# Global generic Bernstein-Sato polynomial on an irreducible affine scheme 

By Rouchdi Bahloul*)<br>Département de Mathématiques, U.M.R. 6093, Université d'Angers<br>2 Bd Lavoisier, 49045 Angers, Cedex 01, France<br>(Communicated by Heisuke Hironaka, m. J. A., Nov. 12, 2003)


#### Abstract

Given $p$ polynomials with coefficients in a commutative unitary integral ring $\mathcal{C}$ containing $\mathbf{Q}$, we define the notion of a generic Bernstein-Sato polynomial on an irreducible affine scheme $V \subset \operatorname{Spec}(\mathcal{C})$. We prove the existence of such a non zero rational polynomial which covers and generalizes previous existing results by H . Biosca. When $\mathcal{C}$ is the ring of an algebraic or analytic space, we deduce a stratification of the space of the parameters such that on each stratum, there is a non zero rational polynomial which is a Bernstein-Sato polynomial for any point of the stratum. This generalizes a result of A. Leykin obtained in the case $p=1$.


Key words: Generic Bernstein-Sato polynomial; Bernstein-Sato polynomial.

Introduction and main results. Fix $n \geq$ 1 and $p \geq 1$ two integers and $v \in \mathbf{N}^{p}$. Let $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ and $s=\left(s_{1}, \ldots, s_{p}\right)$ be two systems of variables. Let $\mathbf{k}$ be a field of characteristic $0 .{ }^{* *)}$ Let $\mathbf{A}_{n}(\mathbf{k})$ be the ring of differential operators with coefficients in $\mathbf{k}[x]=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ and $\mathcal{D}$ (resp. $\mathcal{O}$ ) be the sheaf of rings of differential operators (resp. analytic functions) on $\mathbf{C}^{n}$ for which we denote by $\mathcal{D}_{x_{0}}$ (resp. $\mathcal{O}_{x_{0}}$ ) the fiber in $x_{0}$.

Let $f=\left(f_{1}, \ldots, f_{p}\right)$ be in $\mathbf{k}[x]^{p}$ (resp. $\left.\mathcal{O}_{x_{0}}^{p}\right)$ and consider the following functional identity:

$$
b(s) f^{s} \in \mathbf{A}_{n}(\mathbf{k})[s] \cdot f^{s+v}
$$

(resp. $\mathcal{D}_{x_{0}}[s]$ instead of $\left.\mathbf{A}_{n}(\mathbf{k})[s]\right)$ where $f^{s+v}=$ $f_{1}^{s_{1}+v_{1}} \cdots f_{p}^{s_{p}+v_{p}}$. This identity takes place in the free module generated by $f^{s}$ over $\mathbf{k}\left[x, 1 /\left(f_{1} \cdots f_{p}\right), s\right]$ (resp. $\left.\mathcal{O}_{x_{0}}\left[1 /\left(f_{1} \cdots f_{p}, s\right)\right]\right)$.

The set of such $b(s)$ is an ideal of $\mathbf{k}[s]$ (resp. $\mathbf{C}[s]$ ). This ideal is called the (global) BernsteinSato ideal of $f$ (resp. local Bernstein-Sato ideal in $x_{0}$ ) and we denote it by $\mathcal{B}^{v}(f)$ (resp. $\left.\mathcal{B}_{x_{0}}^{v}(f)\right)$. When $p=1$, this ideal is principal and its monic generator is called the Bernstein polynomial associated with $f$. Historically, I. N. Bernstein [Be] introduced the

[^0](global) Bernstein polynomial and proved its existence (i.e. the fact that it is not zero). J. E. Björk [Bj] has given the proof in the analytic case. Let us cite also M. Kashiwara [Ka] who proved, moreover, the rationality of the roots of the local Bernstein polynomial. For $p \geq 2$, the algebraic case can be easily treated in the same way as for $p=1$. For the analytic case, the proof of the non nullity of $\mathcal{B}_{x_{0}}^{v}(f)$ is due to C. Sabbah ([Sa1, Sa2]). Let us also cite A. Gyoja $[\mathrm{Gy}]$ who proved that $\mathcal{B}_{x_{0}}^{v}(f)$ contains a non zero rational polynomial. The absolute Bernstein-Sato polynomial naturally leads to the notion of a generic Bernstein-Sato polynomial which we shall explain in what follows.

