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Normal integral basis and ray class group modulo 4
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Abstract:

We prove that a number field K satisfies the following property (B) if and only

if the ray class group of K defined modulo 4 is trivial. (B): For any tame abelian extensions N;

and Ny over K of exponent 2, the composite N;N3/K has a relative normal integral basis (NIB)

if both N;/K and N3/K have a NIB.
Key words:

1. Introduction. For a number field K and
an integral divisor 9 of K, let K (M) be the ray class
field of K modulo 9, and Clk op the ray class group
modulo M. Denote by 9., the product of the real
primes of K. When K is totally real and 997 divides
Moo, Kawamoto and Odai [6] showed that there ex-
ists a unique intermediate field Loy of K (91)/K such
that (i) Lon/K has a relative normal integral basis
(NIB for short) and (ii) any intermediate field N of
K(9M)/K is contained in Lgy if N/K has a NIB. Fur-
ther, it is shown that the Galois group Gal(Lon/K)
is of exponent 2, and a generator of a NIB of Loy /K
is given in terms of units of K. (Here, an abelian
group G is of exponent 2 when z? = 1 for all x € G.)
These results are obtained by using some results of
Brinkhuis [1] and Childs [2].

In Kawamoto [5], we asked the following ques-
tion on the existence of such an intermediate field
Lgy for general 9.

Question. Characterize a number field K en-
joying the following property (A).

(A) For any integral divisor 9 of K, there ex-
ists a unique intermediate field Loy of K (91)/K such
that

(i) Lon/K has a NIB and Gal(Lgn/K) is of
exponent 2,
and

(ii) any intermediate field N of K(9)/K is
contained in Loy if N/K has a NIB and Gal(N/K)
is of exponent 2.
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We easily see that the condition (A) on K is
equivalent to the following condition:

(B) For any (tame) abelian extensions Ny and
N over K of exponent 2, the composite Ny No/K
has a NIB if both N;/K and N3/K have a NIB.

Let hxg = |Clgk,1| be the class number of K in
the usual sense. In [5], it is shown that if a number
field K satisfies (A), then hx = 1 and Clg 49n., is of
exponent 2. The purpose of the present article is to
strengthen this result as follows:

Theorem. A number field K enjoys the prop-
erty (A) if and only if the ray class group Clk 4 is
trivial.

For a number field K, let O be the ring of in-
tegers and Ex = O the group of units of K. For
an integer n > 2, let [Ek], be the subgroup of the
multiplicative group (Og/n)* = (O /nOk)* gen-
erated by the classes containing units of K. We have
Cli,s = {0} if and only if hx = 1 and (O /4)* =
[Ex]s. The condition (Ok/4)* = [Ek]4 is satisfied
only when K is totally real (Lemma 4). In Section
3, we deal with a real quadratic field with odd class
number and give a simple necessary and sufficient
condition for (Og /4)* = [Exk]a.

2. Proof of Theorem. The following asser-
tion was shown in Ichimura [3, Proposition 3.

Lemma 1. For a number field K, the follow-
ing two conditions are equivalent.

(i) Any tame abelian extension over K of ex-
ponent 2 has a NIB.

(ii) We have Clg 4 = {0}.

Proof of the “if 7 part of Theorem. Let Loy be
the composite of all tame quadratic extensions of K
contained in K(9). Then, from Lemma 1, we see
that Loy has the desired property. O
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The following lemma was shown in Massy [7,
Section 3].

Lemma 2. Let N/K be a tame quadratic ex-
tension of a number field K, and let @1, ..., @ be
all the prime ideals of K ramified at N. Then, N/K
has a NIB if and only if there exists an integer d
of K with N = K(v/d) such that d = 1 mod 4 and
dOK = o1 pr.

Lemma 3. Assume that a number field K sat-
isfies the property (A). Then, the ray class group
Clk o is trivial.

Proof. Let P be an arbitrary prime ideal of K
with P12, and C € Clg 4 the ray ideal class modulo
4 containing PB. Let Qi, Qo be prime ideals of K
contained in C~! with 9, 1 298 and Q; # Qa. Then,
there exist integers d; € Ok (i = 1, 2) such that

(1) d;=1mod4 and PQ; =d,0k.

We put Ny = K(Vdi), No = K(Vd2), N3 =
K (\/dids). These are quadratic extensions over K.
By Lemma 2 and (1), N;/K and N3/K have a NIB.
Then, the composite Ny Ny/K has a NIB as K sat-
isfies (A) (or equivalently, (B)). Hence, N3/K has
a NIB as N3 C N1 N>. By Lemma 2, we can write
N3 = K(\/E) for some integer d € Ok such that

(2) d=1mod4 and dOg = Q9.
As K (\/didy) = K(v/d), we have
dldQ = d$2

for some x € K*. Therefore, it follows from (1)
and (2) that f = 20k and 22 = 1 mod 4. The
last condition implies z = 1 mod 2. Hence, it follows
that the ray class group Clg o is trivial as P is an
arbitrary prime ideal (with 3 1 2). U

Proof of the “only if ” part of Theorem. As-
sume that K satisfies the condition (A) (or equiva-
lently, (B)). Then, by Lemma 3, we have Clg o =
{0}. Namely, we have hg = 1 and (Og/2)* =
[Ek]2. Tt follows from these conditions that any tame
quadratic extension N/K has a NIB. Though this
fact is known to specialists, we give a proof for the
sake of completeness.

