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Normal integral basis and ray class group modulo 4
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Abstract: We prove that a number field K satisfies the following property (B) if and only
if the ray class group of K defined modulo 4 is trivial. (B): For any tame abelian extensions N1

and N2 over K of exponent 2, the composite N1N2/K has a relative normal integral basis (NIB)
if both N1/K and N2/K have a NIB.
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1. Introduction. For a number field K and
an integral divisor M of K, let K(M) be the ray class
field of K modulo M, and ClK,M the ray class group
modulo M. Denote by M∞ the product of the real
primes of K. When K is totally real and M divides
M∞, Kawamoto and Odai [6] showed that there ex-
ists a unique intermediate field LM of K(M)/K such
that (i) LM/K has a relative normal integral basis
(NIB for short) and (ii) any intermediate field N of
K(M)/K is contained in LM if N/K has a NIB. Fur-
ther, it is shown that the Galois group Gal(LM/K)
is of exponent 2, and a generator of a NIB of LM/K

is given in terms of units of K. (Here, an abelian
group G is of exponent 2 when x2 = 1 for all x ∈ G.)
These results are obtained by using some results of
Brinkhuis [1] and Childs [2].

In Kawamoto [5], we asked the following ques-
tion on the existence of such an intermediate field
LM for general M.

Question. Characterize a number field K en-
joying the following property (A).

(A) For any integral divisor M of K, there ex-
ists a unique intermediate field LM of K(M)/K such
that

(i) LM/K has a NIB and Gal(LM/K) is of
exponent 2,
and

(ii) any intermediate field N of K(M)/K is
contained in LM if N/K has a NIB and Gal(N/K)
is of exponent 2.
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We easily see that the condition (A) on K is
equivalent to the following condition:

(B) For any (tame) abelian extensions N1 and
N2 over K of exponent 2, the composite N1N2/K

has a NIB if both N1/K and N2/K have a NIB.
Let hK = |ClK,1| be the class number of K in

the usual sense. In [5], it is shown that if a number
field K satisfies (A), then hK = 1 and ClK,4M∞ is of
exponent 2. The purpose of the present article is to
strengthen this result as follows:

Theorem. A number field K enjoys the prop-
erty (A) if and only if the ray class group ClK,4 is
trivial.

For a number field K, let OK be the ring of in-
tegers and EK = O×

K the group of units of K. For
an integer n ≥ 2, let [EK]n be the subgroup of the
multiplicative group (OK/n)× = (OK/nOK)× gen-
erated by the classes containing units of K. We have
ClK,4 = {0} if and only if hK = 1 and (OK/4)× =
[EK]4. The condition (OK/4)× = [EK]4 is satisfied
only when K is totally real (Lemma 4). In Section
3, we deal with a real quadratic field with odd class
number and give a simple necessary and sufficient
condition for (OK/4)× = [EK]4.

2. Proof of Theorem. The following asser-
tion was shown in Ichimura [3, Proposition 3].

Lemma 1. For a number field K, the follow-
ing two conditions are equivalent.

(i) Any tame abelian extension over K of ex-
ponent 2 has a NIB.

(ii) We have ClK,4 = {0}.
Proof of the “if ” part of Theorem. Let LM be

the composite of all tame quadratic extensions of K

contained in K(M). Then, from Lemma 1, we see
that LM has the desired property.
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The following lemma was shown in Massy [7,
Section 3].

Lemma 2. Let N/K be a tame quadratic ex-
tension of a number field K, and let ℘1, . . . , ℘r be
all the prime ideals of K ramified at N . Then, N/K

has a NIB if and only if there exists an integer d

of K with N = K(
√

d) such that d ≡ 1 mod 4 and
dOK = ℘1 · · ·℘r.

Lemma 3. Assume that a number field K sat-
isfies the property (A). Then, the ray class group
ClK,2 is trivial.