Let $\mathcal{C}$ be a unitary commutative integral ring with the following condition:

For any prime ideal $\mathcal{P} \subset \mathcal{C}$ and for any $n \in \mathbf{N} \backslash$ $\{0\}$, we have:

$$
n \in \mathcal{P} \Rightarrow 1 \in \mathcal{P} .
$$

This condition is equivalent to the fact that for any $\mathcal{P} \subset \mathcal{C}$, the fraction field of $\mathcal{C} / \mathcal{P}$ is of characteristic 0 . Note that this condition is satisfied if and only if there exists an injective ring morphism $\mathbf{Q} \hookrightarrow \mathcal{C}$.

We shall see $\mathcal{C}$ as the ring of coefficients or parameters. Indeed, let $f=\left(f_{1}, \ldots, f_{p}\right)$ in $\mathcal{C}[x]^{p}=$ $\mathcal{C}\left[x_{1}, \ldots, x_{n}\right]^{p}$.

Let us denote by $\mathbf{A}_{n}(\mathcal{C})$ the ring of differential operators with coefficients in $\mathcal{C}[x]$, that is the $\mathcal{C}$-algebra generated by $x_{i}$ and $\partial_{x_{i}}(i=1, \ldots, n)$
where the only non trivial commutation relations are $\left[\partial_{x_{i}}, x_{i}\right]=1$ for $i=1, \ldots, n$ (hence $\mathcal{C}$ is in the center of $\mathbf{A}_{n}(\mathcal{C})$ ).

We denote by $\operatorname{Spec}(\mathcal{C})($ resp. $\operatorname{Specm}(\mathcal{C}))$ the set of prime (resp. maximal) ideals of $\mathcal{C}$ which is the spectrum of $\mathcal{C}$ (resp. the maximal spectrum). For an ideal $\mathcal{I} \subset \mathcal{C}$, we denote by $V(\mathcal{I})=\{\mathcal{P} \in \operatorname{Spec}(\mathcal{C}) ; \mathcal{P} \supset \mathcal{I}\}$ the affine scheme defined by $\mathcal{I}$ and $V_{m}(\mathcal{I})=V(\mathcal{I}) \cap$ $\operatorname{Specm}(\mathcal{C})$. Remark that we shall only work with the closed subsets of $\operatorname{Spec}(\mathcal{C})$ and forget the sheaf structure of a scheme.

We are going to introduce the notion of a generic Bernstein-Sato polynomial of $f$ on an irreducible affine scheme $V=V(\mathcal{Q}) \subset \operatorname{Spec}(\mathcal{C})$ (that is when $\mathcal{Q}$ is prime).

So let $\mathcal{Q}$ be a prime ideal of $\mathcal{C}$ and suppose that none of the $f_{j}$ 's is in $\mathcal{Q}[x]$.

The main result of this article is the following.
Theorem 1. There exists $h \in \mathcal{C} \backslash \mathcal{Q}$ and $b(s) \in \mathbf{Q}\left[s_{1}, \ldots, s_{p}\right] \backslash 0$ such that

$$
h b(s) f^{s} \in \mathbf{A}_{n}(\mathcal{C})[s] f^{s+v}+\left(\mathcal{Q}\left[x, \frac{1}{f_{1} \cdots f_{p}}, s\right]\right) f^{s}
$$

Such a $b(s)$ is called a (rational) generic Bernstein-Sato polynomial of $f$ on $V=V(\mathcal{Q})$ (see the notation and the remark below).

