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A note on the growth of Mordell-Weil ranks of elliptic curves

in cyclotomic Z�-extensions
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Abstract: In this note, we exhibit some examples of elliptic curves whose Mordell-Weil
ranks grow in lower layer of the cyclotomic Zp-extension over the rationals.
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1. Introduction. For a prime number p, let
Fp,∞ be the cyclotomic Zp-extension of the rational
number field Q and denote by Fp,n its n-th layer.
When p is odd, Fp,n is the unique cyclic extension of
degree pn over Q unramified outside p.

By results of Kato, Rohrlich and Rubin, we
know that E(Fp,∞) is finitely generated for any ellip-
tic curve E defined over Q. Especially, there exists
an integer n0 such that

rankZE(Fp,n) = rankZE(Fp,n0)

holds for any n ≥ n0. We denote by np = np(E) the
smallest one of such n0.

Greenberg asked in [2] whether np(E) is
bounded or not when E or p varies. According to
a recent result of Chinta ([1, Theorem 2]), np(E) is
bounded as p varies for a fixed E. As for the vari-
ation of np(E) when E varies for a fixed p, we only
know the existence of elliptic curves such that np = 0
for all p (e.g., elliptic curves of conductor 11), and
the existence of curves with positive np for small p’s.
In [2, §1], Greenberg showed that an elliptic curve of
conductor 195 (resp. 34) has n2 = 2 (resp. n3 = 1).
He also mentioned that one can find examples of el-
liptic curves such that n2 ≥ 3, n3 ≥ 2, n5 ≥ 1 and
n7 ≥ 1, respectively, by using a result of Rohrlich [4].
In this note, we present such examples explicitly by
investigating some properties of Rohrlich’s curves as
a family of elliptic curves (§2 and §3). We also give
another proof of the main result of [4] (Corollary 5).

In §4, we will discuss a similar question for cyclo-
tomic extensions of the rational function field over a
finite field. We will prove that there exists an elliptic
curve with arbitrary large np in this situation.
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2. Rohrlich’s construction and a family
of elliptic curves. In this section, let K be a num-
ber field of finite degree and f(x) ∈ K[x] a monic of
degree 9. We denote by ai ∈ K the coefficient of xi

in f and assume that a8 = 0. We also set ai = 0 for
i < 0. Let αi ∈ K (i = 1, . . . , 9) be the roots of f(x).

For any elements u, v ∈ K(t), we consider a
(projective) plane cubic curve Eu,v defined by the
equation

u

2∑
i=0

3∑
j=0

a9−2i−3jx
iyj + v(x3 − y2) = 0.

If Eu,v is non-singular and Eu,v(K(t)) is non-empty,
we can regard Eu,v as an elliptic curve defined over
K(t). When u, v ∈ K and Eu,v(K) is non-empty, we
consider Eu,v as an elliptic curve over K.

In [4], Rohrlich treats the curve E1,b, where b =
−a5−a7−a9 . This curve has a rational point (1, 0) ∈
E1,b(K). Therefore E1,b is an elliptic curve over K

if E1,b is non-singular. Rohrlich shows that, for any
finite extension L/K satisfying [L : K] ≤ 9, one can
take an f(x) so that L = K(α1) and E1,b is an elliptic
curve such that E1,b(M) ⊗ Q contains V ′

L/K , where
M is the Galois closure of L/K with G = Gal(M/K)
and V ′

L/K is a Q[G]-module defined later.
In this note, we treat two cubic curves Et,1 and

Er(t),s(t) defined over K(t), and treat also their spe-
cializations to K. Here we define a polynomial q(t) ∈
K[t] by

q(t) =

(
1∑

i=0

a3i+2

)
t2 +

(
2∑

i=0

a3i+1

)
t +

3∑
i=0

a3i

and set r(t) = (1 − t3)/ gcd(1 − t3, q(t)) and s(t) =
q(t)/ gcd(1 − t3, q(t)). We remark that q(t) �= 0 and
deg(r(t)) is positive. The following lemmas imply
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that two cubic curves above are elliptic curves indeed
(under a condition for Et,1).

Lemma 1. Cubic curves Et,1 and Er(t),s(t)

are non-singular.
Proof. Assume that P ∈ Et,1(K(t)) is a singu-

lar point. Since Et,1 is an irreducible cubic curve,
P is a unique singular point on Et,1. This implies
P ∈ Et,1(K(t)). Write P = [x(t) : y(t) : z(t)] in
homogeneous coordinates, where x, y, z ∈ K[t] with
gcd(x, y, z) = 1. Since [x(0) : y(0) : z(0)] should be a
singular point on a cubic curve y2 = x3, we see that
x(0) = y(0) = 0 and z(0) �= 0. Then we have

2∑
i=0

3∑
j=0

a9−2i−3jx(t)iy(t)jz(t)3−i−j

+ (t2x̃(t)3 − tỹ(t)2z(t)) = 0,

where x̃ = x/t and ỹ = y/t. By the substitution t =
0, we have a9z(0)3 = z(0)3 = 0. This is a contradic-
tion. Thus Et,1 is non-singular. Non-singularity of
Er(t),s(t) is similar.

