A note on the growth of Mordell-Weil ranks of elliptic curves in cyclotomic Z_{p}-extensions

By Kazuo Matsuno
Department of Mathematics, Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, Tokyo 192-0397
(Communicated by Heisuke Hironaka, m. J. a., May 12, 2003)

Abstract

In this note, we exhibit some examples of elliptic curves whose Mordell-Weil ranks grow in lower layer of the cyclotomic \mathbf{Z}_{p}-extension over the rationals.

Key words: Elliptic curve; Mordell-Weil group; Iwasawa theory; \mathbf{Z}_{p}-extension.

1. Introduction. For a prime number p, let $F_{p, \infty}$ be the cyclotomic \mathbf{Z}_{p}-extension of the rational number field \mathbf{Q} and denote by $F_{p, n}$ its n-th layer. When p is odd, $F_{p, n}$ is the unique cyclic extension of degree p^{n} over \mathbf{Q} unramified outside p.

By results of Kato, Rohrlich and Rubin, we know that $E\left(F_{p, \infty}\right)$ is finitely generated for any elliptic curve E defined over Q. Especially, there exists an integer n_{0} such that

$$
\operatorname{rank}_{\mathbf{Z}} E\left(F_{p, n}\right)=\operatorname{rank}_{\mathbf{Z}} E\left(F_{p, n_{0}}\right)
$$

holds for any $n \geq n_{0}$. We denote by $n_{p}=n_{p}(E)$ the smallest one of such n_{0}.

Greenberg asked in [2] whether $n_{p}(E)$ is bounded or not when E or p varies. According to a recent result of Chinta ($\left[1\right.$, Theorem 2]), $n_{p}(E)$ is bounded as p varies for a fixed E. As for the variation of $n_{p}(E)$ when E varies for a fixed p, we only know the existence of elliptic curves such that $n_{p}=0$ for all p (e.g., elliptic curves of conductor 11), and the existence of curves with positive n_{p} for small p 's. In [2, $\S 1]$, Greenberg showed that an elliptic curve of conductor 195 (resp. 34) has $n_{2}=2$ (resp. $n_{3}=1$). He also mentioned that one can find examples of elliptic curves such that $n_{2} \geq 3, n_{3} \geq 2, n_{5} \geq 1$ and $n_{7} \geq 1$, respectively, by using a result of Rohrlich [4]. In this note, we present such examples explicitly by investigating some properties of Rohrlich's curves as a family of elliptic curves ($\S 2$ and $\S 3$). We also give another proof of the main result of [4] (Corollary 5).

In $\S 4$, we will discuss a similar question for cyclotomic extensions of the rational function field over a finite field. We will prove that there exists an elliptic curve with arbitrary large n_{p} in this situation.

[^0]2. Rohrlich's construction and a family of elliptic curves. In this section, let K be a number field of finite degree and $f(x) \in K[x]$ a monic of degree 9 . We denote by $a_{i} \in K$ the coefficient of x^{i} in f and assume that $a_{8}=0$. We also set $a_{i}=0$ for $i<0$. Let $\alpha_{i} \in \bar{K}(i=1, \ldots, 9)$ be the roots of $f(x)$.

For any elements $u, v \in K(t)$, we consider a (projective) plane cubic curve $E_{u, v}$ defined by the equation

$$
u \sum_{i=0}^{2} \sum_{j=0}^{3} a_{9-2 i-3 j} x^{i} y^{j}+v\left(x^{3}-y^{2}\right)=0
$$

If $E_{u, v}$ is non-singular and $E_{u, v}(K(t))$ is non-empty, we can regard $E_{u, v}$ as an elliptic curve defined over $K(t)$. When $u, v \in K$ and $E_{u, v}(K)$ is non-empty, we consider $E_{u, v}$ as an elliptic curve over K.

