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The existence of plane curves with prescribed singularities
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Abstract: By improving the vanishing theorem of Hirschowitz, we prove an existence
theorem of the reduced irreducible plane curve with ordinary singularities at given points in general
position, which improves an earlier result by Greuel, Lossen and Shustin.
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1. Introduction. Let d,m1, . . . , mr (r ≥ 1)
be non-negative integers and P1, . . . , Pr ∈ P2. As-
suming that the r points are in general position on
P2, we deal with the problem: when does there ex-
ist a reduced and irreducible plane curve of degree d
with an ordinary singular point of multiplicitymi at
Pi for all i ? A result of Greuel, Lossen and Shustin
[2] guarantees that such a curve exists if

r∑
i=1

1
2
mi(mi + 1) <

1
4
d2 +

3
2
d− 1

4
−
[
d

2

]
,

where [x] denotes the integer such that [x] ≤ x <

[x]+1. On the other hand, a simple dimension count
shows that there exists a curve of degree d with mul-
tiplicity ≥ mi at Pi for all i if

∑r
i=1mi(mi + 1)/2 ≤

d(d + 3)/2. We are interested in making the right
hand side of the inequality “larger” while keeping
the existence theorem of the former type.

Our Corollary 11 gives the existence theorem
with [

1
3
(d− 1)2

]
+ 2d− 1

on the right hand side with certain obvious necessary
conditions. In order to prove this result, we refine the
vanishing theorem by Hirschowitz [3] as Corollary 7.

We consider all the objects in this paper to be
defined over an algebraically closed field K. Z≥0

and Z>0 denote the sets of non-negative and positive
integers, respectively.

2. Vanishing theorem. Let f : S → P2 be
the blowing up of the projective plane at r distinct
points P1, . . . , Pr and let H = f∗OP2(1), and Ei the
exceptional divisor f−1(Pi) for all i. Let Li be a
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generic line through Pi on P2 and L′
i ⊂ S the strict

transform of Li for all i. Let Lij be the line through
Pi and Pj, and L′

ij the strict transform of Lij . Let
O(d,m) = OS(dH −

∑r
i=1miEi). Note that we use

the vector notation m = (m1 , . . . , mr), if there is no
danger of confusion. We also use the notation mJ =∑

j∈Jmj for subset J ⊂ Z>0 if the right hand side
makes sense.

The vanishing theorem is the following:
Theorem 1. Let L be a line on P2. Let I =

I(L) = {i ∈ [1, r] | Pi ∈ L}. Assume that the points
{Pi | i �∈ I} are in general position. Let

M(d) =
[
1
3
d2

]
+ 2d+ 1.

If d,m1, . . . , mr ∈ Z≥0 satisfy the following condi-
tions (a)–(d), then H1(S,O(d,m)) = 0.
(a)

∑r
i=1mi(mi + 1)/2 ≤M(d),

(b) mJ ≤ d+ 1 for all J ⊂ [1, r] with |J | = 2,
(c) mI ≤ d+ 1,
(d) mJ ≤ 2d+ 1 for all J ⊃ I with |J | = |I| + 2.

Before proving this theorem, we prepare some
easy lemmas.

Lemma 2. Let d,m1, . . . , mr∈Z≥0 satisfy the
inequality :

∑r
i=1mi(mi + 1)/2 ≤ (d+ 1)(d+ 2)/2.

(1) If r ≥ 4 and there exist j, k (j �= k) with mj +
mk = d + 1 then mp + mq ≤ d for all distinct
p, q �∈ {j, k}.

(2) If r ≥ 5 and there exist distinct indices j, k, l
such that mj +mk = d+ 1, ml > 0, then mp +
mq ≤ d− 1 for all distinct p, q �∈ {j, k, l}.
Proof. These assertions are obvious in view of

the following inequalities in a, b, d ∈ Z≥0:{
(a(a + 1) + b(b+ 1))/2 ≥ [(a+ b+ 1)2/4],
(d+ 1)(d+ 2)/2 = [(d+ 2)2/4] + [(d+ 1)2/4].
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Lemma 3. Assume that d,m1, . . . , mr ∈ Z≥0

satisfy
∑r

i=1mi(mi+1)/2 ≤ [(d+2)2/3]−1. If r ≥
3 and there exist distinct j, k such that mj +mk ≥
d+ 1 then mj +mp, mk +mp ≤ d for all p �∈ {j, k}.

Proof. We may assume mj ≥ mk. Hence it is
sufficient to show that mj +mp ≤ d (∀p �∈ {j, k}).