Lemma 2. (i) Assume that α1 is contained
in K. Then Et,1(K(t)) has a rational point O =(
1/α2

1, 1/α3
1

)
. (When α1 = 0, O is the point [0 : 1 :

0] in the homogeneous coordinate.)
(ii) Er(t),s(t)(K(t)) has a rational point O =

(t, 1).
Proof. Clear.
Thus we obtain elliptic curves Et,1 and Er(t),s(t)

defined over K(t) from the polynomial f(x) of degree
9. Let M be the minimal splitting field of f over K,
i.e., M = K(α1, . . . , α9). For any element x ∈ M , let
Vx be the additive Q[G]-submodule of M generated
by x, where G = Gal(M/K). We prove the following

Theorem 3. (i) Assume that α1 ∈ K. Then
Et,1(M(t)) ⊗ Q contains a Q[G]-submodule isomor-
phic to Vαi−α1 for each i ≥ 2.

(ii) Assume that f(1) �= 0. Then
Er(t),s(t)(M(t)) ⊗Q contains a Q[G]-submodule iso-
morphic to Vαi−1 for each i.

Remark. We use the assumption a9 = 1 (i.e.,
deg(f) = 9) only for proving Lemma 1. This theorem
holds even in the case deg(f) ≤ 7 if our curves Et,1,
Er(t),s(t) are non-singular.

The idea of the proof is to consider the special-
ization to a fiber with cusp (cf. Shioda [5]).

Proof. Since both cases are proven similarly,
we treat only (ii). For each i, we have a rational
point

Pi =
(

1
α2

i

,
1
α3

i

)
∈ Er(t),s(t)(M(t)).

Let Wi be a Q[G]-submodule of Er(t),s(t)(M(t)) ⊗
Q generated by Pi ⊗ 1. The substitution t = 1 in-
duces a Q[G]-homomorphism Wi → Ens

r(1),s(1)(M) ⊗
Q. Here Ens

r(1),s(1)(M) is the non-singular points of
Er(1),s(1)(M) and we regard it as an abelian group
with identity element (1, 1) in the usual way. Since
we have r(1) = 0 and s(1) �= 0 by the assumption
f(1) �= 0, Er(1),s(1) is a singular cubic curve defined
by y2 = x3. Hence we have a Q[G]-isomorphism
Ens

r(1),s(1)(M) ⊗ Q ∼−→ M defined by (x, y) ⊗ a 	→
(x/y− 1)a. The image of Pi ⊗ 1 ∈ Wi in M is αi − 1
and we have a surjective Q[G]-homomorphism Wi →
Vαi−1. Since Q[G] is semisimple, Wi has a Q[G]-
submodule isomorphic to Vαi−1.

By the specialization theorem due to Silverman
(cf. [6]), we also have an infinite family of elliptic
curves over K with similar property:

Corollary 4. Assume that f(1) �= 0. Then
there exists a finite set I ⊂ K such that Er(t0),s(t0)

is an elliptic curve over K and Er(t0),s(t0)(M) ⊗ Q
contains Vαi−1 for each i and any t0 ∈ K \ I.

Let L be an extension of K of degree at most
9 and M the Galois closure of L/K with Galois
group G. We consider a Q[G]-module VL/K =
Q[G] ⊗Q[Gal(M/L)] Q. (We regard Q as a Q[H ]-
module by the trivial H-action for any subgroup
H ⊂ G.) VL/K is decomposed as VL/K

∼= V ′
L/K ⊕Q.

Rohrlich’s result mentioned before is that E1,b(M)⊗
Q contains a Q[G]-submodule isomorphic to V ′

L/K

for a suitable f ∈ K[x]. Our theorem gives an ellip-
tic curve whose Mordell-Weil group contains VL/K .

Corollary 5. (i) In the notation above, there
exists an elliptic curve E defined over K such that
E(M)⊗Q contains a Q[G]-submodule isomorphic to
VL/K .

