The existence of plane curves with prescribed singularities

By Tomokazu Kawahara
Research Institute for Mathematical Sciences, Kyoto University
Kita Shirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502
(Communicated by Shigefumi Mori, m. J. A., March 12, 2003)

Abstract

By improving the vanishing theorem of Hirschowitz, we prove an existence theorem of the reduced irreducible plane curve with ordinary singularities at given points in general position, which improves an earlier result by Greuel, Lossen and Shustin.

Key words: Plane curve; singularity; linear system; base condition.

1. Introduction. Let $d, m_{1}, \ldots, m_{r}(r \geq 1)$ be non-negative integers and $P_{1}, \ldots, P_{r} \in \mathbf{P}^{2}$. Assuming that the r points are in general position on \mathbf{P}^{2}, we deal with the problem: when does there exist a reduced and irreducible plane curve of degree d with an ordinary singular point of multiplicity m_{i} at P_{i} for all i ? A result of Greuel, Lossen and Shustin [2] guarantees that such a curve exists if

$$
\sum_{i=1}^{r} \frac{1}{2} m_{i}\left(m_{i}+1\right)<\frac{1}{4} d^{2}+\frac{3}{2} d-\frac{1}{4}-\left[\frac{d}{2}\right],
$$

where $[x]$ denotes the integer such that $[x] \leq x<$ $[x]+1$. On the other hand, a simple dimension count shows that there exists a curve of degree d with multiplicity $\geq m_{i}$ at P_{i} for all i if $\sum_{i=1}^{r} m_{i}\left(m_{i}+1\right) / 2 \leq$ $d(d+3) / 2$. We are interested in making the right hand side of the inequality "larger" while keeping the existence theorem of the former type.

Our Corollary 11 gives the existence theorem with

$$
\left[\frac{1}{3}(d-1)^{2}\right]+2 d-1
$$

on the right hand side with certain obvious necessary conditions. In order to prove this result, we refine the vanishing theorem by Hirschowitz [3] as Corollary 7.

We consider all the objects in this paper to be defined over an algebraically closed field $K . \mathbf{Z}_{\geq 0}$ and $\mathbf{Z}_{>0}$ denote the sets of non-negative and positive integers, respectively.
2. Vanishing theorem. Let $f: S \rightarrow \mathbf{P}^{2}$ be the blowing up of the projective plane at r distinct points P_{1}, \ldots, P_{r} and let $H=f^{*} \mathcal{O}_{\mathbf{P}^{2}}(1)$, and E_{i} the exceptional divisor $f^{-1}\left(P_{i}\right)$ for all i. Let L_{i} be a

[^0] Secondary 14F17, 14C20.
generic line through P_{i} on \mathbf{P}^{2} and $L_{i}^{\prime} \subset S$ the strict transform of L_{i} for all i. Let $L_{i j}$ be the line through P_{i} and P_{j}, and $L_{i j}^{\prime}$ the strict transform of $L_{i j}$. Let $\mathcal{O}(d, m)=\mathcal{O}_{S}\left(d H-\sum_{i=1}^{r} m_{i} E_{i}\right)$. Note that we use the vector notation $m=\left(m_{1}, \ldots, m_{r}\right)$, if there is no danger of confusion. We also use the notation $m_{J}=$ $\sum_{j \in J} m_{j}$ for subset $J \subset \mathbf{Z}_{>0}$ if the right hand side makes sense.

The vanishing theorem is the following:
Theorem 1. Let L be a line on \mathbf{P}^{2}. Let $I=$ $I(L)=\left\{i \in[1, r] \mid P_{i} \in L\right\}$. Assume that the points $\left\{P_{i} \mid i \notin I\right\}$ are in general position. Let

$$
M(d)=\left[\frac{1}{3} d^{2}\right]+2 d+1
$$

If $d, m_{1}, \ldots, m_{r} \in \mathbf{Z}_{\geq 0}$ satisfy the following conditions (a)-(d), then $H^{1}(S, \mathcal{O}(d, m))=0$.
(a) $\sum_{i=1}^{r} m_{i}\left(m_{i}+1\right) / 2 \leq M(d)$,
(b) $m_{J} \leq d+1$ for all $J \subset[1, r]$ with $|J|=2$,
(c) $m_{I} \leq d+1$,
(d) $m_{J} \leq 2 d+1$ for all $J \supset I$ with $|J|=|I|+2$.

Before proving this theorem, we prepare some easy lemmas.

Lemma 2. Let $d, m_{1}, \ldots, m_{r} \in \mathbf{Z}_{\geq 0}$ satisfy the inequality: $\sum_{i=1}^{r} m_{i}\left(m_{i}+1\right) / 2 \leq(d+1)(d+2) / 2$.
(1) If $r \geq 4$ and there exist $j, k(j \neq k)$ with $m_{j}+$ $m_{k}=d+1$ then $m_{p}+m_{q} \leq d$ for all distinct $p, q \notin\{j, k\}$.
(2) If $r \geq 5$ and there exist distinct indices j, k, l such that $m_{j}+m_{k}=d+1, m_{l}>0$, then $m_{p}+$ $m_{q} \leq d-1$ for all distinct $p, q \notin\{j, k, l\}$.
Proof. These assertions are obvious in view of the following inequalities in $a, b, d \in \mathbf{Z}_{\geq 0}$:

$$
\left\{\begin{array}{l}
(a(a+1)+b(b+1)) / 2 \geq\left[(a+b+1)^{2} / 4\right] \\
(d+1)(d+2) / 2=\left[(d+2)^{2} / 4\right]+\left[(d+1)^{2} / 4\right]
\end{array}\right.
$$

Lemma 3. Assume that $d, m_{1}, \ldots, m_{r} \in \mathbf{Z}_{\geq 0}$ satisfy $\sum_{i=1}^{r} m_{i}\left(m_{i}+1\right) / 2 \leq\left[(d+2)^{2} / 3\right]-1$. If $r \geq$ 3 and there exist distinct j, k such that $m_{j}+m_{k} \geq$ $d+1$ then $m_{j}+m_{p}, m_{k}+m_{p} \leq d$ for all $p \notin\{j, k\}$.

