i}, \\
D_{1} D_{2} v=D_{2} D_{1} v .
\end{gathered}
$$

Moreover, we have

$$
\begin{aligned}
\left|L_{\beta} u\right| & =\sqrt{2}\left|\left(D_{1}^{2}+D_{2}^{2}\right) v\right| \leq \frac{\sqrt{2} C_{0}}{|x|}|D v| \\
& =\frac{C_{0}}{\sqrt{2}|x|} \sqrt{\left|u_{1}-u_{2}\right|^{2}+\left|u_{1}+u_{2}\right|^{2}} \\
& =\frac{C_{0}}{|x|}|u|
\end{aligned}
$$

which gives from Theorem 1 that $u_{1}=u_{2} \equiv 0$ and $(\partial v / \partial r) \equiv 0$ in Ω. Since v is flat at the origin, we have $v \equiv 0$.
3. Proofs. Here we introduce some notations. Let

$$
\begin{aligned}
D_{r} & :=\sum_{j=1}^{2} \frac{x_{j}}{r} D_{j}, \quad \sigma_{r}=\sum_{j=1}^{2} \frac{x_{j}}{r} \sigma_{j}, \\
S & :=\frac{1}{2}-i \sigma_{1} \sigma_{2}\left(x_{1} D_{2}-x_{2} D_{1}\right) \\
& =\frac{1}{2}+\sigma_{3}\left(x_{1} p_{2}-x_{2} p_{1}-\beta\right),
\end{aligned}
$$

where

$$
\sigma_{3}:=-i \sigma_{1} \sigma_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The spin-orbit operator S is written by polar coordinates $x_{1}=r \cos \theta$ and $x_{2}=r \sin \theta$ as

$$
S=\left(\begin{array}{cc}
\frac{1}{2}-\beta-i \frac{\partial}{\partial \theta} & 0 \tag{6}\\
0 & \frac{1}{2}+\beta+i \frac{\partial}{\partial \theta}
\end{array}\right)
$$

which can be regarded as a self-adjoint operator on $L^{2}\left(S^{1}\right)^{2}$. Then we have
(7) $\quad \sigma \cdot D=\sigma_{r}\left(D_{r}+\frac{i}{r} S\right), \quad \sigma_{r}^{2}=I$,
$\sigma_{r} D_{r}=D_{r} \sigma_{r}, \quad \sigma_{r} S=-S \sigma_{r}, \quad D_{r} S=S D_{r}$,
(9) $\quad D_{r}^{2} \geq \frac{1}{4 r^{2}}$
on $C_{0}^{\infty}\left(\mathbf{R}^{2} \backslash\{0\}\right)^{2}$. The last inequality can be shown by a commutator relation

$$
\left[D_{r}, \frac{1}{r}\right]=\frac{i}{r^{2}}
$$

Lemma 2. For a real number m we put

$$
A:=\sigma \cdot D-i \frac{m}{r} \sigma_{r} .
$$

Then we have

$$
\begin{equation*}
A^{*} A \geq \frac{1}{r^{2}}\left(S-m-\frac{1}{2}\right)^{2} \tag{10}
\end{equation*}
$$

on $C_{0}^{\infty}\left(\mathbf{R}^{2} \backslash\{0\}\right)^{2}$, and the spectrum $\sigma(S)$ consists of discrete eigenvalues

$$
\begin{equation*}
\left\{\left.n+\frac{1}{2} \pm \beta \right\rvert\, n \in \mathbf{Z}\right\} \tag{11}
\end{equation*}
$$

Proof. The properties (7), (8) and (9) give

$$
\begin{aligned}
A^{*} A= & {\left[\sigma_{r}\left(D_{r}+\frac{i}{r} S\right)+\frac{i m}{r} \sigma_{r}\right] } \\
& \cdot\left[\sigma_{r}\left(D_{r}+\frac{i}{r} S\right)-\frac{i m}{r} \sigma_{r}\right] \\
= & {\left[D_{r}-\frac{i}{r}(S-m)\right]\left[D_{r}+\frac{i}{r}(S-m)\right] } \\
= & D_{r}^{2}-\frac{1}{4 r^{2}}+\frac{1}{r^{2}}\left(S-m-\frac{1}{2}\right)^{2} \\
\geq & \frac{1}{r^{2}}\left(S-m-\frac{1}{2}\right)^{2}
\end{aligned}
$$

which shows (10). Since S has a complete orthonormal eigenfunctions in $L^{2}\left(S^{1}\right)^{2}$,

$$
\frac{1}{\sqrt{2 \pi}}\binom{e^{i n \theta}}{0}, \quad \frac{1}{\sqrt{2 \pi}}\binom{0}{e^{-i n \theta}} \quad(n \in \mathbf{Z})
$$

we obtain (11).
Lemma 3. There exists a sequence of positive numbers $m_{j}(j=1,2, \cdots)$ with $m_{j} \rightarrow \infty$ as $j \rightarrow \infty$ such that

$$
\left\|r^{-m_{j}}(\sigma \cdot D) u\right\| \geq \gamma(\beta)\left\|r^{-m_{j}-1} u\right\|
$$

for any $u \in W^{1,2}\left(\mathbf{R}^{2}\right)^{2}$ whose support does not include a neighborhood of the origin, where $\gamma(\beta)$ is what is defined in Theorem 1.