In the case where $p=1$, the generic and relative (not introduced here) Bernstein polynomial has been studied by F. Geandier in [Ge] and by J. Briançon, F. Geandier and P. Maisonobe in [Br-Ge-Ma] in an analytic context (where $f$ is an analytic function of $x)$. In [Bi] (see also [Bi2]), H. Biosca studied these notions with $p \geq 1$ in the analytic and the algebraic context (that which we are concerned with) and proved that when

- $\mathcal{C}=\mathbf{C}\left[a_{1}, \ldots, a_{m}\right]$ or
- $\mathcal{C}=\mathbf{C}\left\{a_{1}, \ldots, a_{m}\right\}$ and
$\mathcal{Q}=(0)$ so that $V$ is smooth and equal to $\mathbf{C}^{m}$ or $\left(\mathbf{C}^{m}, 0\right)$, we have a generic Bernstein-Sato polynomial. It does not seem straigthforward to adapt her proof to the case where $\mathcal{Q} \neq(0)$ (i.e. when $V$ is singular). Let us also say that she did not mention the fact that the polynomial she constructed is rational even though a detailed study of her proof shows that it is. As it appears, our main result covers and generalizes the previous existing results in this affine situation.

Notation. Let $\mathcal{P}$ be a prime ideal of $\mathcal{C}$. For $c$ in $\mathcal{C}$, denote by $[c]_{\mathcal{P}}$ the class of $c$ in the quotient $\mathcal{C} / \mathcal{P}$ and $(c)_{\mathcal{P}}=[c]_{\mathcal{P}} / 1$ this class viewed in the fraction
field of $\mathcal{C} / \mathcal{P}$. We naturally extend these notations to $\mathcal{C}[x], \mathbf{A}_{n}(\mathcal{C})$ and $\mathcal{C}\left[x, 1 /\left(f_{1} \cdots f_{p}\right), s\right]$.

Remark. Using these notations, we can see that the polynomial $b(s)$ of Theorem 1 is a BernsteinSato polynomial of $(f)_{\mathcal{P}}$ for any $\mathcal{P} \in V(\mathcal{Q}) \backslash V(h)$. This justifies the name of a generic Bernstein-Sato polynomial on $V(\mathcal{Q})$.

As an application of Theorem 1, we obtain some consequences:

Corollary 2. Fix a positive integer $d$ and a field $\mathbf{k}$. For each $j=1, \ldots, p$, take $f_{j}=$ $\sum_{|\alpha| \leq d} a_{\alpha, j} x^{\alpha}$ with $\alpha \in \mathbf{N}^{n}$ and $a_{\alpha, j}$ an indeterminate. Take $a=\left(a_{\alpha, j}\right)$ for $|\alpha| \leq d$ and $j=1, \ldots, p$ such that we see $f=\left(f_{1}, \ldots, f_{p}\right)$ in $\mathbf{k}[a][x]^{p}$. Denote by $m$ the number of the $a_{\alpha, j}$ 's.

Then there exists a finite partition of $\mathbf{k}^{m}=\cup W$ where each $W$ is a locally closed subset of $\mathbf{k}^{m}$ (i.e. $W$ is a difference of two Zariski closed sets) such that for any $W$, there exists a polynomial $b_{W}(s) \in$ $\mathbf{Q}\left[s_{1}, \ldots, s_{p}\right] \backslash 0$ such that for each $a_{0}$ in $W, b_{W}(s)$ is in $\mathcal{B}^{v}\left(f\left(a_{0}, x\right)\right)$.