Proof. We may assume $m_{j} \geq m_{k}$. Hence it is sufficient to show that $m_{j}+m_{p} \leq d(\forall p \notin\{j, k\})$.

If there exists $p \notin\{j, k\}$ such that $m_{j}+m_{p} \geq d+$ 1, we can derive a contradiction as in the following calculation using $m_{k}, m_{p} \geq d+1-m_{j}$:

$$
\begin{aligned}
& \sum_{i=1}^{r} \frac{1}{2} m_{i}\left(m_{i}+1\right) \geq \sum_{i \in\{j, k, p\}} \frac{1}{2} m_{i}\left(m_{i}+1\right) \\
& \quad \geq \frac{3}{2}\left(m_{j}-\frac{2}{3} d-\frac{5}{6}\right)^{2}+\frac{1}{3}(d+2)^{2}-\frac{3}{8} \\
& \quad \geq\left[\frac{1}{3}(d+2)^{2}\right]
\end{aligned}
$$

Next two lemmas are easy vanishing lemmas.
Lemma 4. Let T be a nonsingular surface. Let D, E be divisors on T with $(D+E) E \geq-1$ and $E \simeq \mathbf{P}^{1}$. If $H^{1}\left(T, \mathcal{O}_{T}(D)\right)=0$ then $H^{1}\left(T, \mathcal{O}_{T}(D+\right.$ $E))=0$.

Lemma 5. Let $S, d, m, \mathcal{O}(d, m)$ be as in Theorem 1. Assume that d, m_{1}, \ldots, m_{r} satisfy the following (1) or (2), then $H^{1}(S, \mathcal{O}(d, m))=0$ and $|\mathcal{O}(d+1, m)|$ is base point free.
(1) $m_{[1, r]} \leq d+1$.
(2) $r \geq 2, m_{[2, r]} \leq d+1, m_{\{1, i\}} \leq d+1$, and $L_{1 i}^{\prime} \sim$ $H-E_{1}-E_{i}$ for all $i>1$ (in other words, $L_{1 i}$ passes through only P_{1} and P_{i}).
Proof. If $m_{i}=0$ for all i, then

$$
H^{1}(S, \mathcal{O}(d, m))=H^{1}\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}(d)\right)=0
$$

and $|\mathcal{O}(d+1, m)|=\left|\mathcal{O}_{\mathbf{P}^{2}}(d+1)\right|$ is base point free. We may thus assume $m_{i}>0$ for some i below.

We prove the lemma by induction on d. If $d=0$, then $\mathcal{O}(d, m)=\mathcal{O}_{S}\left(-E_{i}\right)$ for some i by the hypotheses. Hence obviously $H^{1}(S, \mathcal{O}(d, m))=0$ and $\mid \mathcal{O}(d+$ $1, m) \mid$ is base point free by $\mathcal{O}(d+1, m)=\mathcal{O}_{S}(H-$ $\left.E_{i}\right)$.

Assume $d \geq 1$. When d, m_{1}, \ldots, m_{r} satisfy (1), we may assume $m_{1}>0$ by renumbering m_{i} 's. Let $m_{1}^{\prime}=m_{1}-1, m_{i}^{\prime}=m_{i}(2 \leq i \leq r)$. By $L_{1}^{\prime} \sim H-E_{1}$, we have

$$
\mathcal{O}(d, m) \simeq \mathcal{O}\left(d-1, m^{\prime}\right)\left(L_{1}^{\prime}\right)
$$

Since $\sum_{i=1}^{r} m_{i}^{\prime}=\sum_{i=1}^{r} m_{i}-1 \leq d, H^{1}(S, \mathcal{O}(d-$ $\left.\left.1, m^{\prime}\right)\right)=0$ holds by the induction assumption. Hence $H^{1}(S, \mathcal{O}(d, m))=0$ by Lemma 4 because
$\left(d H-\sum_{i=1}^{r} m_{i} E_{i}\right) L_{1}^{\prime}=d-m_{1} \geq-1$ and $L_{1}^{\prime} \simeq \mathbf{P}^{1}$. Since $\left|\mathcal{O}\left(d, m^{\prime}\right)\right|$ is base point free by the induction assumption and $\left|L_{1}^{\prime}\right|=\left|H-E_{1}\right|$ is base point free, we see that $|\mathcal{O}(d+1, m)|=\left|\mathcal{O}\left(d, m^{\prime}\right)\left(L_{1}^{\prime}\right)\right|$ is base point free.

When d, m and $P=\left(P_{1}, \ldots, P_{r}\right)$ satisfy (2), we may assume $m_{[1, r]} \geq d+2$ by (1). Hence $m_{1}=$ $m_{[1, r]}-m_{[2, r]}>0$. Similarly there exist distinct $j, k \geq 2$ with $m_{j}, m_{k}>0$ because $\sum_{i \neq 1, a} m_{i}=$ $m_{[1, r]}-m_{\{1, a\}}>0$ for each $a>1$. Hence we may assume $m_{2}>0$ and $m_{3}>0$ by renumbering m_{i} 's. Let $m_{i}^{\prime}=m_{i}-1(i=1,2), m_{i}^{\prime}=m_{i}(3 \leq i \leq r)$. Since $L_{12}^{\prime} \sim H-E_{1}-E_{2}$, we have

$$
\mathcal{O}(d, m) \simeq \mathcal{O}\left(d-1, m^{\prime}\right)\left(L_{12}^{\prime}\right)
$$