Proof. Let $\varphi \in C_{0}^{\infty}\left(\mathbf{R}^{2} \backslash\{0\}\right)^{2}$. In view of Lemma 2 we have

$$
\begin{aligned}
& \int_{\mathbf{R}^{2}} r^{-2 m}|\sigma \cdot D \varphi|^{2} d x \\
& \quad=\int_{\mathbf{R}^{2}}\left|A\left(r^{-m} \varphi\right)\right|^{2} d x \\
& \quad \geq \min _{n \in \mathbf{Z}}|n \pm \beta-m|^{2} \int_{\mathbf{R}^{2}} r^{-2 m-2}|\varphi|^{2} d x
\end{aligned}
$$

for any $\varphi \in C_{0}^{\infty}\left(\mathbf{R}^{2} \backslash\{0\}\right)^{2}$ and $m \in \mathbf{R}$. Seeing the definition of $\gamma(\beta)$ in Theorem 1, we can find a sequence $m_{j} \rightarrow \infty$ such that

$$
\min _{n \in \mathbf{Z}}\left|n \pm \beta-m_{j}\right|^{2}=\gamma(\beta)
$$

For a given $u \in W^{1,2}\left(\mathbf{R}^{2}\right)^{2}$ whose support does not include a neighborhood of the origin, there exists a sequence $\left\{\varphi_{j}\right\}_{j=1,2, \ldots} \subset C_{0}^{\infty}\left(\mathbf{R}^{2} \backslash\{0\}\right)^{2}$ such that
$\varphi_{j} \rightarrow u$ in $W^{1,2}\left(\mathbf{R}^{2}\right)(j \rightarrow \infty)$, which completes the proof.

Lemma 3 yields the following
Lemma 4. Suppose that $u \in W_{\mathrm{loc}}^{1,2}(\Omega)^{2}$ is flat at the origin with (4). Let $B_{R_{0}}:=\left\{x \in \mathbf{R}^{2}:|x|<\right.$ $\left.R_{0}\right\} \subset \Omega$. For any $R_{1}<R_{0}$ there exists a positive constant $C_{1}=C_{1}\left(R_{0}, R_{1}\right)$ independent of m_{j} such that

$$
\begin{align*}
& {\left[\gamma(\beta)^{2}-C_{0}^{2}\right] \int_{B_{R_{1}}} r^{-2 m_{j}-2}|u|^{2} d x} \tag{12}\\
& \leq
\end{align*}
$$

where m_{j} is the one given in Lemma 3.
Proof. Fix $0<R_{1}<R_{0}$ and take $\delta>0$ and a smooth function $\chi_{\delta} \in C_{0}^{\infty}\left(0, R_{0}\right)$ such that

$$
\chi_{\delta}(r)= \begin{cases}1 & \left(\delta \leq r \leq R_{1}\right) \\ 0 & (r \leq \delta / 2)\end{cases}
$$

and

$$
\left|\chi_{\delta}^{\prime}(r)\right| \leq\left\{\begin{array}{cl}
C_{2} \delta^{-1} & (\delta / 2 \leq r \leq \delta) \\
C_{2} & \left(R_{1} \leq r \leq R_{0}\right)
\end{array}\right.
$$

for a positive constant C. Then Lemma 3 and the condition (4) yield

$$
\begin{align*}
& \gamma(\beta)^{2} \int_{\delta \leq r \leq R_{1}} r^{-2 m_{j}-2}|u|^{2} d x \tag{13}\\
& \leq \gamma(\beta)^{2} \int r^{-2 m_{j}-2}\left|\chi_{\delta} u\right|^{2} d x \\
& \leq \int\left|r^{-2 m_{j}}(\sigma \cdot D)\left(\chi_{\delta} u\right)\right|^{2} d x \\
& \leq 2 \int_{\delta / 2 \leq r \leq \delta} r^{-2 m_{j}}\left[C_{2}^{2} \delta^{-2}+C_{0}^{2} r^{-2}\right]|u|^{2} d x \\
&+C_{0}^{2} \int_{\delta \leq r \leq R_{1}} r^{-2 m_{j}-2}|u|^{2} d x \\
& \quad+2 \int_{R_{1} \leq r \leq R_{2}} r^{-2 m_{j}}\left[C_{2}^{2}+C_{0}^{2} r^{-2}\right]|u|^{2} d x
\end{align*}
$$

Since u is flat at the origin, the last three integrals tend to zero if $\delta \rightarrow 0$. Therefore we have (12) with $C_{1}=2 C_{2}^{2}$.