## Remark.

- This corollary generalizes to the case $p \geq 2$ the main result of A. Leykin [Le] and J. Briançon and Ph . Maisonobe [ $\mathrm{Br}-\mathrm{Ma}$ ] in the case $p=1$.
- There is another way to generalize these results: Given a well ordering $<$ on $\mathbf{N}^{p}$ compatible with sums, it is possible to prove the existence of a partition $\mathbf{k}^{m}=\cup W$ into locally closed subsets with the following property: For any $W$, there exists a finite subset $G_{W} \subset \mathbf{k}[a][x]$ such that for any $a_{0} \in W$, the set $G_{W}\left(a_{0}\right)$ is a <-Gröbner basis of the Bernstein-Sato ideal $\mathcal{B}^{v}\left(f\left(a_{0}, x\right)\right)$, see [ $\mathrm{Br}-\mathrm{Ma}$ ] and [Ba].
Proof of Corollary 2. We remark that we can give the same statement as in Corollary 2 for any algebraic subset $Y \subset \mathbf{k}^{m}$ as a space of parameters. The statement of Corollary 2 will then follow from the proof of this more general statement, that we shall give by an induction on the dimension of $Y$. If $\operatorname{dim} Y=0$, the result is trivial. Suppose $\operatorname{dim} Y \geq 1$. Write $Y=V_{m}\left(\mathcal{Q}_{1}\right) \cup \cdots \cup V_{m}\left(\mathcal{Q}_{r}\right)$ where the $\mathcal{Q}_{i}$ 's are prime ideals in $\mathbf{k}[a]$ (we identify the maximal ideals of $\mathbf{k}[a]$ and the points of $\left.\mathbf{k}^{m}\right)$. For each $i$, let $h_{i} \in$ $\mathbf{k}[a] \backslash \mathcal{Q}_{i}$ and $b_{i}(s) \in \mathbf{Q}[s] \backslash 0$ be the $h$ and $b(s)$ of Theorem 1 applied to $\mathcal{Q}_{i}$. Now, write

$$
Y=\left(\bigcup_{i=1}^{r} V_{m}\left(\mathcal{Q}_{i}\right) \backslash V_{m}\left(h_{i}\right)\right) \bigcup Y^{\prime}
$$

with $Y^{\prime}=\bigcup\left(V_{m}\left(\mathcal{Q}_{i}\right) \cap V_{m}\left(h_{i}\right)\right)$ for which $\operatorname{dim} Y^{\prime}<$ $\operatorname{dim} Y$. Apply the induction hypothesis to $Y^{\prime}$. We obtain that $Y$ is a union (not necessarily disjoint) of locally closed subsets $V$ such that for each $V$ there exists $b_{V}(s) \in \mathbf{Q}[s] \backslash 0$ which is in $\mathcal{B}^{v}\left(f\left(a_{0}, x\right)\right)$ for any $a_{0} \in V$. Let us show now how to obtain the annouced partition. Let $B$ be the set of the obtained polynomials $b_{V}$ 's. Set $B=\left\{b_{1}, \ldots, b_{e}\right\}$. For any $i=$ $1, \ldots, e$, let $E_{i}$ be the set of the $V$ 's for which $b_{i}=$ $b_{V}$. Put

- $W_{1}=\bigcup_{V \in E_{1}} V$,
- $W_{2}=\left(\bigcup_{V \in E_{2}} V\right) \backslash\left(\bigcup_{V \in E_{1}} V\right)$,
- $W_{e}=\left(\bigcup_{V \in E_{e}} V\right) \backslash\left(\bigcup_{V \in E_{1} \cup \cdots \cup E_{e-1}} V\right)$.

Note that some of the $W_{i}$ 's may be empty. The set $\left\{\left(b_{1}, W_{1}\right), \ldots,\left(b_{e}, W_{e}\right)\right\}$ gives a partition $Y=\cup W_{i}$ in a way that $b_{i} \in \mathcal{B}^{v}\left(f\left(a_{0}, x\right)\right)$ for any $a_{0} \in W_{i}$.

Corollary 3. Take $f_{1}(a, x), \ldots, f_{p}(a, x) \in$ $\mathcal{O}(U)[x]$ where $\mathcal{O}(U)$ denotes the ring of holomorphic functions on a open subset $U$ of $\mathbf{C}^{m}$.

Then there exists a finite partition of $U=\cup W$ where each $W$ is an (analytic) locally closed subset of $U$ (i.e. each $W$ is a difference of two analytic subsets of $U$ ) such that for any $W$, there exists a rational non zero polynomial $b(s)$ which belongs to $\mathcal{B}^{v}\left(f\left(a_{0}, x\right)\right)$ for any $a_{0} \in W$.

