Trace formula of twisting operators of half-integral weight in the case of even conductors

By Masaru Ueda
Department of Mathematics, Faculty of Science, Nara Women's University
Kita-Uoya Nishimachi, Nara 630-8506
(Communicated by Heisuke Hironaka, m. J. A., April 14, 2003)

Abstract

Let $S(k+1 / 2, N, \chi)$ denote the space of cusp forms of weight $k+1 / 2$, level N, and character χ. Let R_{ψ} be a twisting operator for a quadratic primitive character ψ of even conductor and $\tilde{T}\left(n^{2}\right)$ the n^{2}-th Hecke operator. We give an explicit trace formula of $R_{\psi} \tilde{T}\left(n^{2}\right)$ on $S(k+1 / 2, N, \chi)$.

Key words: Trace formula; twisting operator; half-integral weight.

1. Introduction. Let k and N be positive integers with $4 \mid N$. Let χ be an even Dirichlet character defined modulo N with $\chi^{2}=\mathbf{1}$. We denote the space of cusp forms of weight $k+1 / 2$, level N, and character χ by $S(k+1 / 2, N, \chi)$.

In the previous paper [U1], we calculated an explicit trace formula of twisting operator on $S(k+1 / 2, N, \chi)$ for a quadratic primitive character of odd conductor. The purpose of this paper is to report an explicit trace formula of twisting operator for a quadratic primitive character of even conductor. Details will appear in [U2].
2. Notation. The notation in this paper is the same as in the previous paper [U1]. So, see [U1] and [U3] for the details of notation. Here, we explain several notations for convenience.

Let $\operatorname{ord}_{p}(\cdot)$ be the additive valuation for a prime number p with $\operatorname{ord}_{p}(p)=1$. Put $\mu:=\operatorname{ord}_{2}(N)$ and $\nu=\nu_{p}:=\operatorname{ord}_{p}(N)$ for any odd prime number p. Then we decompose $N=2^{\mu} M$. Namely, M is the odd part of N.
3. Results. Let ψ be a quadratic primitive character with even conductor r. Then we can express the conductor r as follows:

$$
r=2^{u} L, \quad u=2,3,
$$

and L is a squarefree positive odd integer.
We consider the following conditions.

$$
L^{2} \mid M \quad \text { and } \quad \begin{cases}\mu \geqq 5, & \text { if } \mathfrak{f}\left(\chi_{2}\right)=8 \tag{2}\\ \mu \geqq 4, & \text { if } \mathfrak{f}\left(\chi_{2}\right) \mid 4\end{cases}
$$

2001 Mathematics Subject Classification. Primary 11F37; Secondary 11F25.
(*3) $\quad L^{2} \mid M \quad$ and $\quad \mu \geqq 6$.
Here, $\mathfrak{f}\left(\chi_{2}\right)$ is the conductor of the 2-primary component χ_{2} of the character χ.

From now on, we impose the condition (${ }^{*} 2$) if $u=2\left(\Leftrightarrow \psi_{2}=(\underline{-1})\right)$ and the condition (*3) if $u=$ $3\left(\Leftrightarrow \psi_{2}=(\underline{ \pm 2})\right)$, where ψ_{2} is the 2-primary component of ψ. From these conditions and the assumption $\psi^{2}=\mathbf{1}$, we see that the twisting operator R_{ψ} of ψ :

$$
\begin{gathered}
f=\sum_{n \geqq 1} a(n) q^{n} \mapsto f \mid R_{\psi}:=\sum_{n \geqq 1} a(n) \psi(n) q^{n}, \\
(q:=\exp (2 \pi \sqrt{-1} z), z \in \boldsymbol{C}, \operatorname{Im} z>0)
\end{gathered}
$$

fixes the space of cusp forms $S(k+1 / 2, N, \chi)$ (cf. [Sh, Lemma 3.6]).

In the case of $k=1$, we need to make a certain modification. It is well-known that the space $S(3 / 2, N, \chi)$ contains a subspace $U(N ; \chi)$ which corresponds to a space of Eisenstein series via Shimura correspondence and which is generated by theta series of special type (cf. [U1, §0(c)]). Let $V(N ; \chi)$ be the orthogonal complement of $U(N ; \chi)$ in $S(3 / 2, N, \chi)$. Then it is also well-known that $V(N ; \chi)$ corresponds to a space of cusp forms via Shimura correspondence. Hence, we need to consider the subspace $V(N ; \chi)$ in place of $S(3 / 2, N, \chi)$ in the case of $k=1$. The subspaces $U(N ; \chi)$ and $V(N ; \chi)$ are fixed by the twisting operator R_{ψ} (See [U2] for a proof and refer also to [U1, p. 94]). Hence, R_{ψ} gives an operator also on the subspace $V(N ; \chi)$.