Proof of Theorem 1. Let $B_{R_{0}} \subset \Omega$ and take $0<R_{2}<R_{1}<R_{0}$. In view of (12) we have

$$
\begin{aligned}
& {\left[\gamma(\beta)^{2}-C_{0}^{2}\right]\left(\frac{R_{1}}{R_{2}}\right)^{2 m_{j}} \int_{B_{R_{2}}} \frac{|u|^{2}}{r^{2}} d x} \\
& \leq\left[\gamma(\beta)^{2}-C_{0}^{2}\right] R_{1}^{2 m_{j}} \int_{B_{R_{1}}} r^{-2 m_{j}-2}|u|^{2} d x \\
& \leq \\
& \quad 2 C_{0}^{2} R_{1}^{2 m_{j}} \int_{R_{1}<|x|<R_{0}} r^{-2 m_{j}-2}|u|^{2} d x \\
& \quad+C_{1} R_{1}^{2 m_{j}} \int_{R_{1}<|x|<R_{0}} r^{-2 m_{j}}|u|^{2} d x \\
& \leq \\
& \quad 2 C_{0}^{2} \int_{R_{1}<|x|<R_{0}} \frac{|u|^{2}}{r^{2}} d x \\
& \quad+C_{1} \int_{R_{1}<|x|<R_{0}}|u|^{2} d x .
\end{aligned}
$$

Making $m_{j} \rightarrow \infty$, we have $u \equiv 0$ in $B_{R_{2}}$. Since R_{1} and R_{2} are arbitrary, we have $u \equiv 0$ in $B_{R_{0}}$.

Assume that there is $x_{0} \in \Omega$ with $\left|x_{0}\right|=R_{0}$. The condition (3) yields

$$
\left|L_{0} u\right| \leq \frac{C_{0}+|\beta|}{|x|}|u| \quad \text { in } \Omega .
$$

Set $x_{\varepsilon}=(1-\varepsilon) x_{0}$ for $0<\varepsilon<R_{0}$. If

$$
0<\rho<\frac{R_{0}-\varepsilon}{1+2\left(C_{0}+|\beta|\right)}
$$

then we can find a positive constant $C^{\prime}<1 / 2$ such that

$$
\left|L_{0} u\right| \leq \frac{C^{\prime}}{\left|x-x_{\varepsilon}\right|}|u| \quad \text { in } \Omega \cap B_{\rho}\left(x_{\varepsilon}\right)
$$

where $B_{\rho}\left(x_{\varepsilon}\right)$ is the open ball with radius ρ and center x_{ε}. This fact implies, by De Carli-Ōkaji [2],

$$
u \equiv 0 \quad \text { in } \Omega \cap B_{R_{1}},
$$

where $R_{1}:=R_{0}\left[1+\left\{2\left(C_{0}+|\beta|\right)+1\right\}^{-1}\right]$. By repeating this procedure we have $u \equiv 0$ in Ω.

Acknowledgement. This paper is partially supported by Grant-in-Aid for Scientific Research No. 14540218, the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] Alinhac, S., and Baouendi, M. S.: A counterexample to strong uniqueness for partial differential equations of Schrödinger's type. Comm. Partial Differential Equations, 19, 1727-1733 (1994).
[2] De Carli, L., and Ōkaji, T.: Strong unique continuation property for the Dirac equation. Publ. Res. Inst. Math. Sci., 35, 825-846 (1999).
[3] Grammatico, C.: A result on strong unique continuation for the Laplace operator. Comm. Partial Differential Equations, 22, 1475-1491 (1997).
[4] Kalf, H., and Yamada, O.: Note on the paper by De Carli and O Okaji on the strong unique continuation property for the Dirac equation. Publ. Res. Inst. Math. Sci., 35, 847-852 (1999).
[5] Ōkaji, T.: Strong unique continuation property for first order elliptic systems. Progress in Nonlinear Differential Equations and their Applications, vol. 46, Birkhäuser, Boston, pp. 146-164 (2001).
[6] Pan, Y., and Wolff, T.: A remark on unique continuation. J. Geom. Anal., 8, 599-604 (1998).
[7] Tamura, H.: Resolvent convergence in norm for Dirac operator with Aharonov-Bohm field. J. Math. Phys., 44, 2967-2993 (2003).

[^0]: 2000 Mathematics Subject Classification. 35B60.
 Dedicated to Professor Hubert Kalf on the occasion of his sixtieth birthday.