Since $m_{[2, r]}^{\prime}=m_{[2, r]}-1 \leq d$ and $m_{\{1, i\}}^{\prime} \leq m_{\{1, i\}}-$ $1 \leq d(2 \leq \forall i \leq r)$, we have $H^{1}\left(S, \mathcal{O}\left(d-1, m^{\prime}\right)\right)=0$ by the induction assumption. By Lemma 4, we have $H^{1}(S, \mathcal{O}(d, m))=0$ because $\left(d H-\sum_{i=1}^{r} m_{i} E_{i}\right) L_{12}^{\prime}=$ $d-m_{1}-m_{2} \geq-1$ and $L_{12}^{\prime} \simeq \mathbf{P}^{1}$. Similarly, let $m_{i}^{\prime \prime}=$ $m_{i}-1(i=1,3)$ and $m_{i}^{\prime \prime}=m_{i}(i \neq 1,3)$. Since $L_{13}^{\prime} \sim$ $H-E_{1}-E_{3}$, we have

$$
\mathcal{O}(d+1, m) \simeq \mathcal{O}\left(d, m^{\prime \prime}\right)\left(L_{13}^{\prime}\right)
$$

Because $\left|\mathcal{O}\left(d, m^{\prime}\right)\right|$ and $\left|\mathcal{O}\left(d, m^{\prime \prime}\right)\right|$ are base point free by the induction assumption and $L_{12}^{\prime} \cap L_{13}^{\prime}=\emptyset$, we see that $|\mathcal{O}(d+1, m)|$ is base point free.

We begin with an extreme case of Theorem 1.
Lemma 6. Let $S, d, m, \mathcal{O}(d, m)$ be as in Theorem 1. Assume that $m_{i} \geq d+1$ for some i, say $i=$ 1. Then $d \leq 3, m_{1}=d+1, m_{i}=0$ for all $i>1$. In this case, $H^{1}(S, \mathcal{O}(d, m))=0$ holds.

Proof. By the condition (a) and $m_{1} \geq d+1$, we have

$$
\frac{1}{2}(d+1)(d+2)+m_{[2, r]} \leq \frac{1}{3} d^{2}+2 d+1,
$$

which reduces to $m_{[2, r]} \leq d(3-d) / 6$. Hence $d \leq 3$, $m_{[2, r]}=0$ and $m_{1}=d+1$. The last assertion follows from $m_{[1, r]}=d+1$ and Lemma $5,(1)$.

Let us prove Theorem 1.
Proof. First we may assume $d \geq m_{i}>0$ for all i. Indeed if $m_{i}=0$ for some i, then deleting P_{i} weakens the hypothesis of the theorem and has no effect on $H^{1}(S, \mathcal{O}(d, m))=0$. Thus we may assume $m_{i}>0$. The other inequality $d \geq m_{i}$ follows from Lemma 6.

We may assume $r \geq 4$ since this theorem is proved by Lemma 5 and the condition (b) when $r \leq$ 3.

Let $t_{d}=M(d)-M(d-1)(d \geq 1)$. It is easy to see that $t_{d}=[2 d / 3]+2$ and that $t_{d} \leq d$ (if $d \geq 4$).

We prove this theorem by induction on d. If $d=0, H^{1}(S, \mathcal{O}(d, m))=0$ holds by Lemma $5(1)$ since $M(0)=1$.

Assume $d \geq 1$. First, we consider the restriction to L.

Case A: There exists a subset $I^{\prime}(\supset I)$ of $[1, r]$ such that $t_{d} \leq m_{I^{\prime}} \leq d+1$ and $m_{\{k, l\}} \leq d$ for all distinct $k, l \notin I^{\prime}$.

If this theorem holds for the more special situation $I(L)=I^{\prime} \supset I$, then H^{1} also vanish for the more general situation $I(L)=I$ by the upper semicontinuity of h^{1}. Thus we may assume the conditions: $t_{d} \leq m_{I}$ and $m_{\{k, l\}} \leq d$ for all distinct $k, l \notin$ I.

We define $m_{i}^{\prime} \in \mathbf{Z}_{\geq 0}(1 \leq i \leq r)$ by

$$
m_{i}^{\prime}=\left\{\begin{array}{cc}
m_{i}-1 & (i \in I) \\
m_{i} & (i \notin I)
\end{array}\right.
$$

Since $m_{I}^{\prime}=m_{I}-|I|$ and $m_{\{k, l\}}^{\prime}=m_{\{k, l\}} \leq d$ for all distinct $k, l \notin I$ (the assumption of Case A), we have the following two inequalities:

$$
(*)\left\{\begin{array}{rl}
m_{I}^{\prime} & \leq d-1 \\
m_{\{k, l\}}^{\prime} & \leq d
\end{array}(\forall k, l \notin I \text { with } k \neq l),\right.
$$

Let $L^{\prime} \subset S$ be the strict transform of L. Since $L^{\prime} \sim H-\sum_{i \in I} E_{i}$, we can represent

$$
\mathcal{O}(d, m) \simeq \mathcal{O}\left(d-1, m^{\prime}\right)\left(L^{\prime}\right)
$$

Moreover $\left(d H-\sum_{i=1}^{r} m_{i} E_{i}\right) L^{\prime}=d-m_{I} \geq-1$ and $L^{\prime} \simeq \mathbf{P}^{1}$. Hence if $H^{1}\left(S, \mathcal{O}\left(d-1, m^{\prime}\right)\right)=0$ holds then $H^{1}(S, \mathcal{O}(d, m))=0$ holds by Lemma 4 . We will show that $d-1$ and m^{\prime} satisfy the conditions (a)-(d). Indeed the condition (a) follows from

$$
\begin{aligned}
\sum_{i=1}^{r} \frac{1}{2} m_{i}^{\prime}\left(m_{i}^{\prime}+1\right) & =\sum_{i=1}^{r} \frac{1}{2} m_{i}\left(m_{i}+1\right)-\sum_{i \in I} m_{i} \\
& \leq M(d)-t_{d}=M(d-1)
\end{aligned}
$$

(b) from

$$
m_{\{i, j\}}^{\prime} \begin{cases}=m_{\{i, j\}} \leq d & \text { if } i, j \notin I \\ \leq m_{\{i, j\}}-1 \leq d & \text { if } \quad \text { or } j \in I\end{cases}
$$

where $i \neq j$, and (c) and (d) are obvious by ($*$).
Next, we consider the restriction to $L_{i j}$.
Case B: $m_{I} \leq d-1$ and there exist distinct $p, q \in[1, r]$ such that $t_{d} \leq m_{\{p, q\}}$.

