Global generic Bernstein-Sato polynomial on an irreducible affine scheme

By Rouchdi BAHLOUL*)

Département de Mathématiques, U.M.R. 6093, Université d'Angers 2 Bd Lavoisier, 49045 Angers, Cedex 01, France (Communicated by Heisuke HIRONAKA, M.J.A., Nov. 12, 2003)

Abstract: Given p polynomials with coefficients in a commutative unitary integral ring C containing \mathbf{Q} , we define the notion of a generic Bernstein-Sato polynomial on an irreducible affine scheme $V \subset \text{Spec}(C)$. We prove the existence of such a non zero rational polynomial which covers and generalizes previous existing results by H. Biosca. When C is the ring of an algebraic or analytic space, we deduce a stratification of the space of the parameters such that on each stratum, there is a non zero rational polynomial which is a Bernstein-Sato polynomial for any point of the stratum. This generalizes a result of A. Leykin obtained in the case p = 1.

Key words: Generic Bernstein-Sato polynomial; Bernstein-Sato polynomial.

Introduction and main results. Fix $n \geq 1$ and $p \geq 1$ two integers and $v \in \mathbf{N}^p$. Let $x = (x_1, \ldots, x_n)$ and $s = (s_1, \ldots, s_p)$ be two systems of variables. Let \mathbf{k} be a field of characteristic $0^{(**)}$ Let $\mathbf{A}_n(\mathbf{k})$ be the ring of differential operators with coefficients in $\mathbf{k}[x] = \mathbf{k}[x_1, \ldots, x_n]$ and \mathcal{D} (resp. \mathcal{O}) be the sheaf of rings of differential operators (resp. analytic functions) on \mathbf{C}^n for which we denote by \mathcal{D}_{x_0} (resp. \mathcal{O}_{x_0}) the fiber in x_0 .

Let $f = (f_1, \ldots, f_p)$ be in $\mathbf{k}[x]^p$ (resp. $\mathcal{O}_{x_0}^p$) and consider the following functional identity:

$$b(s)f^s \in \mathbf{A}_n(\mathbf{k})[s] \cdot f^{s+v},$$

(resp. $\mathcal{D}_{x_0}[s]$ instead of $\mathbf{A}_n(\mathbf{k})[s]$) where $f^{s+v} = f_1^{s_1+v_1}\cdots f_p^{s_p+v_p}$. This identity takes place in the free module generated by f^s over $\mathbf{k}[x, 1/(f_1\cdots f_p), s]$ (resp. $\mathcal{O}_{x_0}[1/(f_1\cdots f_p, s)]$).

The set of such b(s) is an ideal of $\mathbf{k}[s]$ (resp. $\mathbf{C}[s]$). This ideal is called the (global) Bernstein-Sato ideal of f (resp. local Bernstein-Sato ideal in x_0) and we denote it by $\mathcal{B}^v(f)$ (resp. $\mathcal{B}^v_{x_0}(f)$). When p = 1, this ideal is principal and its monic generator is called the Bernstein polynomial associated with f. Historically, I. N. Bernstein [Be] introduced the

(global) Bernstein polynomial and proved its existence (i.e. the fact that it is not zero). J. E. Björk [Bj] has given the proof in the analytic case. Let us cite also M. Kashiwara [Ka] who proved, moreover, the rationality of the roots of the local Bernstein polynomial. For $p \geq 2$, the algebraic case can be easily treated in the same way as for p = 1. For the analytic case, the proof of the non nullity of $\mathcal{B}_{x_0}^v(f)$ is due to C. Sabbah ([Sa1, Sa2]). Let us also cite A. Gyoja [Gy] who proved that $\mathcal{B}_{x_0}^v(f)$ contains a non zero rational polynomial. The absolute Bernstein-Sato polynomial naturally leads to the notion of a generic Bernstein-Sato polynomial which we shall explain in what follows.