Proof. Let P be an arbitrary prime ideal of K

with P � 2, and C ∈ ClK,4 the ray ideal class modulo
4 containing P. Let Q1, Q2 be prime ideals of K

contained in C−1 with Qi � 2P and Q1 �= Q2. Then,
there exist integers di ∈ OK (i = 1, 2) such that

(1) di ≡ 1 mod 4 and PQi = diOK .

We put N1 = K(
√

d1), N2 = K(
√

d2), N3 =
K(

√
d1d2). These are quadratic extensions over K.

By Lemma 2 and (1), N1/K and N2/K have a NIB.
Then, the composite N1N2/K has a NIB as K sat-
isfies (A) (or equivalently, (B)). Hence, N3/K has
a NIB as N3 ⊆ N1N2. By Lemma 2, we can write
N3 = K(

√
d) for some integer d ∈ OK such that

(2) d ≡ 1 mod 4 and dOK = Q1Q2.

As K(
√

d1d2) = K(
√

d), we have

d1d2 = dx2

for some x ∈ K×. Therefore, it follows from (1)
and (2) that P = xOK and x2 ≡ 1 mod 4. The
last condition implies x ≡ 1 mod 2. Hence, it follows
that the ray class group ClK,2 is trivial as P is an
arbitrary prime ideal (with P � 2).

Proof of the “only if ” part of Theorem. As-
sume that K satisfies the condition (A) (or equiva-
lently, (B)). Then, by Lemma 3, we have ClK,2 =
{0}. Namely, we have hK = 1 and (OK/2)× =
[EK]2. It follows from these conditions that any tame
quadratic extension N/K has a NIB. Though this
fact is known to specialists, we give a proof for the
sake of completeness.

Let N/K be a tame quadratic extension. Then,
as hK = 1, we see that N = K(

√
a) for some integer

a ∈ OK with (a, 2) = 1 such that the integral ideal
aOK is square free in the semi-group of integral ideals
of K. As N/K is tame, we have a ≡ u2 mod 4 for
some u ∈ OK . It follows from this that a ≡ ε2 mod 4

for some unit ε ∈ EK because (OK/2)× = [EK]2.
Hence, by Lemma 2, N/K has a NIB.

Now, from the above, we see that any tame
abelian extension of exponent 2 has a NIB since we
are assuming the condition (B). Therefore, we obtain
ClK,4 = {0} by Lemma 1.

3. Real quadratic fields. First, we show
the following lemma mentioned in Section 1.

Lemma 4. For a number field K, the condi-
tion (OK/4)× = [EK ]4 is satisfied only when K is
totally real.

Proof. Denote by ρ1 and ρ2 the 2-ranks of
the abelian groups [EK]4 and (OK/4)×, respectively.
Let r1 (resp. r2) be the number of real (resp. com-
plex) primes of K. By the Dirichlet unit theorem,
we have

ρ1 ≤ r1 + r2.

Let 2OK = ℘e1
1 · · ·℘es

s be the prime decomposition in
K,and let fi be the degree of the prime ideal ℘i. Let
A be the subgroup of (OK/4)× consisting of classes
[x]4 with x ≡ 1 mod 2. Clearly, we have

A =
s⊕

i=1

Ai

with

Ai =
{x ∈ OK

∣∣ x ≡ 1 mod ℘ei

i }
{x ∈ OK

∣∣ x ≡ 1 mod ℘2ei

i } .

As A is of exponent 2, we see that

ρ2 ≥ ord2(|A|) =
∑

i

ord2(|Ai|)

=
∑

i

eifi = r1 + 2r2.

Here, |X| is the cardinality of a finite set X, and
ord2(∗) is the additive valuation on the rationals Q

with ord2(2) = 1. The assertion follows from the
above two inequalities.