If there exists p �∈ {j, k} such thatmj+mp ≥ d+
1, we can derive a contradiction as in the following
calculation using mk, mp ≥ d+ 1 −mj :

r∑
i=1

1
2
mi(mi + 1) ≥

∑
i∈{j,k,p}

1
2
mi(mi + 1)

≥ 3
2

(
mj −

2
3
d− 5

6

)2

+
1
3
(d+ 2)2 − 3

8

≥
[
1
3
(d+ 2)2

]
.

Next two lemmas are easy vanishing lemmas.
Lemma 4. Let T be a nonsingular surface.

Let D, E be divisors on T with (D+E)E ≥ −1 and
E 	 P1. If H1(T,OT (D)) = 0 then H1(T,OT (D +
E)) = 0.

Lemma 5. Let S, d, m, O(d,m) be as in The-
orem 1. Assume that d,m1, . . . , mr satisfy the fol-
lowing (1) or (2), then H1(S,O(d,m)) = 0 and
|O(d+ 1, m)| is base point free.
(1) m[1,r] ≤ d+ 1.
(2) r ≥ 2, m[2,r] ≤ d+ 1, m{1,i} ≤ d+ 1, and L′

1i ∼
H − E1 − Ei for all i > 1 (in other words, L1i

passes through only P1 and Pi).
Proof. If mi = 0 for all i, then

H1(S,O(d,m)) = H1(P2,OP2(d)) = 0,

and |O(d+ 1, m)| = |OP2(d + 1)| is base point free.
We may thus assume mi > 0 for some i below.

We prove the lemma by induction on d. If d = 0,
then O(d,m) = OS(−Ei) for some i by the hypothe-
ses. Hence obviouslyH1(S,O(d,m)) = 0 and |O(d+
1, m)| is base point free by O(d + 1, m) = OS(H −
Ei).

Assume d ≥ 1. When d,m1, . . . , mr satisfy (1),
we may assume m1 > 0 by renumbering mi’s. Let
m′

1 = m1−1, m′
i = mi (2 ≤ i ≤ r). By L′

1 ∼ H−E1,
we have

O(d,m) 	 O(d− 1, m′)(L′
1).

Since
∑r

i=1m
′
i =

∑r
i=1mi − 1 ≤ d, H1(S,O(d −

1, m′)) = 0 holds by the induction assumption.
Hence H1(S,O(d,m)) = 0 by Lemma 4 because

(dH −
∑r

i=1miEi)L′
1 = d−m1 ≥ −1 and L′

1 	 P1.
Since |O(d,m′)| is base point free by the induction
assumption and |L′

1| = |H − E1| is base point free,
we see that |O(d + 1, m)| = |O(d,m′)(L′

1)| is base
point free.

When d, m and P = (P1, . . . , Pr) satisfy (2),
we may assume m[1,r] ≥ d + 2 by (1). Hence m1 =
m[1,r] − m[2,r] > 0. Similarly there exist distinct
j, k ≥ 2 with mj , mk > 0 because

∑
i �=1,ami =

m[1,r] −m{1,a} > 0 for each a > 1. Hence we may
assume m2 > 0 and m3 > 0 by renumbering mi’s.
Let m′

i = mi − 1 (i = 1, 2), m′
i = mi (3 ≤ i ≤ r).

Since L′
12 ∼ H −E1 −E2, we have

O(d,m) 	 O(d− 1, m′)(L′
12).

Since m′
[2,r] = m[2,r] − 1 ≤ d and m′

{1,i} ≤ m{1,i} −
1 ≤ d (2 ≤ ∀i ≤ r), we have H1(S,O(d− 1, m′)) = 0
by the induction assumption. By Lemma 4, we have
H1(S,O(d,m)) = 0 because (dH−

∑r
i=1miEi)L′

12 =
d−m1−m2 ≥ −1 and L′

12 	 P1. Similarly, let m′′
i =

mi−1 (i = 1, 3) andm′′
i = mi (i �= 1, 3). Since L′

13 ∼
H −E1 −E3, we have

O(d + 1, m) 	 O(d,m′′)(L′
13).

Because |O(d,m′)| and |O(d,m′′)| are base point free
by the induction assumption and L′

12 ∩ L′
13 = ∅, we

see that |O(d+ 1, m)| is base point free.
We begin with an extreme case of Theorem 1.
Lemma 6. Let S, d, m, O(d,m) be as in The-

orem 1. Assume that mi ≥ d+1 for some i, say i =
1. Then d ≤ 3, m1 = d+ 1, mi = 0 for all i > 1. In
this case, H1(S,O(d,m)) = 0 holds.