In [4], Rohrlich treats the curve $E_{1, b}$, where $b=$ $-a_{5}-a_{7}-a_{9}$. This curve has a rational point $(1,0) \in$ $E_{1, b}(K)$. Therefore $E_{1, b}$ is an elliptic curve over K if $E_{1, b}$ is non-singular. Rohrlich shows that, for any finite extension L / K satisfying $[L: K] \leq 9$, one can take an $f(x)$ so that $L=K\left(\alpha_{1}\right)$ and $E_{1, b}$ is an elliptic curve such that $E_{1, b}(M) \otimes \mathbf{Q}$ contains $V_{L / K}^{\prime}$, where M is the Galois closure of L / K with $G=\operatorname{Gal}(M / K)$ and $V_{L / K}^{\prime}$ is a $\mathbf{Q}[G]$-module defined later.

In this note, we treat two cubic curves $E_{t, 1}$ and $E_{r(t), s(t)}$ defined over $K(t)$, and treat also their specializations to K. Here we define a polynomial $q(t) \in$ $K[t]$ by

$$
q(t)=\left(\sum_{i=0}^{1} a_{3 i+2}\right) t^{2}+\left(\sum_{i=0}^{2} a_{3 i+1}\right) t+\sum_{i=0}^{3} a_{3 i}
$$

and set $r(t)=\left(1-t^{3}\right) / \operatorname{gcd}\left(1-t^{3}, q(t)\right)$ and $s(t)=$ $q(t) / \operatorname{gcd}\left(1-t^{3}, q(t)\right)$. We remark that $q(t) \neq 0$ and $\operatorname{deg}(r(t))$ is positive. The following lemmas imply
that two cubic curves above are elliptic curves indeed (under a condition for $E_{t, 1}$).

Lemma 1. Cubic curves $E_{t, 1}$ and $E_{r(t), s(t)}$ are non-singular.

Proof. Assume that $P \in E_{t, 1}(\overline{K(t)})$ is a singular point. Since $E_{t, 1}$ is an irreducible cubic curve, P is a unique singular point on $E_{t, 1}$. This implies $P \in E_{t, 1}(K(t))$. Write $P=[x(t): y(t): z(t)]$ in homogeneous coordinates, where $x, y, z \in K[t]$ with $\operatorname{gcd}(x, y, z)=1$. Since $[x(0): y(0): z(0)]$ should be a singular point on a cubic curve $y^{2}=x^{3}$, we see that $x(0)=y(0)=0$ and $z(0) \neq 0$. Then we have

$$
\begin{aligned}
& \sum_{i=0}^{2} \sum_{j=0}^{3} a_{9-2 i-3 j} x(t)^{i} y(t)^{j} z(t)^{3-i-j} \\
&+\left(t^{2} \widetilde{x}(t)^{3}-t \widetilde{y}(t)^{2} z(t)\right)=0
\end{aligned}
$$

where $\widetilde{x}=x / t$ and $\widetilde{y}=y / t$. By the substitution $t=$ 0 , we have $a_{9} z(0)^{3}=z(0)^{3}=0$. This is a contradiction. Thus $E_{t, 1}$ is non-singular. Non-singularity of $E_{r(t), s(t)}$ is similar.

Lemma 2. (i) Assume that α_{1} is contained in K. Then $E_{t, 1}(K(t))$ has a rational point $O=$ $\left(1 / \alpha_{1}^{2}, 1 / \alpha_{1}^{3}\right)$. (When $\alpha_{1}=0, O$ is the point $[0: 1$: 0] in the homogeneous coordinate.)
(ii) $E_{r(t), s(t)}(K(t))$ has a rational point $O=$ $(t, 1)$.

Proof. Clear.
Thus we obtain elliptic curves $E_{t, 1}$ and $E_{r(t), s(t)}$ defined over $K(t)$ from the polynomial $f(x)$ of degree 9 . Let M be the minimal splitting field of f over K, i.e., $M=K\left(\alpha_{1}, \ldots, \alpha_{9}\right)$. For any element $x \in M$, let V_{x} be the additive $\mathbf{Q}[G]$-submodule of M generated by x, where $G=\operatorname{Gal}(M / K)$. We prove the following

Theorem 3. (i) Assume that $\alpha_{1} \in K$. Then $E_{t, 1}(M(t)) \otimes \mathbf{Q}$ contains a $\mathbf{Q}[G]$-submodule isomorphic to $V_{\alpha_{i}-\alpha_{1}}$ for each $i \geq 2$.
(ii) Assume that $f(1) \neq 0$. Then $E_{r(t), s(t)}(M(t)) \otimes \mathbf{Q}$ contains a $\mathbf{Q}[G]$-submodule isomorphic to $V_{\alpha_{i}-1}$ for each i.