We may assume $m_{\{i, j\}} \leq m_{\{p, q\}}$ for all distinct i, j. We define $m_{i}^{\prime \prime} \in \mathbf{Z}_{\geq 0}(1 \leq i \leq r)$ by

$$
m_{i}^{\prime \prime}=\left\{\begin{array}{cl}
m_{i}-1 & (i=p \text { or } q) \\
m_{i} & \text { (otherwise) }
\end{array}\right.
$$

We then claim the inequalities:
$\left(*^{\prime}\right)\left\{\begin{aligned} m_{I}^{\prime \prime} & \leq d-1, \\ m_{\{i, j\}}^{\prime \prime} & \leq d \quad(1 \leq \forall i<\forall j \leq r) .\end{aligned}\right.$
First, $m_{I}^{\prime \prime} \leq m_{I} \leq d-1$ by the assumption of Case B. If $m_{\{p, q\}} \leq d$, then $m_{\{i, j\}}^{\prime \prime} \leq m_{\{i, j\}} \leq m_{\{p, q\}} \leq d$. Thus we assume $m_{\{p, q\}}=d+1$. If $\{i, j\} \cap\{p, q\}=\emptyset$, then $m_{\{i, j\}}^{\prime \prime}=m_{\{i, j\}} \leq d$ by Lemma 2, (1). If $\{i, j\} \cap$ $\{p, q\} \neq \emptyset$, then $m_{\{i, j\}}^{\prime \prime} \leq m_{\{i, j\}}-1 \leq m_{\{p, q\}}-1=d$ by the definition of $m^{\prime \prime}$. This proves our claim $\left(*^{\prime}\right)$.

If $p, q \in I, t_{d} \leq m_{\{p, q\}} \leq m_{I} \leq d+1$ and $m_{\{k, l\}} \leq d(\forall k, l \notin\{p, q\}$ with $k \neq l)$. Hence if $p, q \in$ I we are done by Case A, and it is enough to assume $p \notin I$ or $q \notin I$. Then P_{p} or P_{q} is in general position outside L and $L_{p q}^{\prime} \sim H-E_{p}-E_{q}$.

Now, we can express $\mathcal{O}(d, m)$ as

$$
\mathcal{O}(d, m) \simeq \mathcal{O}\left(d-1, m^{\prime \prime}\right)\left(L_{p q}^{\prime}\right)
$$

And $\left(d H-\sum_{i=1}^{r} m_{i} E_{i}\right) L_{p q}^{\prime}=d-m_{p}-m_{q} \geq-1$ and $L_{p q}^{\prime} \simeq \mathbf{P}^{1}$, hence, like in Case A it is sufficient to show that $d-1$ and $m^{\prime \prime}$ satisfy the conditions (a)-(d). The condition (a) holds

$$
\begin{aligned}
\sum_{i=1}^{r} \frac{1}{2} m_{i}^{\prime \prime}\left(m_{i}^{\prime \prime}+1\right) & =\sum_{i=1}^{r} \frac{1}{2} m_{i}\left(m_{i}+1\right)-m_{p}-m_{q} \\
& \leq M(d)-t_{d}=M(d-1)
\end{aligned}
$$

and (b)-(d) are obvious by $\left(*^{\prime}\right)$.
Case C: $m_{I}=d$ and there exist distinct $p, q \notin$ I such that $m_{\{p, q\}}=d+1$.

Note that P_{p} and P_{q} are in general position outside L and $L_{p q}^{\prime} \sim H-E_{p}-E_{q}$ since $p, q \notin I$.

As in Case B, we define $m_{i}^{\prime \prime} \in \mathbf{Z}_{\geq 0}(1 \leq i \leq r)$ by

$$
m_{i}^{\prime \prime}=\left\{\begin{array}{cl}
m_{i}-1 & (i=p \text { or } q) \\
m_{i} & \text { (otherwise) }
\end{array}\right.
$$

We then claim the following:

$$
(\star)\left\{\begin{aligned}
m_{I}^{\prime \prime} & =d, \\
m_{\{i, j\}}^{\prime \prime} & \leq d \quad(1 \leq \forall i<\forall j \leq r) \\
m_{\{k, l\}}^{\prime \prime} & \leq d-1 \quad(\forall k, l \notin I \text { with } k \neq l) .
\end{aligned}\right.
$$

First, $m_{I}^{\prime \prime}=m_{I}=d$ and we can see $m_{\{i, j\}}^{\prime \prime} \leq d$ if $i \neq$ j as in the proof of $\left(*^{\prime}\right)$. It remains to prove the last inequality. Let distinct $k, l \notin I$. If $|\{k, l\} \cap\{p, q\}|=$ 0 , then $m_{\{k, l\}}^{\prime \prime}=m_{\{k, l\}} \leq d-1$ by Lemma $2,(2)$, since there exist at least 5 distinct indices k, l, p, q
and an element $i \in I$. If $|\{k, l\} \cap\{p, q\}|=1$ (say, $l=p)$, then $m_{\{k, l\}}^{\prime \prime}=m_{\{k, l\}}-1 \leq d-1$ follows from Lemma 3 since $k, p, q \notin I$ and

$$
\begin{aligned}
& \sum_{i \in\{k, p, q\}} \frac{1}{2} m_{i}\left(m_{i}+1\right) \\
& \quad \leq \sum_{i=1}^{r} \frac{1}{2} m_{i}\left(m_{i}+1\right)-\sum_{i \in I} \frac{1}{2} m_{i}\left(m_{i}+1\right) \\
& \leq M(d)-m_{I}=M(d)-d \leq\left[\frac{1}{3}(d+2)^{2}\right]-1 .
\end{aligned}
$$

Finally if $|\{k, l\} \cap\{p, q\}|=2$, then $m_{\{k, l\}}^{\prime \prime}=m_{\{k, l\}}-$ $2=d-1$. Thus our claim ((\star) is proved.