Let C be a unitary commutative integral ring with the following condition:

For any prime ideal $\mathcal{P} \subset \mathcal{C}$ and for any $n \in \mathbb{N} \setminus \{0\}$, we have:

$$n \in \mathcal{P} \Rightarrow 1 \in \mathcal{P}.$$

This condition is equivalent to the fact that for any $\mathcal{P} \subset \mathcal{C}$, the fraction field of \mathcal{C}/\mathcal{P} is of characteristic 0. Note that this condition is satisfied if and only if there exists an injective ring morphism $\mathbf{Q} \hookrightarrow \mathcal{C}$.

We shall see C as the ring of coefficients or parameters. Indeed, let $f = (f_1, \ldots, f_p)$ in $C[x]^p = C[x_1, \ldots, x_n]^p$.

Let us denote by $\mathbf{A}_n(\mathcal{C})$ the ring of differential operators with coefficients in $\mathcal{C}[x]$, that is the \mathcal{C} -algebra generated by x_i and ∂_{x_i} (i = 1, ..., n)

¹⁹⁹¹ Mathematics Subject Classification. Primary 16S32; Secondary 13N10, 14R99.

^{*)}Contact address: Department of Mathematics, Faculty of Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe, Hyogo 657-8501.

 $^{^{**)}\}mbox{All}$ the fields considered in this paper are of characteristic 0.

where the only non trivial commutation relations are $[\partial_{x_i}, x_i] = 1$ for i = 1, ..., n (hence C is in the center of $\mathbf{A}_n(C)$).

We denote by $\operatorname{Spec}(\mathcal{C})$ (resp. $\operatorname{Specm}(\mathcal{C})$) the set of prime (resp. maximal) ideals of \mathcal{C} which is the spectrum of \mathcal{C} (resp. the maximal spectrum). For an ideal $\mathcal{I} \subset \mathcal{C}$, we denote by $V(\mathcal{I}) = \{\mathcal{P} \in \operatorname{Spec}(\mathcal{C}); \mathcal{P} \supset \mathcal{I}\}$ the affine scheme defined by \mathcal{I} and $V_m(\mathcal{I}) = V(\mathcal{I}) \cap$ $\operatorname{Specm}(\mathcal{C})$. Remark that we shall only work with the closed subsets of $\operatorname{Spec}(\mathcal{C})$ and forget the sheaf structure of a scheme.

We are going to introduce the notion of a generic Bernstein-Sato polynomial of f on an irreducible affine scheme $V = V(\mathcal{Q}) \subset \text{Spec}(\mathcal{C})$ (that is when \mathcal{Q} is prime).

So let \mathcal{Q} be a prime ideal of \mathcal{C} and suppose that none of the f_j 's is in $\mathcal{Q}[x]$.

The main result of this article is the following.

Theorem 1. There exists $h \in C \setminus Q$ and $b(s) \in \mathbf{Q}[s_1, \ldots, s_p] \setminus 0$ such that

$$h b(s) f^s \in \mathbf{A}_n(\mathcal{C})[s] f^{s+v} + \left(\mathcal{Q}\left[x, \frac{1}{f_1 \cdots f_p}, s\right]\right) f^s.$$

Such a b(s) is called a (rational) generic Bernstein-Sato polynomial of f on V = V(Q) (see the notation and the remark below).

In the case where p = 1, the generic and relative (not introduced here) Bernstein polynomial has been studied by F. Geandier in [Ge] and by J. Briançon, F. Geandier and P. Maisonobe in [Br-Ge-Ma] in an analytic context (where f is an analytic function of x). In [Bi] (see also [Bi2]), H. Biosca studied these notions with $p \ge 1$ in the analytic and the algebraic context (that which we are concerned with) and proved that when

• $\mathcal{C} = \mathbf{C}[a_1, \ldots, a_m]$ or

•
$$\mathcal{C} = \mathbf{C}\{a_1, \ldots, a_m\}$$
 and

 $\mathcal{Q} = (0)$ so that V is smooth and equal to \mathbf{C}^m or $(\mathbf{C}^m, 0)$, we have a generic Bernstein-Sato polynomial. It does not seem straightforward to adapt her proof to the case where $\mathcal{Q} \neq (0)$ (i.e. when V is singular). Let us also say that she did not mention the fact that the polynomial she constructed is rational even though a detailed study of her proof shows that it is. As it appears, our main result covers and generalizes the previous existing results in this affine situation.