Now we can state an explicit trace formula.
Theorem. We use the same notation as above. Let $\tilde{T}\left(n^{2}\right)=\tilde{T}_{k+1 / 2, N, \chi}\left(n^{2}\right)$ be the n^{2}-th

Hecke operator for a positive integer n with $(n, N)=$ 1 (cf. [U1, §0(c)]). Then explicit trace formulas of $R_{\psi} \tilde{T}\left(n^{2}\right)$ on the spaces $S(k+1 / 2, N, \chi)($ if $k \geqq 2)$ and $V(N ; \chi)($ if $k=1)$ are given as follows:

$$
\begin{aligned}
& \operatorname{tr}\left(R_{\psi} \tilde{T}\left(n^{2}\right) ; S(k+1 / 2, N, \chi)\right) \\
& \quad=t(p)+t(e)+t(h), \quad(\text { if } k \geqq 2) \\
& \operatorname{tr}\left(R_{\psi} \tilde{T}\left(n^{2}\right) ; V(N, \chi)\right) \\
& \quad=t(p)+t(e)+t(h)+t(d), \quad(\text { if } k=1)
\end{aligned}
$$

Here , $t(p), t(e), t(h), t(d)$ are the contributions from the parabolic, elliptic, hyperbolic, and degree part. They are given by the tables (1.1)-(1.4) below.

We explain general notation that we use in the tables below.

Let \boldsymbol{Z}_{+}be the set of all positive integers. And for a real number x, let $[x]$ be the greatest integer less than or equal to x. We denote by (\div) the Kronecker symbol. See [M, p. 82] for a definition of this symbol.

For a prime number p, let $|\cdot|_{p}$ be the p-adic valuation with the normalization $|p|_{p}=p^{-1}$. Then put

$$
L_{2}:=N \prod_{p \mid 2 L}|N|_{p}
$$

Let χ_{p} denote the p-primary component of χ for a prime divisor p of N. Furthermore we set $\chi_{A}:=$ $\prod_{p \mid A} \chi_{p}$ for an arbitrary divisor A of N.
(1.1) Parabolic part: $t(p)$.

We decompose $n=n_{0}{ }^{2} n_{1}\left(n_{0}, n_{1} \in \boldsymbol{Z}_{+}, n_{1}\right.$: squarefree). For any $d \in \boldsymbol{Z}_{+}$, put

$$
\delta_{0}(\sqrt{d}):= \begin{cases}1, & \text { if } d \text { is square } \\ 0, & \text { otherwise }\end{cases}
$$

And let $\mathcal{O}(-d)$ be the order of discriminant $-d$ in the imaginary quadratic number field $\boldsymbol{Q}(\sqrt{-d})$, $h(-d)$ the number of proper ideal classes of the order $\mathcal{O}(-d)$, and $w(-d)$ a half of the number of units in $\mathcal{O}(-d)$. Then put $h^{\prime}(-d):=h(-d) / w(-d)$.

Case I. $(u=3) \quad\left(\Leftrightarrow \psi_{2}=(\underline{ \pm 2})\right)$
Case I-1. $\quad \underline{\mu=6,7}$ and $\mathfrak{f}\left(\chi_{2}\right)=8 . \quad t(p)=0$.
Case I-2. $\quad \mu \geqq 8$, or $\mu=6,7$ and $\mathfrak{f}\left(\chi_{2}\right) \mid 4$.

$$
\begin{aligned}
t(p)= & 0, \quad\left(\text { if } L n \equiv \psi_{2}(-1) \quad(\bmod 4)\right) \\
t(p)= & (-1)^{k} \psi(-1)^{k} \chi(n) n^{k-1} 2^{[(\mu-3) / 2]} \\
& \times \prod_{p \mid L} p^{[(\nu-1) / 2]}
\end{aligned}
$$

$$
\begin{aligned}
& \times \prod_{p \mid L_{2}}\left(p^{[\nu / 2]}+\left(\frac{-8 L n}{p}\right)^{\nu} p^{[(\nu-1) / 2]}\right) \\
& \times \sum_{0<a \mid n_{0}} h^{\prime}\left(-8 L n / a^{2}\right)
\end{aligned}
$$