(ii) We have rankZE(K) > 0 and

rankZE(L) > rankZE(K′)

for any K ⊂ K′ � L.
Proof. Let α′ ∈ M be a generator of a normal

basis of M/K. Then we have TrL/K(α) = 0, where
α = [L : K] TrM/L(α′) − TrM/K(α′) ∈ L. Let g(x)
be the minimal polynomial of α over K and f(x) =
x9−[L:K]g(x) ∈ K[x]. Then a monic f(x) of degree
9 satisfies a8 = 0, f(1) �= 0 and f(α) = 0. For
the elliptic curve Er(t),s(t) corresponding to this f ,
there exists a t0 ∈ K such that Er(t0),s(t0)(M)⊗Q ⊃
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Vα−1. We see that dimQ Vα−1 = [L : K]. Hence we
have Vα−1 = VL/K and E = Er(t0),s(t0) satisfies the
assertion (i). (ii) follows from the definition of VL/K .

3. Examples. By using Theorem 3 and its
corollaries, we can easily find an elliptic curve
Er(t),s(t) over Q(t) such that Er(t0),s(t0) satisfies n2 ≥
3 (resp. n3 ≥ 2, n5 ≥ 1, n7 ≥ 1) for all but finitely
many t0 ∈ Q. However, it is difficult in general
to determine all the exceptional t0’s explicitly. We
give here a sufficient condition that Er(t0),s(t0) sat-
isfies the above property for a given t0 ∈ Q. In
the following, we denote by Ators the torsion sub-
group of an abelian group A. We also write Np,n

for the map E(Fp,n) → E(Fp,n−1) defined by x 	→∑
σ∈Gal(Fp,n/Fp,n−1) xσ.

Lemma 6. Let E be an elliptic curve defined
over Q and assume that there is a point Q ∈
E(Fp,n) not in E(Fp,n−1). Then rankZE(Fp,n) >

rankZE(Fp,n−1) if one of the following conditions
holds:
(i) Q �∈ E(Fp,n)tors and Np,n(Q) ∈ E(Fp,n−1)tors.
(ii) E(Fp,n)tors = E(Fp,n−1)tors and E(Fp,n)[p] =

0.
Proof. It suffices to show that R = Qσ − Q

for a generator σ of Gal(Fp,n/Fp,n−1) has infinite
order since this implies that kQ �∈ E(Fp,n−1) for
any positive integer k. We have Np,n(Q) = pQ +∑p−1

i=1 iRσi−1
. If (i) holds,

∑p−1
i=1 iRσi−1

has infinite
order. In particular, R �∈ E(Fp,n)tors. If (ii) holds
and R has a finite order, R is in E(Fp,n−1). This
implies pQ ∈ E(Fp,n−1) and so pR = pQσ − pQ = 0.
This contradicts to E(Fp,n)[p] = 0 since R �= 0 by
assumption.

In the following examples, we denote by ζm a
primitive m-th root of unity for each m > 1.

Example 1. Let p = 2 and f(x) = x(x8 −
8x6 + 20x4 − 16x2 + 2). Then α = ζ32 + ζ−1

32 satisfies
f(α) = 0 and we have F2,3 = Q(α). By Theorem 3,
Er(t),s(t)(F2,3(t)) ⊗ Q contains a Q[Gal(F2,3/Q)]-
submodule isomorphic to Vα−1, where r(t) = 1 − t3

and s(t) = 20t2 − 6t− 15. Consider the curve E1,−15

obtained by the substitution t = 0. This curve has
a minimal Weierstrass model E : y2 = x3 − 2x + 1.
The conductor of E is 40 and we have E(Q) ∼= Z/4Z.
Moreover, we have E(F2,3)tors = E(Q). Indeed, for
a prime l = 31 (resp. 97, 127), the prime-to-l part
of E(F2,3)tors maps injectively to E(Fl) since l splits
completely in F2,3/Q. The order of E(Fl) is 40 (resp.

112, 140), and this implies the order of E(F2,3)tors

divides 4. A rational point

P =
(

2α3 − 6α

α3 − 3α −1
,
α6 − 8α4 + 15α2 −1

(α3 − 3α−1)2

)
∈ E(F2,3)

corresponding to
(
1/α2, 1/α3

) ∈ E1,−15(F2,3) is
not in E(Q). Hence P has infinite order.
Since N2,3(P ) = (1, 0) has order 2, we have
rankZE(F2,3) > rankZE(F2,2), i.e., n2(E) ≥ 3 by
Lemma 6.

Example 2. Let p = 3 and f(x) = x9 −9x7 +
27x5 − 30x3 + 9x + 1. We have F3,1 = Q(α) and
f(α) = 0, where α = ζ27 + ζ−1

27 . Consider the curve
E1,28, which is obtained from E1−t3,28−27t2 by the
substitution t = 0, corresponding to this f . E1,28

has a minimal Weierstrass model E : y2 + y = x3 −
18x + 28. The conductor of E is 9495 and E(Q) ∼=
Z2. By considering the reduction of E at 19 and 37,
we see that E(F3,2)tors = E(F3,1)tors = 0. Therefore,
rankZE(F3,2) > rankZE(F3,1) by Lemma 6. Espe-
cially we have n3(E) ≥ 2.