Remark. We use the assumption $a_{9}=1$ (i.e., $\operatorname{deg}(f)=9$) only for proving Lemma 1. This theorem holds even in the case $\operatorname{deg}(f) \leq 7$ if our curves $E_{t, 1}$, $E_{r(t), s(t)}$ are non-singular.

The idea of the proof is to consider the specialization to a fiber with cusp (cf. Shioda [5]).

Proof. Since both cases are proven similarly, we treat only (ii). For each i, we have a rational point

$$
P_{i}=\left(\frac{1}{\alpha_{i}^{2}}, \frac{1}{\alpha_{i}^{3}}\right) \in E_{r(t), s(t)}(M(t))
$$

Let W_{i} be a $\mathbf{Q}[G]$-submodule of $E_{r(t), s(t)}(M(t)) \otimes$ \mathbf{Q} generated by $P_{i} \otimes 1$. The substitution $t=1$ induces a $\mathbf{Q}[G]$-homomorphism $W_{i} \rightarrow E_{r(1), s(1)}^{\mathrm{ns}}(M) \otimes$ Q. Here $E_{r(1), s(1)}^{\mathrm{ns}}(M)$ is the non-singular points of $E_{r(1), s(1)}(M)$ and we regard it as an abelian group with identity element $(1,1)$ in the usual way. Since we have $r(1)=0$ and $s(1) \neq 0$ by the assumption $f(1) \neq 0, E_{r(1), s(1)}$ is a singular cubic curve defined by $y^{2}=x^{3}$. Hence we have a $\mathbf{Q}[G]$-isomorphism $E_{r(1), s(1)}^{\mathrm{ns}}(M) \otimes \mathbf{Q} \xrightarrow{\sim} M$ defined by $(x, y) \otimes a \mapsto$ $(x / y-1) a$. The image of $P_{i} \otimes 1 \in W_{i}$ in M is $\alpha_{i}-1$ and we have a surjective $\mathbf{Q}[G]$-homomorphism $W_{i} \rightarrow$ $V_{\alpha_{i}-1}$. Since $\mathbf{Q}[G]$ is semisimple, W_{i} has a $\mathbf{Q}[G]-$ submodule isomorphic to $V_{\alpha_{i}-1}$.

By the specialization theorem due to Silverman (cf. [6]), we also have an infinite family of elliptic curves over K with similar property:

Corollary 4. Assume that $f(1) \neq 0$. Then there exists a finite set $I \subset K$ such that $E_{r\left(t_{0}\right), s\left(t_{0}\right)}$ is an elliptic curve over K and $E_{r\left(t_{0}\right), s\left(t_{0}\right)}(M) \otimes \mathbf{Q}$ contains $V_{\alpha_{i}-1}$ for each i and any $t_{0} \in K \backslash I$.

Let L be an extension of K of degree at most 9 and M the Galois closure of L / K with Galois group G. We consider a $\mathbf{Q}[G]$-module $V_{L / K}=$ $\mathbf{Q}[G] \otimes_{\mathbf{Q}[\operatorname{Gal}(M / L)]} \mathbf{Q}$. (We regard \mathbf{Q} as a $\mathbf{Q}[H]-$ module by the trivial H-action for any subgroup $H \subset G$.) $V_{L / K}$ is decomposed as $V_{L / K} \cong V_{L / K}^{\prime} \oplus \mathbf{Q}$. Rohrlich's result mentioned before is that $E_{1, b}(M) \otimes$ \mathbf{Q} contains a $\mathbf{Q}[G]$-submodule isomorphic to $V_{L / K}^{\prime}$ for a suitable $f \in K[x]$. Our theorem gives an elliptic curve whose Mordell-Weil group contains $V_{L / K}$.