Proof. By the condition (a) and m1 ≥ d + 1,
we have

1
2
(d+ 1)(d+ 2) +m[2,r] ≤

1
3
d2 + 2d+ 1,

which reduces to m[2,r] ≤ d(3 − d)/6. Hence d ≤ 3,
m[2,r] = 0 and m1 = d+1. The last assertion follows
from m[1,r] = d+ 1 and Lemma 5, (1).

Let us prove Theorem 1.
Proof. First we may assume d ≥ mi > 0 for

all i. Indeed if mi = 0 for some i, then deleting Pi
weakens the hypothesis of the theorem and has no
effect on H1(S,O(d,m)) = 0. Thus we may assume
mi > 0. The other inequality d ≥ mi follows from
Lemma 6.

We may assume r ≥ 4 since this theorem is
proved by Lemma 5 and the condition (b) when r ≤
3.
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Let td = M(d)−M(d− 1) (d ≥ 1). It is easy to
see that td = [2d/3] + 2 and that td ≤ d (if d ≥ 4).

We prove this theorem by induction on d. If
d = 0, H1(S,O(d,m)) = 0 holds by Lemma 5 (1)
since M(0) = 1.

Assume d ≥ 1. First, we consider the restriction
to L.

Case A: There exists a subset I′(⊃ I) of [1, r]
such that td ≤ mI′ ≤ d + 1 and m{k,l} ≤ d for all
distinct k, l �∈ I′.

If this theorem holds for the more special sit-
uation I(L) = I′ ⊃ I, then H1 also vanish for the
more general situation I(L) = I by the upper semi-
continuity of h1. Thus we may assume the condi-
tions: td ≤ mI and m{k,l} ≤ d for all distinct k, l �∈
I.

We define m′
i ∈ Z≥0 (1 ≤ i ≤ r) by

m′
i =

{
mi − 1 (i ∈ I),
mi (i �∈ I).

Since m′
I = mI − |I| and m′

{k,l} = m{k,l} ≤ d for all
distinct k, l �∈ I (the assumption of Case A), we have
the following two inequalities:

(∗)
{

m′
I ≤ d− 1,

m′
{k,l} ≤ d (∀k, l �∈ I with k �= l),

Let L′ ⊂ S be the strict transform of L. Since
L′ ∼ H −

∑
i∈I Ei, we can represent

O(d,m) 	 O(d − 1, m′)(L′).

Moreover (dH −
∑r

i=1miEi)L′ = d −mI ≥ −1 and
L′ 	 P1. Hence if H1(S,O(d − 1, m′)) = 0 holds
then H1(S,O(d,m)) = 0 holds by Lemma 4. We
will show that d − 1 and m′ satisfy the conditions
(a)–(d). Indeed the condition (a) follows from

r∑
i=1

1
2
m′
i(m

′
i + 1) =

r∑
i=1

1
2
mi(mi + 1) −

∑
i∈I

mi

≤M(d) − td = M(d− 1),

(b) from

m′
{i,j}

{
= m{i,j} ≤ d if i, j �∈ I,

≤ m{i,j} − 1 ≤ d if i or j ∈ I,

where i �= j, and (c) and (d) are obvious by (∗).
Next, we consider the restriction to Lij.
Case B: mI ≤ d − 1 and there exist distinct

p, q ∈ [1, r] such that td ≤ m{p,q}.
We may assume m{i,j} ≤ m{p,q} for all distinct

i, j. We define m′′
i ∈ Z≥0 (1 ≤ i ≤ r) by

m′′
i =

{
mi − 1 (i = p or q),
mi (otherwise).

We then claim the inequalities:

(∗′)
{

m′′
I ≤ d− 1,

m′′
{i,j} ≤ d (1 ≤ ∀i < ∀j ≤ r).

First, m′′
I ≤ mI ≤ d−1 by the assumption of Case B.

If m{p,q} ≤ d, then m′′
{i,j} ≤ m{i,j} ≤ m{p,q} ≤ d.

Thus we assume m{p,q} = d+1. If {i, j}∩{p, q}= ∅,
then m′′

{i,j} = m{i,j} ≤ d by Lemma 2, (1). If {i, j}∩
{p, q} �= ∅, then m′′

{i,j} ≤ m{i,j}−1 ≤ m{p,q}−1 = d

by the definition of m′′. This proves our claim (∗′).
If p, q ∈ I, td ≤ m{p,q} ≤ mI ≤ d + 1 and

m{k,l} ≤ d (∀k, l �∈ {p, q} with k �= l). Hence if p, q ∈
I we are done by Case A, and it is enough to assume
p �∈ I or q �∈ I. Then Pp or Pq is in general position
outside L and L′

pq ∼ H −Ep − Eq.
Now, we can express O(d,m) as

O(d,m) 	 O(d− 1, m′′)(L′
pq).