Example 3. Let p = 5 and g(x) = x5−10x3+
5x2 + 10x + 1. Then F5,1 is generated over Q by
a root α of g(x). For f(x) = xg(x), the curve
Er(t),s(t) = E1−t3,10t2−9t+6 is non-singular. By The-
orem 3, Er(t),s(t)(F5,1) ⊗ Q contains Vα−1 (see the
remark after Theorem 3). If we take t = 0, E1,6 has
a minimal Weierstrass model y2 = x3 − 99x + 379
of conductor 7704. We see that E1,6(Q) ∼= Z and
E1,6(F5,1)tors = 0. Hence we have n5(E1,6) ≥ 1 by
Lemma 6. Another construction of elliptic curves
with n5 ≥ 1 will be found in [3]. For example, we
see that the elliptic curve defined by y2 = x3 − 7x

(conductor 3136) satisfies n5 ≥ 1.
Example 4. Let p = 7 and f(x) = x7−70x5−

21x4+91x3+63x2+14x+1. We have F7,1 = Q(α) for
a root α of f . The curve Er(0),s(0) = E1,92 has a mini-
mal Weierstrass model y2+xy = x3−x2−491x+4315
of conductor 714362. We see that E1,92(Q) ∼= Z2 and
E1,92(F7,1)tors = 0. Hence we have n7(E1,92) ≥ 1.

4. Function field case. In the preceding
sections, we discussed about the behavior of the
Mordell-Weil rank of elliptic curves in the cyclo-
tomic Zp-extension over Q. We consider an analo-
gous question for elliptic curves over a function field
Fl(t). For a prime p �= l, let Fp,∞ be the unique
Zp-extension of Fl(t) contained in Fl(t). The n-th
layer of this Zp-extension is F

lp
n (t). For any elliptic

curve A defined over Fl(t), we know that A(Fp,∞)
is finitely generated (modulo torsion when A is de-
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fined over Fl), so the rank of A(F
lp

n (t)) is bounded
as n varies. We denote by np(A) the smallest
non-negative integer n satisfying rankZA(F

lp
n (t)) =

rankZA(Fp,∞), similarly to the number field case.
We prove the existence of elliptic curves with arbi-
trary large np in this function field situation.

Proposition 7. For any non-negative integer
n, there exists an elliptic curve A over Fl(t) with
np(A) = n.

This proposition is easily deduced from the fol-
lowing result of Ulmer ([7]). For a positive integer d,
let Ad be an elliptic curve over Fl(t) defined by the
equation Ad : y2 + xy = x3 − td.

Theorem 8 (Ulmer). Assume that d divides
lm + 1 for some m. Then we have

rankZAd(Fli (t)) =
∑
e|d
e�6

[(Z/eZ)× : 〈li〉] + ε(d, i)

for each i ≥ 1. Here ε(d, i) is a non-negative integer
less than 4.

Proof of Proposition 7. We have rankZA1(Fl(t))
= 0 and so np(A1) = 0 for any p �= l. Assume that
n > 0 in the following. When d is a prime number
greater than 3 and lm ≡ −1 (mod d) for some m, we
have ε(d, i) = 0 and rankZAd(Fli (t)) = [(Z/dZ)× :
〈li〉] for any i ≥ 1 by Theorem 8. Hence we have
np(Ad) = n for a prime d > 3 such that od(l) is
even and pn||od(l), where od(l) is the order of l in
(Z/dZ)×. Let K be an extension of Q(ζpn) of de-
gree p contained in L = Q(ζpn+1 ,

√
l, p
√

l), neither
Q(ζpn+1 ) nor Q(ζpn ,

p
√

l). Applying Chebotarev’s
density theorem to a Galois extension L/Q, we can
take a prime d > 3 such that a Frobenius element
σ at d in Gal(L/Q) is a generator of Gal(L/K).
Since the restriction of σ to Q(

√
l) is non-trivial,

l is not quadratic residue modulo d, i.e., od(l) is
even. Similarly, l is p-th power free in (Z/dZ)× since
the restriction of σ to Q(ζp,

p
√

l) is a generator of
Gal(Q(ζp,

p
√

l)/Q(ζp)). Hence (d − 1)/od(l) is prime
to p. The restriction of σ to Q(ζpn+1 ) is a generator
of Gal(Q(ζpn+1 )/Q(ζpn)) and this implies pn||(d−1).
Hence we have pn||od(l) as desired.
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