Corollary 5. (i) In the notation above, there exists an elliptic curve E defined over K such that $E(M) \otimes \mathbf{Q}$ contains a $\mathbf{Q}[G]$-submodule isomorphic to $V_{L / K}$.
(ii) We have $\operatorname{rank}_{\mathbf{z}} E(K)>0$ and

$$
\operatorname{rank}_{\mathbf{z}} E(L)>\operatorname{rank}_{\mathbf{z}} E\left(K^{\prime}\right)
$$

for any $K \subset K^{\prime} \subsetneq L$.
Proof. Let $\alpha^{\prime} \in M$ be a generator of a normal basis of M / K. Then we have $\operatorname{Tr}_{L / K}(\alpha)=0$, where $\alpha=[L: K] \operatorname{Tr}_{M / L}\left(\alpha^{\prime}\right)-\operatorname{Tr}_{M / K}\left(\alpha^{\prime}\right) \in L$. Let $g(x)$ be the minimal polynomial of α over K and $f(x)=$ $x^{9-[L: K]} g(x) \in K[x]$. Then a monic $f(x)$ of degree 9 satisfies $a_{8}=0, f(1) \neq 0$ and $f(\alpha)=0$. For the elliptic curve $E_{r(t), s(t)}$ corresponding to this f, there exists a $t_{0} \in K$ such that $E_{r\left(t_{0}\right), s\left(t_{0}\right)}(M) \otimes \mathbf{Q} \supset$
$V_{\alpha-1}$. We see that $\operatorname{dim}_{\mathbf{Q}} V_{\alpha-1}=[L: K]$. Hence we have $V_{\alpha-1}=V_{L / K}$ and $E=E_{r\left(t_{0}\right), s\left(t_{0}\right)}$ satisfies the assertion (i). (ii) follows from the definition of $V_{L / K}$.
3. Examples. By using Theorem 3 and its corollaries, we can easily find an elliptic curve $E_{r(t), s(t)}$ over $\mathbf{Q}(t)$ such that $E_{r\left(t_{0}\right), s\left(t_{0}\right)}$ satisfies $n_{2} \geq$ 3 (resp. $n_{3} \geq 2, n_{5} \geq 1, n_{7} \geq 1$) for all but finitely many $t_{0} \in \mathbf{Q}$. However, it is difficult in general to determine all the exceptional t_{0} 's explicitly. We give here a sufficient condition that $E_{r\left(t_{0}\right), s\left(t_{0}\right)}$ satisfies the above property for a given $t_{0} \in \mathbf{Q}$. In the following, we denote by $A_{\text {tors }}$ the torsion subgroup of an abelian group A. We also write $N_{p, n}$ for the map $E\left(F_{p, n}\right) \rightarrow E\left(F_{p, n-1}\right)$ defined by $x \mapsto$ $\sum_{\sigma \in \operatorname{Gal}\left(F_{p, n} / F_{p, n-1}\right)} x^{\sigma}$.

Lemma 6. Let E be an elliptic curve defined over \mathbf{Q} and assume that there is a point $Q \in$ $E\left(F_{p, n}\right)$ not in $E\left(F_{p, n-1}\right)$. Then $\operatorname{rank}_{\mathbf{Z}} E\left(F_{p, n}\right)>$ $\operatorname{rank}_{\mathbf{Z}} E\left(F_{p, n-1}\right)$ if one of the following conditions holds:
(i) $Q \notin E\left(F_{p, n}\right)_{\text {tors }}$ and $N_{p, n}(Q) \in E\left(F_{p, n-1}\right)_{\text {tors }}$.
(ii) $E\left(F_{p, n}\right)_{\text {tors }}=E\left(F_{p, n-1}\right)_{\text {tors }}$ and $E\left(F_{p, n}\right)[p]=$ 0.

Proof. It suffices to show that $R=Q^{\sigma}-Q$ for a generator σ of $\operatorname{Gal}\left(F_{p, n} / F_{p, n-1}\right)$ has infinite order since this implies that $k Q \notin E\left(F_{p, n-1}\right)$ for any positive integer k. We have $N_{p, n}(Q)=p Q+$ $\sum_{i=1}^{p-1} i R^{\sigma^{i-1}}$. If (i) holds, $\sum_{i=1}^{p-1} i R^{\sigma^{i-1}}$ has infinite order. In particular, $R \notin E\left(F_{p, n}\right)_{\text {tors }}$. If (ii) holds and R has a finite order, R is in $E\left(F_{p, n-1}\right)$. This implies $p Q \in E\left(F_{p, n-1}\right)$ and so $p R=p Q^{\sigma}-p Q=0$. This contradicts to $E\left(F_{p, n}\right)[p]=0$ since $R \neq 0$ by assumption.