Notation. Let \mathcal{P} be a prime ideal of \mathcal{C} . For c in \mathcal{C} , denote by $[c]_{\mathcal{P}}$ the class of c in the quotient \mathcal{C}/\mathcal{P} and $(c)_{\mathcal{P}} = [c]_{\mathcal{P}}/1$ this class viewed in the fraction

field of \mathcal{C}/\mathcal{P} . We naturally extend these notations to $\mathcal{C}[x]$, $\mathbf{A}_n(\mathcal{C})$ and $\mathcal{C}[x, 1/(f_1 \cdots f_p), s]$.

Remark. Using these notations, we can see that the polynomial b(s) of Theorem 1 is a Bernstein-Sato polynomial of $(f)_{\mathcal{P}}$ for any $\mathcal{P} \in V(\mathcal{Q}) \setminus V(h)$. This justifies the name of a generic Bernstein-Sato polynomial on $V(\mathcal{Q})$.

As an application of Theorem 1, we obtain some consequences:

Corollary 2. Fix a positive integer d and a field \mathbf{k} . For each j = 1, ..., p, take $f_j = \sum_{|\alpha| \le d} a_{\alpha,j} x^{\alpha}$ with $\alpha \in \mathbf{N}^n$ and $a_{\alpha,j}$ an indeterminate. Take $a = (a_{\alpha,j})$ for $|\alpha| \le d$ and j = 1, ..., psuch that we see $f = (f_1, ..., f_p)$ in $\mathbf{k}[a][x]^p$. Denote by m the number of the $a_{\alpha,j}$'s.

Then there exists a finite partition of $\mathbf{k}^m = \bigcup W$ where each W is a locally closed subset of \mathbf{k}^m (i.e. W is a difference of two Zariski closed sets) such that for any W, there exists a polynomial $b_W(s) \in$ $\mathbf{Q}[s_1, \ldots, s_p] \setminus 0$ such that for each a_0 in W, $b_W(s)$ is in $\mathcal{B}^v(f(a_0, x))$.

Remark.

- This corollary generalizes to the case $p \ge 2$ the main result of A. Leykin [Le] and J. Briançon and Ph. Maisonobe [Br-Ma] in the case p = 1.
- There is another way to generalize these results: Given a well ordering < on \mathbf{N}^p compatible with sums, it is possible to prove the existence of a partition $\mathbf{k}^m = \bigcup W$ into locally closed subsets with the following property: For any W, there exists a finite subset $G_W \subset \mathbf{k}[a][x]$ such that for any $a_0 \in W$, the set $G_W(a_0)$ is a <-Gröbner basis of the Bernstein-Sato ideal $\mathcal{B}^v(f(a_0, x))$, see [Br-Ma] and [Ba].

Proof of Corollary 2. We remark that we can give the same statement as in Corollary 2 for any algebraic subset $Y \subset \mathbf{k}^m$ as a space of parameters. The statement of Corollary 2 will then follow from the proof of this more general statement, that we shall give by an induction on the dimension of Y. If dim Y = 0, the result is trivial. Suppose dim $Y \ge 1$. Write $Y = V_m(\mathcal{Q}_1) \cup \cdots \cup V_m(\mathcal{Q}_r)$ where the \mathcal{Q}_i 's are prime ideals in $\mathbf{k}[a]$ (we identify the maximal ideals of $\mathbf{k}[a]$ and the points of \mathbf{k}^m). For each i, let $h_i \in$ $\mathbf{k}[a] \smallsetminus \mathcal{Q}_i$ and $b_i(s) \in \mathbf{Q}[s] \searrow 0$ be the h and b(s) of Theorem 1 applied to \mathcal{Q}_i . Now, write

$$Y = \left(\bigcup_{i=1}^{r} V_m(\mathcal{Q}_i) \smallsetminus V_m(h_i)\right) \bigcup Y',$$

with $Y' = \bigcup (V_m(\mathcal{Q}_i) \cap V_m(h_i))$ for which dim $Y' < \dim Y$. Apply the induction hypothesis to Y'. We obtain that Y is a union (not necessarily disjoint) of locally closed subsets V such that for each V there exists $b_V(s) \in \mathbf{Q}[s] \setminus 0$ which is in $\mathcal{B}^v(f(a_0, x))$ for any $a_0 \in V$. Let us show now how to obtain the annouced partition. Let B be the set of the obtained polynomials b_V 's. Set $B = \{b_1, \ldots, b_e\}$. For any $i = 1, \ldots, e$, let E_i be the set of the V's for which $b_i = b_V$. Put