We show that $d-1$ and $m^{\prime \prime}$ satisfy the conditions of the theorem. The condition (a) holds since $m_{\{p, q\}}=d+1 \geq t_{d}$ and (b)-(d) is clear by (\star).

Finally, we consider the case, in which we apply Lemma 5.

Case D: otherwise.
When $m_{[1, r]} \leq d+1$, the theorem follows from Lemma 5. We may assume $m_{[1, r]} \geq d+2$. We note that $t_{d} \leq d$ if $d \geq 4$ and that $t_{d}=d+1$ if $d=1,2,3$.

Denying Case A, we have the following (A_{1}), $\left(\mathrm{A}_{2}\right)$ or $\left(\mathrm{A}_{3}\right)$ by the condition (c).

$$
\begin{array}{ll}
\left(\mathrm{A}_{1}\right) & m_{\{k, l\}}=d+1(\exists k, l \notin I \text { with } k \neq l), \\
\left(\mathrm{A}_{2}\right) & m_{I} \leq t_{d}-1, \quad m_{I} \leq d-1 \\
\left(\mathrm{~A}_{3}\right) & m_{I}=t_{d}-1=d, \quad 1 \leq d \leq 3
\end{array}
$$

We will treat these three cases separately. In Case (A_{1}), we deny Case B and obtain

$$
\left(\mathrm{AB}_{1}\right) \quad\left\{\begin{array}{l}
m_{\{k, l\}}=d+1(\exists k, l \notin I \text { with } k \neq l) \\
m_{I}=d
\end{array}\right.
$$

using the condition (d). The case (A_{1}) is done, since $\left(\mathrm{AB}_{1}\right)$ is covered by Case C.

In Case (A_{2}), we also deny Case B and obtain

$$
\left(\mathrm{AB}_{2}\right) \quad\left\{\begin{array}{l}
m_{I} \leq t_{d}-1, \quad m_{I} \leq d-1 \\
m_{\{i, j\}} \leq t_{d}-1 \quad(1 \leq \forall i<\forall j \leq r)
\end{array}\right.
$$

Since we denied Case A, we have $m_{I^{\prime}} \leq t_{d}-1$ or $m_{I^{\prime}} \geq d+2$ or $m_{\{k, l\}}=d+1\left(\exists k, l \notin I^{\prime}\right.$ with $\left.k \neq l\right)$ for all subset $I^{\prime}(\supset I)$ of $[1, r]$. Combining this with $\left(\mathrm{AB}_{2}\right)$, we have

$$
m_{I^{\prime}} \leq t_{d}-1 \text { or } m_{I^{\prime}} \geq d+2\left([1, r] \supset \forall I^{\prime} \supset I\right) .
$$

Let J be a maximal element of

$$
\left\{I^{\prime} \subset[1, r] \mid m_{I^{\prime}} \leq t_{d}-1, I \subset I^{\prime}\right\}
$$

Since $m_{I} \leq t_{d}-1$ and $m_{[1, r]} \geq d+2$, we claim J has the following properties:

$$
(* *)\left\{\begin{array}{l}
m_{J} \leq t_{d}-1, \\
m_{J}+m_{j} \geq d+2 \quad(\forall j \notin J), \\
|J|=r-1 .
\end{array}\right.
$$

The first two of $(* *)$ are obvious since J is maximal. Hence, $m_{j}(\forall j \notin J)$ has the following lower bound:

$$
\begin{aligned}
m_{j}=\left(m_{J}+m_{j}\right)-m_{J} & \geq d+2-\left(t_{d}-1\right) \\
& =d+3-t_{d}
\end{aligned}
$$

If there are two distinct $j_{1}, j_{2} \in[1, r] \backslash J$, then

$$
t_{d}-1 \geq m_{\left\{j_{1}, j_{2}\right\}} \geq 2\left(d+3-t_{d}\right)
$$

which contradicts $t_{d}=[2 d / 3]+2$. Hence, $|J|=r-$ 1 as claimed. Renumbering m_{i} 's, we may assume $J=[2, r]$. Since $P_{1} \notin L$ is in general position, the conditions of Lemma 5, (2) are satisfied and we have $H^{1}(S, \mathcal{O}(d, m))=0$ by the lemma. Thus Case $\left(\mathrm{A}_{2}\right)$ is done.

In Case $\left(\mathrm{A}_{3}\right)$, we deny Case C and obtain
$\left(\mathrm{AC}_{3}\right) \quad\left\{\begin{array}{l}m_{I}=t_{d}-1=d, \quad 1 \leq d \leq 3, \\ m_{\{p, q\}} \leq d \quad(\forall p, q \notin I \text { with } p \neq q) .\end{array}\right.$
If $|I| \leq r-2$, then $m_{p}=1$ for some $p \notin I$ since $m_{p}+m_{q} \leq d \leq 3$. Then with $I^{\prime}=I \cup\{p\}$, we are in Case A and we are done. If $|I| \geq r-1$, then we are done by Lemma 5 . Thus Case $\left(\mathrm{A}_{3}\right)$ is done.