In the following examples, we denote by ζ_{m} a primitive m-th root of unity for each $m>1$.

Example 1. Let $p=2$ and $f(x)=x\left(x^{8}-\right.$ $\left.8 x^{6}+20 x^{4}-16 x^{2}+2\right)$. Then $\alpha=\zeta_{32}+\zeta_{32}^{-1}$ satisfies $f(\alpha)=0$ and we have $F_{2,3}=\mathbf{Q}(\alpha)$. By Theorem 3, $E_{r(t), s(t)}\left(F_{2,3}(t)\right) \otimes \mathbf{Q}$ contains a $\mathbf{Q}\left[\operatorname{Gal}\left(F_{2,3} / \mathbf{Q}\right)\right]$ submodule isomorphic to $V_{\alpha-1}$, where $r(t)=1-t^{3}$ and $s(t)=20 t^{2}-6 t-15$. Consider the curve $E_{1,-15}$ obtained by the substitution $t=0$. This curve has a minimal Weierstrass model $E: y^{2}=x^{3}-2 x+1$. The conductor of E is 40 and we have $E(\mathbf{Q}) \cong \mathbf{Z} / 4 \mathbf{Z}$. Moreover, we have $E\left(F_{2,3}\right)_{\text {tors }}=E(\mathbf{Q})$. Indeed, for a prime $l=31$ (resp. 97, 127), the prime-to- l part of $E\left(F_{2,3}\right)_{\text {tors }}$ maps injectively to $E\left(\mathbf{F}_{l}\right)$ since l splits completely in $F_{2,3} / \mathbf{Q}$. The order of $E\left(\mathbf{F}_{l}\right)$ is 40 (resp.
$112,140)$, and this implies the order of $E\left(F_{2,3}\right)_{\text {tors }}$ divides 4. A rational point
$P=\left(\frac{2 \alpha^{3}-6 \alpha}{\alpha^{3}-3 \alpha-1}, \frac{\alpha^{6}-8 \alpha^{4}+15 \alpha^{2}-1}{\left(\alpha^{3}-3 \alpha-1\right)^{2}}\right) \in E\left(F_{2,3}\right)$ corresponding to $\left(1 / \alpha^{2}, 1 / \alpha^{3}\right) \in E_{1,-15}\left(F_{2,3}\right)$ is not in $E(\mathbf{Q})$. Hence P has infinite order. Since $N_{2,3}(P)=(1,0)$ has order 2, we have $\operatorname{rank}_{\mathbf{z}} E\left(F_{2,3}\right)>\operatorname{rank}_{\mathbf{Z}} E\left(F_{2,2}\right)$, i.e., $n_{2}(E) \geq 3$ by Lemma 6.

Example 2. Let $p=3$ and $f(x)=x^{9}-9 x^{7}+$ $27 x^{5}-30 x^{3}+9 x+1$. We have $F_{3,1}=\mathbf{Q}(\alpha)$ and $f(\alpha)=0$, where $\alpha=\zeta_{27}+\zeta_{27}^{-1}$. Consider the curve $E_{1,28}$, which is obtained from $E_{1-t^{3}, 28-27 t^{2}}$ by the substitution $t=0$, corresponding to this f. $E_{1,28}$ has a minimal Weierstrass model $E: y^{2}+y=x^{3}-$ $18 x+28$. The conductor of E is 9495 and $E(\mathbf{Q}) \cong$ \mathbf{Z}^{2}. By considering the reduction of E at 19 and 37 , we see that $E\left(F_{3,2}\right)_{\text {tors }}=E\left(F_{3,1}\right)_{\text {tors }}=0$. Therefore, $\operatorname{rank}_{\mathbf{z}} E\left(F_{3,2}\right)>\operatorname{rank}_{\mathbf{z}} E\left(F_{3,1}\right)$ by Lemma 6. Especially we have $n_{3}(E) \geq 2$.