Let K = Q(
√

m) be a real quadratic field with a
square free integer m > 1, and let ε be a fundamental
unit of K. We show the following:

Proposition. Under the above setting, as-
sume that the class number hK of K is odd. Then,
we have (OK/4)× = [EK]4 if and only if one of the
following three conditions holds.
(i) m = 2.
(ii) m = p is a prime number with p ≡ 1 mod 8.
(iii) m = p is a prime number with p ≡ 5 mod 8, and

ε2 �≡ 1 mod 4.
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For brevity, we write XK = (OK/4)× and
[EK] = [EK]4. For an integer x ∈ OK with (x, 2) =
1, let [x] be the class in XK represented by x. The
group [EK] is generated by the classes [−1] and [ε].
Let ω =

√
m or (1 +

√
m)/2 according to whether

m ≡ 2, 3 mod 4 or m ≡ 1 mod 4. The set {1, ω} is
a free basis of OK over Z. Let M = (m− 1)/4 when
m ≡ 1 mod 4. We distinguish the following three
cases to show Proposition:

(I) 2 ramifies,
(II) 2 splits,

(III) 2 remains prime in K.
For the case (III), we need the following lemma (cf.
Kawamoto [4, Lemma 6.6]).

Lemma 5. In the case (III), we have

XK = 〈[−1]〉 × 〈[1 + 2ω]〉 × 〈[M + ω]〉,
and this is an abelian group of type (2, 2, 3).

Proof of Proposition. The case (I). In this case,
XK is an abelian group of type (2, 4). When m = 2,
we easily see that XK = [EK ]. So, let m > 2. Since
hK is odd, we see from genus theory that m = q or
2q, q being a prime number with q ≡ 3 mod 4. (For
genus theory, see Ono [8, Chapter 4] for example.)
First, let m = q. Since hK is odd and the prime 2
ramifies in K, we see that ε = π2/2 for some integer
π = a + bω (a, b ∈ Z) ([4, Lemma 3.1]). Clearly,
we have N(π) = ±2, where N(x) denotes the norm
of x ∈ K×. Hence, a and b are odd. From this, we
see that ε2 = π4/4 ≡ −1 mod 4, and hence [EK] is
a cyclic group. Therefore, we obtain [EK ] � XK as
XK is of type (2, 4). Next, let m = 2q. Since hK

is odd and the prime q ramifies in K, we have ε =
π2/q for some integer π = a + bω ∈ OK ([4, Lemma
3.1]). We easily see that a is odd and that ε2 ≡ π4 ≡
1 mod 4. This implies [EK] � XK .

The case (II). In this case, XK is an abelian
group of type (2, 2). We easily see that XK = [EK]
if and only if N(ε) = −1. As hK is odd and the prime
2 splits in K, it follows from genus theory that m =
p is a prime number with p ≡ 1 mod 8, or m = q1q2

for some prime numbers qi satisfying q1 ≡ 3 mod 4
and q1 ≡ q2 mod 8. It is known that N(ε) = −1
in the former case and N(ε) = 1 in the latter case
([8, Theorem 4.5]). The assertion follows from this
in this case.

The case (III). As hK is odd and the prime 2
remains prime in K, it follows from genus theory
that m = p is a prime number with p ≡ 5 mod 8,

or m = q1q2 for some prime numbers qi satisfying
q1 ≡ q2 ≡ 3 mod 4 and q1 �≡ q2 mod 8. We may as
well assume that ε > 1. First, let m = p. Then, by
[4, Lemma 3.3 (iv)], we have

[ε] = [1 + 2ω], [−M + ω] or [M − 1 + ω].

As is easily seen, we have

[−M + ω] = [1 + 2ω][M + ω]

and

[M − 1 + ω] = [1 + 2ω][M + ω]2.

Then, we see from Lemma 5 that XK = [EK] if and
only if ε2 �≡ 1 mod 4. Next, let m = q1q2. By [4,
Lemma 3.3 (iii)], we have

[ε] = [−1], [M + 1 + ω] or [−M − ω].

Noting that [M +1+ω] = [−1][M +ω]2, we see from
Lemma 5 that [EK ] � XK .
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