Let N/K be a tame quadratic extension. Then,
as hx = 1, we see that N = K (y/a) for some integer
a € Ok with (a, 2) = 1 such that the integral ideal
aQy is square free in the semi-group of integral ideals
of K. As N/K is tame, we have a = u® mod 4 for
some u € Ok. It follows from this that ¢ = €2 mod 4
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for some unit € € Ex because (Ox/2)* = [Ekla.
Hence, by Lemma 2, N/K has a NIB.

Now, from the above, we see that any tame
abelian extension of exponent 2 has a NIB since we
are assuming the condition (B). Therefore, we obtain
Cli 4 = {0} by Lemma 1. |

3. Real quadratic fields. First, we show
the following lemma mentioned in Section 1.

Lemma 4. For a number field K, the condi-
tion (O /4)* = |Ek]a is satisfied only when K is
totally real.

Proof. Denote by p; and po the 2-ranks of
the abelian groups [Ek]s and (Og /4)*, respectively.
Let 71 (resp. r2) be the number of real (resp. com-
plex) primes of K. By the Dirichlet unit theorem,
we have

p1 <ry+ro.

Let 20k = p$' - - - p% be the prime decomposition in
K ,and let f; be the degree of the prime ideal ;. Let
A be the subgroup of (O /4)* consisting of classes
[x]4 with = 1 mod 2. Clearly, we have

A= éAi
i=1

with
B {r € Ok | =1 mod g}
" {re 0ok | 2 =1mod g}

As A is of exponent 2, we see that

pr 2 orda([d]) = 3 ond (|41
i
= Zeifi =711+ 2rs.
i

Here, |X| is the cardinality of a finite set X, and
orda(x) is the additive valuation on the rationals Q
with orde(2) = 1. The assertion follows from the
above two inequalities. O

Let K = Q(y/m) be a real quadratic field with a
square free integer m > 1, and let € be a fundamental
unit of K. We show the following:

Proposition. Under the above setting, as-
sume that the class number hx of K is odd. Then,
we have (O /4)* = [Ekls if and only if one of the
following three conditions holds.

(i) m=2.
(ii) m =p is a prime number with p =1 mod 8.
(iii) m = p is a prime number with p = 5 mod 8, and
€2 # 1 mod 4.
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For brevity, we write Xx = (Og/4)* and
[Ex] = [Ek]a. For an integer x € Ok with (z, 2) =
1, let [z] be the class in X represented by x. The
group [Fk] is generated by the classes [—1] and [].
Let w = v/m or (1 + /m)/2 according to whether
m =2,3mod4 or m =1mod4. The set {1, w} is
a free basis of O over Z. Let M = (m —1)/4 when
m = 1 mod4. We distinguish the following three
cases to show Proposition:

(I) 2 ramifies,
(IT) 2 splits,
(IIT) 2 remains prime in K.
For the case (III), we need the following lemma (cf.
Kawamoto [4, Lemma 6.6]).

Lemma 5. In the case (IIT), we have

X = ([=1]) x ([L + 2w]) x ([M +w]),

and this is an abelian group of type (2, 2, 3).

Proof of Proposition. The case (I). In this case,
Xk is an abelian group of type (2, 4). When m = 2,
we easily see that Xx = [Fk]. So, let m > 2. Since
hk is odd, we see from genus theory that m = ¢ or
2q, g being a prime number with ¢ = 3 mod 4. (For
genus theory, see Ono [8, Chapter 4] for example.)
First, let m = ¢g. Since hg is odd and the prime 2
ramifies in K, we see that e = 72/2 for some integer
m=a+bw (a,b € Z) ([4, Lemma 3.1]). Clearly,
we have N () = £2, where N(x) denotes the norm
of x € K*. Hence, a and b are odd. From this, we
see that €2 = 71/4 = —1 mod 4, and hence [Ek] is
a cyclic group. Therefore, we obtain [Ek] ; Xg as
Xk is of type (2, 4). Next, let m = 2q. Since hg
is odd and the prime ¢ ramifies in K, we have € =
72 /q for some integer ™ = a + bw € Ok ([4, Lemma
3.1]). We easily see that a is odd and that €2 = 74 =
1 mod 4. This implies [Fk] ; Xk.

The case (IT). In this case, Xk is an abelian
group of type (2, 2). We easily see that Xy = [Ek]
ifand only if N(e) = —1. As hk is odd and the prime
2 splits in K, it follows from genus theory that m =
p is a prime number with p =1 mod 8, or m = q1q»
for some prime numbers ¢; satisfying ¢ = 3 mod 4
and ¢ = g2 mod 8. It is known that N(e) = —1
in the former case and N(e) = 1 in the latter case
([8, Theorem 4.5]). The assertion follows from this
in this case.

The case (III). As hg is odd and the prime 2
remains prime in K, it follows from genus theory
that m = p is a prime number with p = 5 mod 8,
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or m = q1q2 for some prime numbers g; satisfying
q1 = g2 = 3mod 4 and ¢; # g2 mod 8. We may as
well assume that € > 1. First, let m = p. Then, by
[4, Lemma 3.3 (iv)], we have

[el=1+2w], [-M+w] or [M—14uw].
As is easily seen, we have
[-M +w] = [1 4 2w][M + W]
and
[M —1+w] = [1+2w][M + w]*

Then, we see from Lemma 5 that Xx = [Fk] if and
only if €2 # 1 mod 4. Next, let m = q1g2. By [4,
Lemma 3.3 (iii)], we have

[el=[-1], M+ 14w] or [-M —w].
Noting that [M +1+w] = [-1][M +w]?, we see from
Lemma 5 that [Ek] ; X, ]
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