When all the points are in general position, the vanishing theorem needs fewer conditions.

Corollary 7. Let $d, m, M(d)$ be as in Theorem 1. Let $P_{1}, \ldots, P_{r} \in \mathbf{P}^{2}$ be r distinct points in general position. If d, m satisfy the following conditions (a) and (b), then $H^{1}(S, \mathcal{O}(d, m))=0$.
(a) $\sum_{i=1}^{r} m_{i}\left(m_{i}+1\right) / 2 \leq M(d)$,
(b) $m_{\{i, j\}} \leq d+1(1 \leq \forall i<\forall j \leq r)$.

Proof. Let L be a line not containing any of P_{i} 's on \mathbf{P}^{2}. Then $I=\emptyset$ and the conditions of Theorem 1 are satisfied.

Adding the upper bound of m : $m_{i} \leq m_{0}(1 \leq$ $\forall i \leq r)$, we can improve $M(d)$ in Theorem 1. The following Corollary is Ballico's result [1].

Corollary 8. Let d, m, P, L, I be as in Theorem 1. Let $m_{i} \leq m_{0}(1 \leq \forall i \leq r)$. Let

$$
M^{\prime}(d)=\frac{1}{2}(d+1)(d+2)-\left(m_{0}-1\right) d
$$

If d, m satisfy the following conditions (a) and (b), then $H^{1}(S, \mathcal{O}(d, m))=0$.
(a) $\sum_{i=1}^{r} m_{i}\left(m_{i}+1\right) / 2 \leq M^{\prime}(d)$,
(b) $m_{I} \leq d+1$.

Proof. We use induction on d. When $d=0$ it is clear. Assume $d \geq 1$. We may assume $m_{[1, r]} \geq d+$

2 by Lemma $5,(1)$. Since $m_{I} \leq d+1$, there exists a subset $I^{\prime}(\supset I)$ of $[1, r]$ such that $m_{I^{\prime}} \leq d+1$ and $m_{I^{\prime}}+m_{j} \geq d+2$ for every $j \in[1, r] \backslash I^{\prime}$. Hence

$$
d+2-m_{0} \leq m_{I^{\prime}} \leq d+1
$$

We can use the argument used in Case A of Theorem 1 since $M^{\prime}(d)$ has the following property:

$$
M^{\prime}(d)=M^{\prime}(d-1)+\left(d+2-m_{0}\right) \quad(d \geq 1)
$$

3. Existence theorem. In this section, K is assumed to be of characteristic zero. Let d, m_{1}, \ldots, m_{r} be positive integers.
$S_{d}(P, m)$ denotes the set of reduced irreducible curves of degree d with an ordinary singular point of multiplicity m_{i} at P_{i} for each i as their only singularities.

Theorem 9. Let $L, I=I(L), P_{1}, \ldots, P_{r}, M(d)$ be as in Theorem 1. Assume that $\operatorname{char}(K)=0$ and that $d, m_{1}, \ldots, m_{r} \in \mathbf{Z}_{>0}$ satisfy the following conditions (a)-(e). Then there exists a curve $C \in$ $S_{d}(P, m)$ transversal to L and $L_{i j}$ for all i, j.
(a) $\sum_{i=1}^{r} m_{i}\left(m_{i}+1\right) / 2 \leq M(d-1)$,
(b) $m_{J} \leq d$ for all $J \subset[1, r]$ with $|J|=2$,
(c) $m_{I} \leq d$,
(d) $m_{J} \leq 2 d-1$ for all $J \supset I$ with $|J|=|I|+2$.
(e) $m \neq(d)\left(\right.$ i.e. $r>1$ or $\left.m_{1} \neq d\right)$.

Remark 10. If $d, m_{1}, \ldots, m_{r} \in \mathbf{Z}_{>0}$ satisfy the conditions (a) and (e) above, note that we have

$$
\left(\mathcal{O}(d, m)^{2}\right)=d^{2}-\sum_{i} m_{i}^{2}>0
$$

Indeed if $m_{[1, r]} \leq d$, the inequality easily follows from (e). If $m_{[1, r]} \geq d+1$, it follows from (a) and

$$
d^{2}-\sum_{i} m_{i}^{2}>2 M(d-1)-\sum_{i} m_{i}\left(m_{i}+1\right)
$$

Proof of Theorem 9. When $1 \leq r \leq 3,|\mathcal{O}(d, m)|$ is base point free by Lemma 5 and the hypothesis (b). Hence a general member $C \in|\mathcal{O}(d, m)|$ is smooth and transversal to L^{\prime} and $L_{i j}^{\prime}$ for all i, j by Bertini's Theorem and is irreducible since $C^{2}=d^{2}-$ $\sum_{i=1}^{r} m_{i}^{2}>0$. Hence $f(C) \in S_{d}(P, m)$ has the required properties. We may assume $r \geq 4$. We prove this theorem by induction on d. We assume $d \geq 4$ for simplicity.

Our division and arguments will be similar to those in the proof of Theorem 1.

Case A: There exists a subset $I^{\prime}(\supset I)$ of $[1, r]$ such that $t_{d-1} \leq m_{I^{\prime}} \leq d$ and $m_{\{k, l\}} \leq d-1$ for all distinct $k, l \notin I^{\prime}$.

First of all, if this theorem holds for L with $I(L)=I^{\prime}$, then the original theorem holds by the argument in the proof of [2, Lemma 3.3.1] since $H^{1}(S, \mathcal{O}(d, m))=0$ by Theorem 1 and the upper semi-continuity of h^{1}. Hence we may assume: $t_{d-1} \leq$ m_{I} and $m_{\{k, l\}} \leq d-1$ for all distinct $k, l \notin I$.