(if $\left.L n \equiv-\psi_{2}(-1)(\bmod 4)\right)$.
Case II. $(u=2) \quad\left(\Leftrightarrow \psi_{2}=\left(\frac{-1}{}\right)\right)$
Case II-1. $\quad \underline{\mu \geqq 7, ~ o r ~} \underline{\mu=5,6 \text { and } \mathfrak{f}\left(\chi_{2}\right) \mid 4 .}$

$$
\begin{aligned}
t(p)= & (-1)^{k} \psi(-1)^{k} \chi(n) n^{k-1} 2^{[(\mu-2) / 2]} \\
& \times \prod_{p \mid L} p^{[(\nu-1) / 2]} \\
& \times \prod_{p \mid L_{2}}\left(p^{[\nu / 2]}+\left(\frac{-L n}{p}\right)^{\nu} p^{[(\nu-1) / 2]}\right) \\
& \times \sum_{0<a \mid n_{0}} h^{\prime}\left(-4 L n / a^{2}\right)
\end{aligned}
$$

(if $L n \equiv 1(\bmod 4))$.

$$
t(p)=0, \quad(\text { if } L n \equiv 3(\bmod 4))
$$

Case II-2. $\quad \underline{\mu=5,6}$ and $\mathfrak{f}\left(\chi_{2}\right)=8 . \quad t(p)=0$. Case II-3. $\quad \underline{\mu=4}$.

$$
\begin{aligned}
t(p)= & (-1)^{k} \psi(-1)^{k} \chi(n) n^{k-1} \prod_{p \mid L} p^{[(\nu-1) / 2]} \\
& \times \prod_{p \mid L_{2}}\left(p^{[\nu / 2]}+\left(\frac{-L n}{p}\right)^{\nu} p^{[(\nu-1) / 2]}\right) \\
& \times \sum_{0<a \mid n_{0}} h^{\prime}\left(-4 L n / a^{2}\right) \\
- & \frac{(-1)^{k}}{2} \chi_{2}(-1) n^{k-1 / 2} \delta_{0}(\sqrt{L n}) \prod_{p \mid L} p^{[(\nu-1) / 2]} \\
& \times \prod_{p \mid L_{2}}\left(p^{[\nu / 2]}+p^{[(\nu-1) / 2]}\right)
\end{aligned}
$$

$$
(\text { if } L n \equiv 1(\bmod 4))
$$

$$
\begin{aligned}
t(p)= & (-1)^{k} \psi(-1)^{k} \chi_{2}(-1) \chi(n) n^{k-1} \\
& \times \prod_{p \mid L} p^{[(\nu-1) / 2]} \\
& \times \prod_{p \mid L_{2}}\left(p^{[\nu / 2]}+\left(\frac{-L n}{p}\right)^{\nu} p^{[(\nu-1) / 2]}\right) \\
& \times \sum_{0<a \mid n_{0}} h^{\prime}\left(-4 L n / a^{2}\right),
\end{aligned}
$$

(if $L n \equiv 3(\bmod 4)$).
(1.2) Elliptic part: $t(e)$.

$$
\begin{aligned}
t(e)= & -\psi(-1)^{k} r^{1-k} \chi_{L}(-n) \prod_{p \mid L} p^{[(\nu-1) / 2]} \\
& \times \sum_{\substack{0<s<2 \sqrt{r n} \\
s:(*), s^{2} \equiv 0\left(2^{u+2}\right)}} \pi_{k}(s, r n) h^{\prime}(D) \alpha_{D}\left(m_{1}^{\prime}\right) \\
& \times 2^{\operatorname{ord}_{2}\left(m_{1}\right)\left(1-\left(\frac{D}{2}\right) 2^{-1}\right) c_{2}(s, 0)} \\
& \times \prod_{p \mid L_{2}}\left(p^{-\operatorname{ord}_{p}(s)} n_{p}\left(\theta_{p}\right)\right)
\end{aligned}
$$