•
$$W_1 = \bigcup_{V \in E_1} V$$
,
• $W_2 = \left(\bigcup_{V \in E_2} V\right) \smallsetminus \left(\bigcup_{V \in E_1} V\right)$,
:
• $W_e = \left(\bigcup_{V \in E_e} V\right) \smallsetminus \left(\bigcup_{V \in E_1 \cup \dots \cup E_{e-1}} V\right)$

Note that some of the W_i 's may be empty. The set $\{(b_1, W_1), \ldots, (b_e, W_e)\}$ gives a partition $Y = \bigcup W_i$ in a way that $b_i \in \mathcal{B}^v(f(a_0, x))$ for any $a_0 \in W_i$.

Corollary 3. Take $f_1(a, x), \ldots, f_p(a, x) \in \mathcal{O}(U)[x]$ where $\mathcal{O}(U)$ denotes the ring of holomorphic functions on a open subset U of \mathbb{C}^m .

Then there exists a finite partition of $U = \bigcup W$ where each W is an (analytic) locally closed subset of U (i.e. each W is a difference of two analytic subsets of U) such that for any W, there exists a rational non zero polynomial b(s) which belongs to $\mathcal{B}^{v}(f(a_{0}, x))$ for any $a_{0} \in W$.

Remark. As it will appear in the proof, we have the same result if we replace $\mathcal{O}(U)$ by $\mathbf{C}\{a_1,\ldots,a_m\}$ or $\mathbf{k}[[a_1,\ldots,a_m]]$ (**k** being an arbitrary field).

Proof. Let us write $f_j(a,x) = \sum g_{\alpha,j}(a)x^{\alpha}$ where $g_{\alpha,j} \in \mathcal{O}(U)$. Let m be the number of the $g_{\alpha,j}$'s and let us introduce m new variables $b_{\alpha,j}$. Consider the (analytic) map $\phi : U \ni a \mapsto (b_{\alpha,j} = g_{\alpha,j}(a))_{\alpha,j} \in \mathbb{C}^m$. Now apply Corollary 2 to this situation. Let $\mathbb{C}^m = \bigcup W$ be the obtained partition and for any W, let $b_W \in \mathbb{Q}[s]$ be the polynomial given in 2. Now apply ϕ^{-1} . This gives a partition $U = \bigcup \phi^{-1}(W)$. Since ϕ is analytic, the sets $\phi^{-1}(W)$ are locally closed analytic subsets of U. It is then clear that for any W and $a_0 \in \phi^{-1}(W)$, we have $b_W \in \mathcal{B}^v(f(a_0, x))$.

Proof of the main result. In order to prove Theorem 1, we shall first prove the following.

Theorem 4. Let \mathbf{k} be a field and $f \in \mathbf{k}[x]^p$. Then $\mathcal{B}^v(f) \cap \mathbf{Q}[s]$ is not zero.

Note that in [Br], the author proved (for p = 1) that the global Bernstein polynomial has rational roots for any field **k** of characteristic zero. The proof of 4 will use the following propositions.