We define $m_{i}^{\prime} \in \mathbf{Z}_{\geq 0}(1 \leq i \leq r)$ by

$$
m_{i}^{\prime}=\left\{\begin{array}{cc}
m_{i}-1 & (i \in I) \\
m_{i} & (i \notin I)
\end{array}\right.
$$

We omit the index i with $m_{i}^{\prime}=0$ and renumber the remaining m_{i}^{\prime} 's. Assume that there exists j such that $m_{j}^{\prime}=d-1$. Then we see $I=[1, r] \backslash\{j\}$. Since $m_{[1, r] \backslash\{j\}} \leq d$ and (b), we see that $|\mathcal{O}(d, m)|$ is free by Lemma $5,(2)$. Hence $f(C) \in S_{d}(d, m)$ is the required curve if C is a general member of $|\mathcal{O}(d, m)|$.

Now we assume $m^{\prime} \neq(d-1)$. Using the argument used in Case A of Theorem 1, we see that $d-1, m^{\prime}$ satisfy the conditions (a)-(e) of the theorem. Hence, there exists a curve $C_{d-1} \in S_{d-1}\left(P, m^{\prime}\right)$ which is transversal to L and $L_{i j}$ for all i, j by the induction assumption.

Let $s=d+1-m_{I}$ and P_{r+1}, \ldots, P_{r+s} be s distinct points on L outside C_{d-1} and $m_{r+1}=\cdots=$ $m_{r+s}=1$. Let $\bar{I}=I \cup\{r+1, \ldots, r+s\}$. We check that $d, m_{1}, \ldots, m_{r+s},\left\{P_{1}, \ldots, P_{r+s}\right\}, \bar{I}$ satisfy the conditions of Theorem 1. The condition (a) is satisfied:

$$
\begin{aligned}
\sum_{i=1}^{r+s} \frac{1}{2} m_{i}\left(m_{i}+1\right) & =\sum_{i=1}^{r} \frac{1}{2} m_{i}\left(m_{i}+1\right)+s \\
& \leq M(d-1)+d+1-m_{I} \\
& \leq M(d-1)+d+1-t_{d-1} \\
& \leq M(d-1)+t_{d}=M(d)
\end{aligned}
$$

If $1 \leq i<j \leq r$, then $m_{\{i, j\}} \leq d$ by the hypothesis (b). If $1 \leq i \leq r$ and $r+1 \leq j \leq r+s$, then $m_{\{i, j\}}=$ $m_{i}+1 \leq d$ since $m_{i} \leq d-1$ by the hypotheses (b) and (e). If $r+1 \leq i<j \leq r+s$, then $m_{\{i, j\}}=2 \leq d$. Hence $d, m_{1}, \ldots, m_{r+s}$ satisfy the stronger condition ($\left.\mathrm{b}^{\prime}\right) m_{\{i, j\}} \leq d(1 \leq \forall i<\forall j \leq r+s)$. The condition (c) is satisfied because

$$
m_{\bar{I}}=m_{I}+s=d+1
$$

And (d) follows from the above (b^{\prime}) and (c). Hence

$$
H^{1}\left(\mathbf{P}^{2}, \overline{\mathcal{I}}(d)\right)=H^{1}\left(S, \mathcal{O}\left(d,\left(m_{i}\right)_{i=1}^{r+s}\right)\right)=0
$$

where $\overline{\mathcal{I}}=\prod_{i=1}^{r+s} \mathfrak{m}_{P_{i}}^{m_{i}}\left(\mathfrak{m}_{P_{i}}\right.$ is the maximal ideal of $\left.P_{i}\right)$. In particular, we have an exact sequence,

$$
0 \rightarrow H^{0}\left(\mathbf{P}^{2}, \overline{\mathcal{I}}(d)\right) \rightarrow H^{0}\left(\mathbf{P}^{2}, \mathcal{O}(d)\right) \rightarrow \mathcal{O} / \overline{\mathcal{I}} \rightarrow 0
$$

So there exists a curve \tilde{C} of degree d with multiplicity $\geq m_{i}$ at $P_{i}(i=1, \ldots, r+s-1)$ such that $\tilde{C} \not \supset P_{r+s}$. Note that \tilde{C} is transversal to L and the multiplicity of \tilde{C} at $P_{i}(i \in I)$ is m_{i} since $m_{\bar{I} \backslash\{r+s\}}=d$.

Let C be a general member in the linear system generated by $C_{d-1}+L$ and \tilde{C}. Considering the construction of $C_{d-1}+L$ and \tilde{C} and Bertini's Theorem, we have the fact that C is in $S_{d}(P, m)$ and transversal to L by the proof of [2, Lemma 3.3.1]. We have only to prove that the general C is transversal to $L_{i j}$ which is not L. It is obvioius because the special member $C_{d-1}+L$ is transversal to such lines.

Case B: $m_{I} \leq d-2$ and there exist $p, q \in[1, r]$ $(p \neq q)$ such that $t_{d-1} \leq m_{\{p, q\}}$.

We may assume $m_{i} \leq m_{p}$ for all i, and $m_{i} \leq m_{q}$ for all $i \neq p$. If $p, q \in I$, then we are in Case A as in the proof of Thoerem 1. Thus we may assume $p \notin I$ or $q \notin I$.

We define $m_{i}^{\prime \prime} \in \mathbf{Z}_{\geq 0}(1 \leq i \leq r)$ by

$$
m_{i}^{\prime \prime}=\left\{\begin{array}{cl}
m_{i}-1 & (i=p \text { or } q) \\
m_{i} & \text { (otherwise })
\end{array}\right.
$$

We omit i if $m_{i}^{\prime \prime}=0$ and renumber the remaining $m_{i}^{\prime \prime}$'s. We have $m^{\prime \prime} \neq(d-1)$ since $m^{\prime \prime}$ has at least $r-2(\geq 2)$ components $m_{i}^{\prime \prime}>0$. Then there exists a curve $C_{d-1} \in S_{d-1}\left(P, m^{\prime \prime}\right)$ transversal to L and $L_{i j}$ for all i, j.