Here, the condition $\left(^{*}\right)$ of s is the following:

$$
\begin{equation*}
\operatorname{ord}_{p}(s) \geqq\left[\left(\nu_{p}+1\right) / 2\right] \tag{*}
\end{equation*}
$$

for all prime divisors p of L.
The other notation is defined as follows: We decompose $s^{2}-4 r n=m_{1}^{2} D$ with $m_{1} \in \boldsymbol{Z}_{+}$and a discriminant D of an imaginary quadratic field. We put $m_{1}^{\prime}:=m_{1} \prod_{p \mid N}\left|m_{1}\right|_{p}$ and $\theta=\theta_{p}:=\operatorname{ord}_{p}\left(s m_{1}\right)$ for any prime number p. Moreover we put a constant $\pi_{k}(s, r n):=\left(x^{2 k-1}-y^{2 k-1}\right) /(x-y)$, where x, y are two roots of the equation $X^{2}-s X+r n=0$. For any positive integer A, we define a constant $\alpha_{D}(A)$ by
$\alpha_{D}(A):=\prod_{q \mid A}\left\{\left(q^{e+1}-1\right)-\left(\frac{D}{q}\right)\left(q^{e}-1\right)\right\} /(q-1)$,
where $A=\prod_{q \mid A} q^{e}$ is the prime decomposition of A. The constant $h^{\prime}(D)$ is the same as in the parabolic part $t(p)$. Finally, the constants $n_{p}\left(\theta_{p}\right)\left(p \mid L_{2}\right)$ and $c_{2}(s, 0)$ are given by the tables below.

$$
\text { Table of } n_{p}\left(\theta_{p}\right)
$$

Case (1) $\quad\left(p \mid L_{2}\right.$ and $\left.p \mid s\right)$

$$
\begin{aligned}
& \chi_{p}(r) \chi_{p}(D) \times n_{p}\left(\theta_{p}\right) \\
& = \begin{cases}p^{\theta}\left(p^{[\nu / 2]}+\left(\frac{D}{p}\right)^{\nu} p^{[(\nu-1) / 2]}\right) \\
& \text { if } \quad \theta \geqq[(\nu+1) / 2] \\
\left(1+\left(\frac{D}{p}\right)\right) p^{2 \theta}, & \text { if } \quad \theta \leqq[(\nu-1) / 2] .\end{cases}
\end{aligned}
$$

Case (2) $\quad\left(p \mid L_{2}, p \nmid s\right.$ and $\left.p \mid D\right)$

$$
\begin{aligned}
& \chi_{p}(r) \times n_{p}\left(\theta_{p}\right) \\
& =\left\{\begin{array}{cc}
\left\{\left(p^{[\nu / 2]}+p^{[(\nu-1) / 2]}\right) p^{\theta+1}-\left(p^{\nu}+p^{\nu-1}\right)\right\} \\
\times(p-1)^{-1}, & \text { if } \theta \geqq[\nu / 2] \\
0, & \text { if } \theta \leqq[\nu / 2]-1 .
\end{array}\right.
\end{aligned}
$$

Case (3) $\quad\left(p \mid L_{2}, p \nmid s\right.$ and $\left.p \nmid D\right)$

$$
\begin{aligned}
& \chi_{p}(r) \times n_{p}\left(\theta_{p}\right) \\
& =\left\{\begin{array}{c}
\left(p-\left(\frac{D}{p}\right)\right)\left(p^{[\nu / 2]}+p^{[(\nu-1) / 2]}\right)\left(p^{\theta}-p^{[\nu / 2]}\right) \\
\times(p-1)^{-1} \\
+\left(p^{[\nu / 2]}+\left(\frac{D}{p}\right)^{\nu} p^{[(\nu-1) / 2]}\right) p^{[\nu / 2]}, \\
\left(1+\left(\frac{D}{p}\right)\right) p^{2 \theta}, \\
\text { if } \theta \geqq[(\nu+1) / 2]
\end{array}\right.
\end{aligned}
$$

Table of $c_{2}(s, 0)$
Case I $\quad\left(u=3 \Leftrightarrow \psi_{2}=(\underline{ \pm 2})\right)$
In this case, it follows that $\operatorname{ord}_{2}(D)$ is odd and so $D^{\prime}:=D / 4 \equiv 2(\bmod 4)$ from the conditions on s and the assumption $u=3$. Then, the table of the case $D^{\prime}=D / 4 \equiv 2(\bmod 4)$ is given as follows:

Case (I-1) $\quad(\mu \geqq 8)$
$c_{2}(s, 0)$
$=\left\{\begin{array}{l}0, \quad \text { if } \operatorname{ord}_{2}(s)<\mu / 2 . \\ 0, \quad \text { if } \operatorname{ord}_{2}(s) \geqq \mu / 2, L n \equiv \psi_{2}(-1)(\bmod 4) . \\ 2^{[(\mu-3) / 2]} \chi_{2}(-n), \\ \text { if } \quad \operatorname{ord}_{2}(s) \geqq \mu / 2, L n \equiv-\psi_{2}(-1)(\bmod 4) .\end{array}\right.$
Case (I-2) $\quad(\mu=6,7)$
$c_{2}(s, 0)$
$=\left\{\begin{array}{l}0, \quad \text { if } \quad \operatorname{ord}_{2}(s)<\mu / 2 . \\ 0, \quad \text { if } \quad \operatorname{ord}_{2}(s) \geqq \mu / 2, L n \equiv \psi_{2}(-1)(\bmod 4) . \\ 2^{[(\mu-3) / 2]} \chi_{2}(-n), \\ \text { if } \quad \operatorname{ord}_{2}(s) \geqq \mu / 2, L n \equiv-\psi_{2}(-1)(\bmod 4),\end{array}\right.$ and $\mathfrak{f}\left(\chi_{2}\right) \mid 4$.
$0, \quad$ if $\quad \operatorname{ord}_{2}(s) \geqq \mu / 2$,
$L n \equiv-\psi_{2}(-1)(\bmod 4)$, and $\mathfrak{f}\left(\chi_{2}\right)=8$.
Case II $\quad\left(u=2 \Leftrightarrow \psi_{2}=(\underline{-1})\right)$
Case (II-1) $\quad(D \equiv 1(\bmod 4))$

$$
c_{2}(s, 0)=\left\{\begin{array}{lll}
0, & \text { if } & \mu \geqq 5 \\
\chi_{2}(-L), & \text { if } & \mu=4
\end{array}\right.
$$

Case (II-2-1) $\quad\left(D^{\prime}:=D / 4 \equiv 2(\bmod 4)\right.$ and $\left.\mu \geqq 6\right)$

$$
c_{2}(s, 0)=0
$$

Case (II-2-2) $\quad\left(D^{\prime}:=D / 4 \equiv 2(\bmod 4)\right.$ and $\left.\mu=5\right)$

$$
c_{2}(s, 0)
$$

$$
=\left\{\begin{array}{l}
2 \chi_{2}(-L)=2 \chi_{2}(n) \\
\quad \text { if } L n \equiv-1(\bmod 4) \text { and } \mathfrak{f}\left(\chi_{2}\right) \mid 4 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Case (II-2-3) $\quad\left(D^{\prime}:=D / 4 \equiv 2(\bmod 4)\right.$ and $\left.\mu=4\right)$

$$
c_{2}(s, 0)=\chi_{2}(-L) .
$$

Case (II-3-1) $\quad\left(D^{\prime}:=D / 4 \equiv 3(\bmod 4)\right.$ and $\left.\mu \geqq 8\right)$

$$
\begin{aligned}
& c_{2}(s, 0) \\
& = \begin{cases}0, & \text { if } \operatorname{ord}_{2}(s) \leqq[\mu / 2]-1 \\
2^{[\mu / 2]-1} \chi_{2}(-n), & \text { if } \operatorname{ord}_{2}(s) \geqq[\mu / 2]\end{cases}
\end{aligned}
$$

Case (II-3-2) $\quad\left(D^{\prime}:=D / 4 \equiv 3(\bmod 4)\right.$ and $\left.\mu=7\right)$
$c_{2}(s, 0)$
$=\left\{\begin{array}{lll}0, & \text { if } s \equiv 4(\bmod 8) . \\ 4 \chi_{2}(-n), & \text { if } s \equiv 0(\bmod 8) \text { and } \mathfrak{f}\left(\chi_{2}\right) \mid 4 . \\ -4 \chi_{2}(-n), & \text { if } \quad s \equiv 8(\bmod 16) \text { and } \mathfrak{f}\left(\chi_{2}\right)=8 . \\ 4 \chi_{2}(-n), & \text { if } & s \equiv 0(\bmod 16) \text { and } \mathfrak{f}\left(\chi_{2}\right)=8 .\end{array}\right.$
Case (II-3-3) $\quad\left(D^{\prime}:=D / 4 \equiv 3(\bmod 4)\right.$ and $\mu=5,6)$
$c_{2}(s, 0)$
$= \begin{cases}0, & \text { if } s \equiv 4(\bmod 8) . \\ 2^{[\mu / 2]-1} \chi_{2}(-n), & \text { if } s \equiv 0(\bmod 8), \mathfrak{f}\left(\chi_{2}\right) \mid 4 . \\ 0, & \text { if } s \equiv 0(\bmod 8), \mathfrak{f}\left(\chi_{2}\right)=8 .\end{cases}$
Case (II-3-4) $\quad\left(D^{\prime}:=D / 4 \equiv 3(\bmod 4)\right.$ and $\left.\mu=4\right)$

$$
c_{2}(s, 0)=\chi_{2}(-L)
$$

(1.3) Hyperbolic part: $t(h)$.