Remark. As it will appear in the proof, we have the same result if we replace $\mathcal{O}(U)$ by $\mathbf{C}\left\{a_{1}, \ldots, a_{m}\right\}$ or $\mathbf{k}\left[\left[a_{1}, \ldots, a_{m}\right]\right]$ ( $\mathbf{k}$ being an arbitrary field).

Proof. Let us write $f_{j}(a, x)=\sum g_{\alpha, j}(a) x^{\alpha}$ where $g_{\alpha, j} \in \mathcal{O}(U)$. Let $m$ be the number of the $g_{\alpha, j}$ 's and let us introduce $m$ new variables $b_{\alpha, j}$. Consider the (analytic) map $\phi: U \ni a \mapsto\left(b_{\alpha, j}=\right.$ $\left.g_{\alpha, j}(a)\right)_{\alpha, j} \in \mathbf{C}^{m}$. Now apply Corollary 2 to this situation. Let $\mathbf{C}^{m}=\cup W$ be the obtained partition and for any $W$, let $b_{W} \in \mathbf{Q}[s]$ be the polynomial given in 2. Now apply $\phi^{-1}$. This gives a partition $U=\cup \phi^{-1}(W)$. Since $\phi$ is analytic, the sets $\phi^{-1}(W)$ are locally closed analytic subsets of $U$. It is then clear that for any $W$ and $a_{0} \in \phi^{-1}(W)$, we have $b_{W} \in \mathcal{B}^{v}\left(f\left(a_{0}, x\right)\right)$.

Proof of the main result. In order to prove Theorem 1, we shall first prove the following.

Theorem 4. Let $\mathbf{k}$ be a field and $f \in \mathbf{k}[x]^{p}$. Then $\mathcal{B}^{v}(f) \cap \mathbf{Q}[s]$ is not zero.

Note that in $[\mathrm{Br}]$, the author proved (for $p=$ 1) that the global Bernstein polynomial has rational roots for any field $\mathbf{k}$ of characteristic zero. The proof of 4 will use the following propositions.

Proposition 5. Let $\mathbf{K}$ be a subfield of a field L. Suppose that $f \in \mathbf{K}[x]^{p}$. Let $b(s) \in \mathbf{K}[s]$ be such that $b(s) f^{s} \in \mathbf{A}_{n}(\mathbf{L})[s] f^{s+v}$. Then

$$
b(s) f^{s} \in \mathbf{A}_{n}(\mathbf{K})[s] f^{s+v}
$$

Proof. The proof is inspired by $[\mathrm{Br}]$ in which the case $p=1$ is treated. As $\mathbf{L}$ is a $\mathbf{K}$-vector space, let us take $\{1\} \cup\left\{l_{\gamma} ; \gamma \in \Gamma\right\}$ as a basis so that $\mathbf{L}\left[x, s, 1 /\left(f_{1} \cdots f_{p}\right)\right] f^{s}$ is a free $\mathbf{K}\left[x, s, 1 /\left(f_{1} \cdots f_{p}\right)\right]$ module with $\left\{f^{s}\right\} \cup\left\{l_{\gamma} f^{s} ; \gamma \in \Gamma\right\}$ as a basis. Now let $P$ be in $\mathbf{A}_{n}(\mathbf{L})[s]$ such that $b(s) f^{s}=P f^{s+v}$. We decompose $P=P_{0}+P^{\prime}$ where $P_{0} \in \mathbf{A}_{n}(\mathbf{K})[s]$ and $P^{\prime}$ has its coefficients in $\bigoplus_{\gamma \in \Gamma} \mathbf{K} \cdot l_{\gamma}$. Now, we have:

$$
b(s) f^{s}=P_{0} f^{s+v}+P^{\prime} f^{s+v}
$$

with $b(s) f^{s}$ and $P_{0} f^{s+v}$ in $\mathbf{K}\left[x, s, 1 /\left(f_{1} \cdots f_{p}\right)\right] f^{s}$ and $P^{\prime} f^{s+v}$ in $\bigoplus_{\gamma \in \Gamma} \mathbf{K}\left[x, s, 1 /\left(f_{1} \cdots f_{p}\right)\right] l_{\gamma} f^{s}$. By identification, we obtain:

$$
b(s) f^{s}=P_{0} f^{s+v}
$$

Proposition 6 ([Br] and [Br-Ma2]). Given $f \in \mathbf{C}[x]^{p}$, we have:
(1) The set $\left\{\mathcal{B}_{x_{0}}^{v}(f) ; x_{0} \in \mathbf{C}^{n}\right\}$ is finite.
(2) $\mathcal{B}^{v}(f)$ is the intersection of all the $\mathcal{B}_{x_{0}}^{v}(f)$ where $x_{0} \in \mathbf{C}^{n}$.
Proof of Theorem 4. We shall divide the proof into two steps:
(a) First, suppose that $\mathbf{k}=\mathbf{C}$. By [Sa1, Sa2, Gy], as mentioned in the introduction, each $\mathcal{B}_{x_{0}}^{v}(f)$ contains a non zero rational polynomial. By the previous proposition, we can take a finite product of these polynomials and obtain a rational polynomial in $\mathcal{B}^{v}(f)$.
(b) Now suppose that $\mathbf{k}$ is arbitrary. Let $c_{1}, \ldots, c_{N}$ be all the coefficients that appear in the writing of the $f_{j}$ 's and consider the field $\mathbf{K}=$ $\mathbf{Q}\left(c_{1}, \ldots, c_{N}\right)$. There exist $e_{1}, \ldots, e_{N} \in \mathbf{C}$ and an injective morphism of fields $\phi: \mathbf{K} \rightarrow \mathbf{C}$ such that $\phi\left(c_{i}\right)=e_{i}$ for any $i$. We denote by the same symbol $\phi$ the natural extension of $\phi$ from $\mathbf{K}[x]$ to $\mathbf{C}[x]$ and from $\mathbf{A}_{n}(\mathbf{K})[s]$ to $\mathbf{A}_{n}(\mathbf{C})[s]$. Now, consider in $\mathbf{C}[s]$ the Bernstein-Sato ideal $\mathcal{B}^{v}(\phi(f)$ ) (where $\phi(f)=$ $\left(\phi\left(f_{1}\right), \ldots, \phi\left(f_{p}\right)\right)$. Using the result of case (a), there
exists $b(s) \in \mathbf{Q}[s] \backslash 0$ that belongs to $\mathcal{B}^{v}(\phi(f))$. So we have a functional equation:

$$
b(s) \phi(f)^{s}=P \cdot \phi(f)^{s+v}
$$

where $P \in \mathbf{A}_{n}(\mathbf{C})[s]$. By Proposition 5 , we can suppose $P \in \mathbf{A}_{n}(\phi(\mathbf{K}))[s]$. Apply $\phi^{-1}$ to this equation. Since $b(s) \in \mathbf{Q}[s], \phi^{-1}(b(s))=b(s)$, thus we obtain:

$$
b(s) f^{s}=\phi^{-1}(P) \cdot f^{s+v}
$$

In conclusion $b(s)$ is in $\mathcal{B}^{v}(f)$.
Now we dispose of a sufficient material to give the