Let $s=d+1-m_{\{p, q\}}(>0)$ and P_{r+1}, \ldots, P_{r+s} be s distinct points on $L_{p q}$ outside C_{d-1} and $m_{r+1}=$ $\cdots=m_{r+s}=1$. Let $\overline{\mathcal{I}}=\prod_{i=1}^{r+s} \mathfrak{m}_{P_{i}}^{m_{i}}$. We claim $H^{1}\left(\mathbf{P}^{2}, \overline{\mathcal{I}}(d)\right)=0$. First $H^{1}\left(S, \mathcal{O}\left(d-1,\left(m_{i}^{\prime \prime}\right)_{i=1}^{r}\right)\right)=$ 0 holds, since $L, d-1, m_{1}^{\prime \prime}, \ldots, m_{r}^{\prime \prime}$ satisfy (a)-(d) of Theorem 1. By $L_{p q}^{\prime} \sim H-E_{p}-E_{q}-\sum_{i=r+1}^{r+s} E_{i}$, we have

$$
\begin{aligned}
\mathcal{O}\left(d,\left(m_{i}\right)_{i=1}^{r+s}\right) & \simeq \mathcal{O}\left(d-1,\left(m_{i}^{\prime \prime}\right)_{i=1}^{r}\right)\left(L_{p q}^{\prime}\right), \\
\left(d H-\sum_{i=1}^{r+s} m_{i} E_{i}\right) L_{p q}^{\prime} & =d-m_{\{p, q\}}-s=-1
\end{aligned}
$$

and $L_{p q}^{\prime} \simeq \mathbf{P}^{1}$. Hence the claim

$$
H^{1}\left(\mathbf{P}^{2}, \overline{\mathcal{I}}(d)\right)=H^{1}\left(S, \mathcal{O}\left(d,\left(m_{i}\right)_{i=1}^{r+s}\right)\right)=0
$$

holds by Lemma 4. Then there exists a curve \tilde{C} of degree d with multiplicity at least m_{i} at $P_{i}(1 \leq \forall i \leq$ $r+s-1)$ such that $\tilde{C} \not \supset P_{r+s}$. A general member \bar{C} in the linear system generated by $C_{d-1}+L$ and \tilde{C} is in $S_{d}(P, m)$ and transversal to L and $L_{i j}$ for all i, j.
$\underline{\text { Case C: }} m_{I}=d-1$ and there exist $p, q \notin I$ $(p \neq q)$ such that $m_{\{p, q\}}=d$.

This can be done similarly to Case B.

Case D: otherwise.
If $m_{[1, r]} \leq d$ then $f(C) \in S_{d}(P, m)$ is transversal to L and $L_{i j}$ for all i, j where C is a general member of $|\mathcal{O}(d, m)|$ by Lemma 5 and $d^{2}-\sum_{i=1}^{r} m_{i}^{2}>0$. We may assume $m_{[1, r]} \geq d+1$. There exists a subset $J(\supset I)$ of $[1, r]$ such that $m_{J} \leq t_{d-1}-1$ and $|J|=$ $r-1$ by Case D of Theorem 1. This theorem holds for $I(L)=J$ by Lemma 5 and $d^{2}-\sum_{i=1}^{r} m_{i}^{2}>0$. Hence the original theorem holds by the argument in the proof of [2, Lemma 3.3.1] since $H^{1}(S, \mathcal{O}(d, m))=$ 0 by Theorem 1 and the upper semi-continuity of h^{1}. The proof is complete.

Like the previous section, we have two corollaries. Their proofs are obvious in view of the proofs of Theorem 9 and corollaries in Section 2.

When all the points are in general position, the existence theorem needs fewer conditions.

Corollary 11. Let $d, m, M(d)$ be as in Theorem 1. Let $P_{1}, \ldots, P_{r} \in \mathbf{P}^{2}$ be r distinct points in general position. If d, m satisfy the following conditions (a) and (b), then there is a curve in $S_{d}(P, m)$ transversal to L and $L_{i j}$ for all i, j.
(a) $\sum_{i=1}^{r} m_{i}\left(m_{i}+1\right) / 2 \leq M(d-1)$,
(b) $m_{\{i, j\}} \leq d(1 \leq \forall i<\forall j \leq r)$.

When we add the upper bound $m_{i} \leq m_{0}(1 \leq$ $i \leq r)$, we can replace $M(d-1)$ with $M^{\prime}(d-1)$ in Theorem 9. Like Corollary 8, we obtain Ballico's result [1].

Corollary 12. Let d, m, P, L, I be as in Theorem 1. Let $m_{i} \leq m_{0}(1 \leq \forall i \leq r)$. Let $M^{\prime}(d)$ be as in Corollary 8. If d, m satisfy the following conditions (a) and (b), then there is a curve in $S_{d}(P, m)$ transversal to L and $L_{i j}$ for all i, j.
(a) $\sum_{i=1}^{r} m_{i}\left(m_{i}+1\right) / 2 \leq M^{\prime}(d-1)$,
(b) $m_{I} \leq d$.

Acknowledgment. I am grateful to Professor Shigefumi Mori, m.J.A., for his useful comments.

References

[1] Ballico, E.: Curves of minimal degree with prescribed singularities. Illinois J. Math., 43, 672676 (1999).
[2] Greuel, G. M., Lossen, C., and Shustin, E.: Geometry of families of nodal curves on the blown-up projective plane. Trans. Amer. Math. Soc., 350, 251-274 (1998).
[3] Hirschowitz, A.: Une conjecture pour la cohomologie des diviseurs sur les surfaces rationnelles génériques. J. Reine Angew. Math., 397, 208-213 (1989).

[^0]: 2000 Mathematics Subject Classification. Primary 14Q10;