Example 3. Let $p=5$ and $g(x)=x^{5}-10 x^{3}+$ $5 x^{2}+10 x+1$. Then $F_{5,1}$ is generated over \mathbf{Q} by a root α of $g(x)$. For $f(x)=x g(x)$, the curve $E_{r(t), s(t)}=E_{1-t^{3}, 10 t^{2}-9 t+6}$ is non-singular. By Theorem $3, E_{r(t), s(t)}\left(F_{5,1}\right) \otimes \mathbf{Q}$ contains $V_{\alpha-1}$ (see the remark after Theorem 3). If we take $t=0, E_{1,6}$ has a minimal Weierstrass model $y^{2}=x^{3}-99 x+379$ of conductor 7704 . We see that $E_{1,6}(\mathbf{Q}) \cong \mathbf{Z}$ and $E_{1,6}\left(F_{5,1}\right)_{\text {tors }}=0$. Hence we have $n_{5}\left(E_{1,6}\right) \geq 1$ by Lemma 6. Another construction of elliptic curves with $n_{5} \geq 1$ will be found in [3]. For example, we see that the elliptic curve defined by $y^{2}=x^{3}-7 x$ (conductor 3136) satisfies $n_{5} \geq 1$.

Example 4. Let $p=7$ and $f(x)=x^{7}-70 x^{5}-$ $21 x^{4}+91 x^{3}+63 x^{2}+14 x+1$. We have $F_{7,1}=\mathbf{Q}(\alpha)$ for a root α of f. The curve $E_{r(0), s(0)}=E_{1,92}$ has a minimal Weierstrass model $y^{2}+x y=x^{3}-x^{2}-491 x+4315$ of conductor 714362 . We see that $E_{1,92}(\mathbf{Q}) \cong \mathbf{Z}^{2}$ and $E_{1,92}\left(F_{7,1}\right)_{\text {tors }}=0$. Hence we have $n_{7}\left(E_{1,92}\right) \geq 1$.
4. Function field case. In the preceding sections, we discussed about the behavior of the Mordell-Weil rank of elliptic curves in the cyclotomic \mathbf{Z}_{p}-extension over \mathbf{Q}. We consider an analogous question for elliptic curves over a function field $\mathbf{F}_{l}(t)$. For a prime $p \neq l$, let $\mathcal{F}_{p, \infty}$ be the unique \mathbf{Z}_{p}-extension of $\mathbf{F}_{l}(t)$ contained in $\overline{\mathbf{F}}_{l}(t)$. The n-th layer of this \mathbf{Z}_{p}-extension is $\mathbf{F}_{l^{p}}(t)$. For any elliptic curve A defined over $\mathbf{F}_{l}(t)$, we know that $A\left(\mathcal{F}_{p, \infty}\right)$ is finitely generated (modulo torsion when A is de-
fined over $\left.\mathbf{F}_{l}\right)$, so the rank of $A\left(\mathbf{F}_{l^{p^{n}}}(t)\right)$ is bounded as n varies. We denote by $n_{p}(A)$ the smallest non-negative integer n satisfying $\operatorname{rank}_{\mathbf{z}} A\left(\mathbf{F}_{l^{p^{n}}}(t)\right)=$ $\operatorname{rank}_{\mathbf{z}} A\left(\mathcal{F}_{p, \infty}\right)$, similarly to the number field case. We prove the existence of elliptic curves with arbitrary large n_{p} in this function field situation.

Proposition 7. For any non-negative integer n, there exists an elliptic curve A over $\mathbf{F}_{l}(t)$ with $n_{p}(A)=n$.

This proposition is easily deduced from the following result of Ulmer ([7]). For a positive integer d, let A_{d} be an elliptic curve over $\mathbf{F}_{l}(t)$ defined by the equation $A_{d}: y^{2}+x y=x^{3}-t^{d}$.

Theorem 8 (Ulmer). Assume that d divides $l^{m}+1$ for some m. Then we have

$$
\operatorname{rank}_{\mathbf{Z}} A_{d}\left(\mathbf{F}_{l^{i}}(t)\right)=\sum_{\substack{e \mid d \\ e \nmid 6}}\left[(\mathbf{Z} / e \mathbf{Z})^{\times}:\left\langle l^{i}\right\rangle\right]+\epsilon(d, i)
$$

for each $i \geq 1$. Here $\epsilon(d, i)$ is a non-negative integer less than 4.