Proof of Theorem 1. By Theorem 4, there exists a non zero rational polynomial $b(s)$ in $\mathcal{B}^{v}\left((f)_{\mathcal{Q}}\right)$. Hence, we have the following equation:

$$
b(s)\left(\frac{[f]_{\mathcal{Q}}}{1}\right)^{s}=\frac{[U(s)]_{\mathcal{Q}}}{[h]_{\mathcal{Q}}} \cdot\left(\frac{[f]_{\mathcal{Q}}}{1}\right)^{s+v}
$$

where $U(s) \in \mathbf{A}_{n}(\mathcal{C})[s]$ and $h \in \mathcal{C} \backslash \mathcal{Q}$. It follows that:

$$
h b(s) f^{s}-U(s) \cdot f^{s+v} \equiv 0 \bmod \mathcal{Q}
$$

in $\mathcal{C}\left[x, 1 /\left(f_{1}, \ldots, f_{p}\right), s\right] f^{s}$. Since $f_{1} \cdots f_{p} \notin \mathcal{Q}[x]$ and $\mathcal{Q}$ is prime, we obtain:

$$
h b(s) f^{s}-U(s) \cdot f^{s+v} \in \mathcal{Q}\left[x, \frac{1}{f_{1} \cdots f_{p}}, s\right] f^{s}
$$

This article is a more general and simplified version of some results of my thesis [Ba].

Acknowledgements. I am grateful to my thesis advisor Michel Granger for having introduced me to this subject and for valuable remarks. I also wish to thank Joël Briançon for some remarks made while refereeing my thesis, which I used in the proof of Corollary 3.

## References

[Ba] Bahloul, R.: Contributions à l'étude des idéaux de Bernstein-Sato d'un point de vue constructif. Thèse de doctorat, Université d'Angers (2003).
[Be] Bernstein, I. N.: The analytic continuation of generalised functions with respect to a parameter. Funct. Anal. Appl., 6, 273-285 (1972).
[Bi] Biosca, H.: Polynômes de Bernstein génériques et relatifs associés à une application analytique. Thèse de doctorat, Nice Sophia-Antipolis (1996).
[Bi2] Biosca, H.: Sur l'existence de polynômes de Bernstein génériques associés à une application analytique. C. R. Acad. Sci. Paris Sér. I Math., 322 (7), 659-662 (1996).
[Bj] Björk, J. E.: Dimensions over Algebras of Differential Operators (1973). (Preprint).
[Br] Briançon, J.: Passage du local au global. Handwritten notes.
[Br-Ge-Ma] Briançon, J., Geandier, F., and Maisonobe, Ph.: Déformation d'une singularité isolée d'hypersurface et polynômes de Bernstein. Bull. Soc. Math. France, 120 (1), 15-49 (1992).
[Br-Ma] Briançon, J., and Maisonobe, Ph.: Remarques sur l'idéal de Bernstein associé à des polynômes. Prépublication Université Nice Sophia-Antipolis $\mathrm{n}^{\circ}$ 650, Mai (2002).
[Br-Ma2] Briançon J., and Maisonobe, Ph.: Examen de passage du local au global pour les polynômes de Bernstein-Sato. Typewritten notes (1990).
[Ge] Geandier, F.: Déformations à nombre de Milnor constant: quelques résultats sur les polynômes de Bernstein. Compositio Math., 77 (2), 131-163 (1991).
[Gy] Gyoja, A.: Bernstein-Sato's polynomial for several analytic functions. J. Math. Kyoto Univ., 33 (2), 399-411 (1993).
[Ka] Kashiwara, M.: B-functions and holonomic systems. Rationality of roots of B-functions. Invent. Math., 38 (1), 33-53 (1976/1977).
[Le] Leykin, A.: Constructibility of the set of polynomials with a fixed Bernstein-Sato Polynomial: an algorithmic approach. J. Symbolic Comput., 32, 663-675 (2001).
[Sa1] Sabbah, C.: Proximité évanescente I. La structure polaire d'un $\mathcal{D}$-Module. Compositio Math., 62, 283-328 (1987).
[Sa2] Sabbah, C.: Proximité évanescente II. Équations fonctionnelles pour plusieurs fonctions analytiques. Compositio Math., 64, 213-241 (1987).


[^0]:    1991 Mathematics Subject Classification. Primary 16S32; Secondary 13N10, 14R99.
    ${ }^{*)}$ Contact address: Department of Mathematics, Faculty of Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe, Hyogo 657-8501.
    ${ }^{* *)}$ All the fields considered in this paper are of characteristic 0 .