Proposition 5. Let **K** be a subfield of a field **L**. Suppose that $f \in \mathbf{K}[x]^p$. Let $b(s) \in \mathbf{K}[s]$ be such that $b(s)f^s \in \mathbf{A}_n(\mathbf{L})[s]f^{s+v}$. Then

$$b(s)f^s \in \mathbf{A}_n(\mathbf{K})[s]f^{s+v}.$$

Proof. The proof is inspired by [Br] in which the case p = 1 is treated. As **L** is a **K**-vector space, let us take $\{1\} \cup \{l_{\gamma}; \gamma \in \Gamma\}$ as a basis so that $\mathbf{L}[x, s, 1/(f_1 \cdots f_p)]f^s$ is a free $\mathbf{K}[x, s, 1/(f_1 \cdots f_p)]$ module with $\{f^s\} \cup \{l_{\gamma}f^s; \gamma \in \Gamma\}$ as a basis. Now let P be in $\mathbf{A}_n(\mathbf{L})[s]$ such that $b(s)f^s = Pf^{s+v}$. We decompose $P = P_0 + P'$ where $P_0 \in \mathbf{A}_n(\mathbf{K})[s]$ and P' has its coefficients in $\bigoplus_{\gamma \in \Gamma} \mathbf{K} \cdot l_{\gamma}$. Now, we have:

$$b(s)f^{s} = P_0 f^{s+v} + P' f^{s+v},$$

with $b(s)f^s$ and P_0f^{s+v} in $\mathbf{K}[x, s, 1/(f_1 \cdots f_p)]f^s$ and $P'f^{s+v}$ in $\bigoplus_{\gamma \in \Gamma} \mathbf{K}[x, s, 1/(f_1 \cdots f_p)]l_{\gamma}f^s$. By identification, we obtain:

$$= P_0 f^{s+v}.$$

Proposition 6 ([Br] and [Br-Ma2]). Given $f \in \mathbb{C}[x]^p$, we have:

(1) The set $\{\mathcal{B}_{x_0}^v(f); x_0 \in \mathbb{C}^n\}$ is finite.

 $b(s)f^s$

(2) $\mathcal{B}^{v}(f)$ is the intersection of all the $\mathcal{B}^{v}_{x_{0}}(f)$ where $x_{0} \in \mathbb{C}^{n}$.

Proof of Theorem 4. We shall divide the proof into two steps:

(a) First, suppose that $\mathbf{k} = \mathbf{C}$. By [Sa1, Sa2, Gy], as mentioned in the introduction, each $\mathcal{B}_{x_0}^v(f)$ contains a non zero rational polynomial. By the previous proposition, we can take a finite product of these polynomials and obtain a rational polynomial in $\mathcal{B}^v(f)$.

(b) Now suppose that **k** is arbitrary. Let c_1, \ldots, c_N be all the coefficients that appear in the writing of the f_j 's and consider the field $\mathbf{K} = \mathbf{Q}(c_1, \ldots, c_N)$. There exist $e_1, \ldots, e_N \in \mathbf{C}$ and an injective morphism of fields $\phi : \mathbf{K} \to \mathbf{C}$ such that $\phi(c_i) = e_i$ for any *i*. We denote by the same symbol ϕ the natural extension of ϕ from $\mathbf{K}[x]$ to $\mathbf{C}[x]$ and from $\mathbf{A}_n(\mathbf{K})[s]$ to $\mathbf{A}_n(\mathbf{C})[s]$. Now, consider in $\mathbf{C}[s]$ the Bernstein-Sato ideal $\mathcal{B}^v(\phi(f))$ (where $\phi(f) = (\phi(f_1), \ldots, \phi(f_p))$). Using the result of case (a), there

exists $b(s) \in \mathbf{Q}[s] \setminus 0$ that belongs to $\mathcal{B}^{v}(\phi(f))$. So we have a functional equation:

$$b(s)\phi(f)^s = P \cdot \phi(f)^{s+v},$$

where $P \in \mathbf{A}_n(\mathbf{C})[s]$. By Proposition 5, we can suppose $P \in \mathbf{A}_n(\phi(\mathbf{K}))[s]$. Apply ϕ^{-1} to this equation. Since $b(s) \in \mathbf{Q}[s], \phi^{-1}(b(s)) = b(s)$, thus we obtain:

$$b(s)f^s = \phi^{-1}(P) \cdot f^{s+s}$$

In conclusion b(s) is in $\mathcal{B}^{v}(f)$.