Proof of Proposition 7. We have $\operatorname{rank}_{\mathbf{Z}} A_{1}\left(\overline{\mathbf{F}_{l}}(t)\right)$ $=0$ and so $n_{p}\left(A_{1}\right)=0$ for any $p \neq l$. Assume that $n>0$ in the following. When d is a prime number greater than 3 and $l^{m} \equiv-1(\bmod d)$ for some m, we have $\epsilon(d, i)=0$ and $\operatorname{rank}_{\mathbf{Z}} A_{d}\left(\mathbf{F}_{l^{i}}(t)\right)=\left[(\mathbf{Z} / d \mathbf{Z})^{\times}\right.$: $\left\langle l^{i}\right\rangle$] for any $i \geq 1$ by Theorem 8 . Hence we have $n_{p}\left(A_{d}\right)=n$ for a prime $d>3$ such that $o_{d}(l)$ is even and $p^{n} \| o_{d}(l)$, where $o_{d}(l)$ is the order of l in $(\mathbf{Z} / d \mathbf{Z})^{\times}$. Let K be an extension of $\mathbf{Q}\left(\zeta_{p^{n}}\right)$ of degree p contained in $L=\mathbf{Q}\left(\zeta_{p^{n+1}}, \sqrt{l}, \sqrt[p]{l}\right)$, neither $\mathbf{Q}\left(\zeta_{p^{n+1}}\right)$ nor $\mathbf{Q}\left(\zeta_{p^{n}}, \sqrt[p]{l}\right)$. Applying Chebotarev's density theorem to a Galois extension L / \mathbf{Q}, we can take a prime $d>3$ such that a Frobenius element σ at d in $\operatorname{Gal}(L / \mathbf{Q})$ is a generator of $\operatorname{Gal}(L / K)$. Since the restriction of σ to $\mathbf{Q}(\sqrt{l})$ is non-trivial,
l is not quadratic residue modulo d, i.e., $o_{d}(l)$ is even. Similarly, l is p-th power free in $(\mathbf{Z} / d \mathbf{Z})^{\times}$since the restriction of σ to $\mathbf{Q}\left(\zeta_{p}, \sqrt[p]{l}\right)$ is a generator of $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{p}, \sqrt[p]{l}\right) / \mathbf{Q}\left(\zeta_{p}\right)\right)$. Hence $(d-1) / o_{d}(l)$ is prime to p. The restriction of σ to $\mathbf{Q}\left(\zeta_{p^{n+1}}\right)$ is a generator of $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{p^{n+1}}\right) / \mathbf{Q}\left(\zeta_{p^{n}}\right)\right)$ and this implies $p^{n} \|(d-1)$. Hence we have $p^{n} \| o_{d}(l)$ as desired.

Acknowledgments. The author thanks Masato Kuwata for many valuable suggestions. He was partially supported by Grant-in-Aid for Young Scientists.

References

[1] Chinta, G.: Analytic ranks of elliptic curves over cyclotomic fields. J. Reine Angew. Math., 544, 13-24 (2002).
[2] Greenberg, R.: Introduction to Iwasawa theory for elliptic curves. Arithmetic Algebraic Geometry (Park City, UT, 1999), IAS/Park City Math. Ser. 9, Amer. Math. Soc., Providence, pp. 407464 (2001).
[3] Matsuno, K.: Mordell-Weil group of an elliptic curve associated with a polynomial of degree five. (In preparation).
[4] Rohrlich, D. E.: Realization of some Galois representations of low degree in Mordell-Weil groups. Math. Research Letters, 4, 123-130 (1997).
[5] Shioda, T.: An infinite family of elliptic curves over \mathbf{Q} with large rank via Néron's method. Invent. Math., 106, 109-119 (1991).
[6] Silverman, J. H.: Heights and the specialization map for families of abelian varieties. J. Reine Angew. Math., 342, 197-211 (1983).
[7] Ulmer, D.: Elliptic curves with large rank over function fields. Ann. of Math., 155, 295-315 (2002).

[^0]: 2000 Mathematics Subject Classification. Primary 11G05, 11R23.