Case I. $\quad u=2, L=1\left(\Leftrightarrow \psi=\left(\frac{-1}{}\right)\right)$, and $\mu=4$.
(In this case, we have $\mathfrak{f}\left(\chi_{2}\right) \mid 4$.)

$$
\begin{aligned}
t(h) & =-(-1)^{k} \chi_{2}(-1) \\
& \times \sum_{\substack{s>2 \sqrt{n}, s \equiv 0(2) \\
s^{2}-4 n=\square}}((s-m) / 2)^{2 k-1} \prod_{p \mid M} m_{p}\left(\theta_{p}\right)
\end{aligned}
$$

Here, $s^{2}-4 n=\square$ means that $s^{2}-4 n$ is a square integer. And we put $m:=\left(s^{2}-4 n\right)^{1 / 2}$. For any prime divisor p of M, we put $\theta=\theta_{p}:=\operatorname{ord}_{p}(s m)$ and define a constant $m_{p}\left(\theta_{p}\right)$ by the following:
$m_{p}\left(\theta_{p}\right):= \begin{cases}p^{[\nu / 2]}+p^{[(\nu-1) / 2]}, & \text { if } \theta \geqq[(\nu+1) / 2] . \\ 2 p^{\theta}, & \text { if } \theta \leqq[(\nu-1) / 2] .\end{cases}$
Case II. All the other cases. $\quad t(h)=0$.
(1.4) Degree part: $t(d)$.

Let $n=\prod_{p \mid n} p^{\tau}$ be the prime decomposition of n. The character χ is expressed as

$$
\chi=\prod_{p \mid N}\left(\frac{p}{}\right)^{\alpha_{p}}, \quad\left(\alpha_{p}=0,1\right)
$$

because χ is a quadratic even character.
In these notations, we have

$$
\begin{aligned}
& t(d)=\psi(-1) \chi_{2}(\psi(-1)) \chi_{L}(-n) \chi_{L_{2}}(r) \\
& \times \prod_{p \mid n} \frac{p^{\tau+1}-1}{p-1} \\
& \times \prod_{p \mid L_{2}}\left\{\left[\frac{\nu_{p}-\alpha_{p}}{2}\right]+1+\left[\frac{\nu_{p}+\alpha_{p}-1}{2}\right]\left(\frac{-r n}{p}\right)\right\} \\
& \times \begin{cases}1, & \text { if } f\left(\chi_{2}\right) \mid 4 \text { and } \mu \leqq 5 . \\
1-\left(\frac{-1}{n}\right) \psi(-1), & \text { if } f\left(\chi_{2}\right) \mid 4 \text { and } \mu \geqq 6 . \\
0, & \text { if } f\left(\chi_{2}\right)=8 \text { and } \mu \leqq 7 . \\
\left(\frac{2}{n}\right)\left(1-\left(\frac{-1}{n}\right) \psi(-1)\right), & \text { if } f\left(\chi_{2}\right)=8 \text { and } \mu \geqq 8 .\end{cases}
\end{aligned}
$$

4. Final remark. Using the above explicit trace formula, we can obtain trace identities between the trace of $R_{\psi} \tilde{T}\left(n^{2}\right)$ and linear combinations of traces of Hecke operators of integral weight and Atkin-Lehner involutions. The details of these trace identities also will appear in [U2].

References

[M] Miyake, T.: Modular Forms. Springer, Berlin (1989).
[Sh] Shimura, G.: On modular forms of half integral weight. Ann. of Math., 97, 440-481 (1973).
[U1] Ueda, M.: The trace formulae of twisting operators on the spaces of cusp forms of half-integral weight and some trace relations. Japan. J. of Math., 17, 83-135 (1991).
[U2] Ueda, M.: The trace formulae of twisting operators on the spaces of cusp forms of half-integral weight and trace identities II. (In preparation).
[U3] Ueda, M.: Some trace relations of twisting operators on the spaces of cusp forms of half-integral weight. Proc. Japan Acad., 66A, 169-172 (1990).