Now we dispose of a sufficient material to give the

Proof of Theorem 1. By Theorem 4, there exists a non zero rational polynomial b(s) in $\mathcal{B}^{\nu}((f)_{\mathcal{Q}})$. Hence, we have the following equation:

$$b(s)\left(\frac{[f]_{\mathcal{Q}}}{1}\right)^s = \frac{[U(s)]_{\mathcal{Q}}}{[h]_{\mathcal{Q}}} \cdot \left(\frac{[f]_{\mathcal{Q}}}{1}\right)^{s+v},$$

where $U(s) \in \mathbf{A}_n(\mathcal{C})[s]$ and $h \in \mathcal{C} \smallsetminus \mathcal{Q}$. It follows that:

$$h b(s) f^s - U(s) \cdot f^{s+v} \equiv 0 \mod \mathcal{Q}$$

in $C[x, 1/(f_1, \ldots, f_p), s]f^s$. Since $f_1 \cdots f_p \notin Q[x]$ and Q is prime, we obtain:

$$h b(s) f^s - U(s) \cdot f^{s+v} \in \mathcal{Q}\left[x, \frac{1}{f_1 \cdots f_p}, s\right] f^s.$$

This article is a more general and simplified version of some results of my thesis [Ba].

Acknowledgements. I am grateful to my thesis advisor Michel Granger for having introduced me to this subject and for valuable remarks. I also wish to thank Joël Briançon for some remarks made while refereeing my thesis, which I used in the proof of Corollary 3.

References

[Ba] Bahloul, R.: Contributions à l'étude des idéaux de Bernstein-Sato d'un point de vue constructif. Thèse de doctorat, Université d'Angers (2003).

- [Be] Bernstein, I. N.: The analytic continuation of generalised functions with respect to a parameter. Funct. Anal. Appl., 6, 273–285 (1972).
- [Bi] Biosca, H.: Polynômes de Bernstein génériques et relatifs associés à une application analytique. Thèse de doctorat, Nice Sophia-Antipolis (1996).
- [Bi2] Biosca, H.: Sur l'existence de polynômes de Bernstein génériques associés à une application analytique. C. R. Acad. Sci. Paris Sér. I Math., **322** (7), 659–662 (1996).
- [Bj] Björk, J. E.: Dimensions over Algebras of Differential Operators (1973). (Preprint).
- [Br] Briançon, J.: Passage du local au global. Handwritten notes.
- [Br-Ge-Ma] Briançon, J., Geandier, F., and Maisonobe, Ph.: Déformation d'une singularité isolée d'hypersurface et polynômes de Bernstein. Bull. Soc. Math. France, **120** (1), 15–49 (1992).
- [Br-Ma] Briançon, J., and Maisonobe, Ph.: Remarques sur l'idéal de Bernstein associé à des polynômes. Prépublication Université Nice Sophia-Antipolis n° 650, Mai (2002).
- [Br-Ma2] Briançon J., and Maisonobe, Ph.: Examen de passage du local au global pour les polynômes de Bernstein-Sato. Typewritten notes (1990).
- [Ge] Geandier, F.: Déformations à nombre de Milnor constant: quelques résultats sur les polynômes de Bernstein. Compositio Math., 77 (2), 131–163 (1991).
- [Gy] Gyoja, A.: Bernstein-Sato's polynomial for several analytic functions. J. Math. Kyoto Univ., 33 (2), 399–411 (1993).
- [Ka] Kashiwara, M.: B-functions and holonomic systems. Rationality of roots of B-functions. Invent. Math., 38 (1), 33–53 (1976/1977).
- [Le] Leykin, A.: Constructibility of the set of polynomials with a fixed Bernstein-Sato Polynomial: an algorithmic approach. J. Symbolic Comput., 32, 663–675 (2001).
- [Sa1] Sabbah, C.: Proximité évanescente I. La structure polaire d'un *D*-Module. Compositio Math., 62, 283–328 (1987).
- [Sa2] Sabbah, C.: Proximité évanescente II. Équations fonctionnelles pour plusieurs fonctions analytiques. Compositio Math., 64, 213–241 (1987).

No. 9]