And (dH −
∑r

i=1miEi)L′
pq = d − mp − mq ≥ −1

and L′
pq 	 P1, hence, like in Case A it is sufficient

to show that d − 1 and m′′ satisfy the conditions
(a)–(d). The condition (a) holds

r∑
i=1

1
2
m′′
i (m

′′
i + 1) =

r∑
i=1

1
2
mi(mi + 1) −mp −mq

≤M(d) − td = M(d− 1),

and (b)–(d) are obvious by (∗′).
Case C: mI = d and there exist distinct p, q �∈

I such that m{p,q} = d+ 1.
Note that Pp and Pq are in general position out-

side L and L′
pq ∼ H −Ep − Eq since p, q �∈ I.

As in Case B, we define m′′
i ∈ Z≥0 (1 ≤ i ≤ r)

by

m′′
i =

{
mi − 1 (i = p or q),
mi (otherwise).

We then claim the following:

(�)




m′′
I = d,

m′′
{i,j} ≤ d (1 ≤ ∀i < ∀j ≤ r),

m′′
{k,l} ≤ d− 1 (∀k, l �∈ I with k �= l).

First, m′′
I = mI = d and we can see m′′

{i,j} ≤ d if i �=
j as in the proof of (∗′). It remains to prove the last
inequality. Let distinct k, l �∈ I. If |{k, l} ∩ {p, q}| =
0, then m′′

{k,l} = m{k,l} ≤ d − 1 by Lemma 2, (2),
since there exist at least 5 distinct indices k, l, p, q
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and an element i ∈ I. If |{k, l} ∩ {p, q}| = 1 (say,
l = p), then m′′

{k,l} = m{k,l} − 1 ≤ d− 1 follows from
Lemma 3 since k, p, q �∈ I and∑
i∈{k,p,q}

1
2
mi(mi + 1)

≤
r∑
i=1

1
2
mi(mi + 1) −

∑
i∈I

1
2
mi(mi + 1)

≤M(d) −mI = M(d) − d ≤
[
1
3
(d+ 2)2

]
− 1.

Finally if |{k, l}∩{p, q}| = 2, then m′′
{k,l} = m{k,l}−

2 = d− 1. Thus our claim (�) is proved.
We show that d − 1 and m′′ satisfy the condi-

tions of the theorem. The condition (a) holds since
m{p,q} = d+ 1 ≥ td and (b)–(d) is clear by (�).

Finally, we consider the case, in which we apply
Lemma 5.

Case D: otherwise.
When m[1,r] ≤ d + 1, the theorem follows from

Lemma 5. We may assume m[1,r] ≥ d + 2. We note
that td ≤ d if d ≥ 4 and that td = d+1 if d = 1, 2, 3.

Denying Case A, we have the following (A1),
(A2) or (A3) by the condition (c).

(A1) m{k,l} = d+ 1 (∃k, l �∈ I with k �= l),
(A2) mI ≤ td − 1, mI ≤ d− 1,
(A3) mI = td − 1 = d, 1 ≤ d ≤ 3.

We will treat these three cases separately. In
Case (A1), we deny Case B and obtain

(AB1)
{
m{k,l} = d+ 1 (∃k, l �∈ I with k �= l),
mI = d,

using the condition (d). The case (A1) is done, since
(AB1) is covered by Case C.

In Case (A2), we also deny Case B and obtain

(AB2)
{
mI ≤ td − 1, mI ≤ d− 1,
m{i,j} ≤ td − 1 (1 ≤ ∀i < ∀j ≤ r).

Since we denied Case A, we have mI′ ≤ td − 1 or
mI′ ≥ d+ 2 or m{k,l} = d+ 1 (∃k, l �∈ I′ with k �= l)
for all subset I′(⊃ I) of [1, r]. Combining this with
(AB2), we have

mI′ ≤ td − 1 or mI′ ≥ d+ 2 ([1, r] ⊃ ∀I′ ⊃ I).

Let J be a maximal element of

{I′ ⊂ [1, r] | mI′ ≤ td − 1, I ⊂ I′}.

Since mI ≤ td−1 and m[1,r] ≥ d+2, we claim J has
the following properties:

(∗∗)



mJ ≤ td − 1,
mJ +mj ≥ d+ 2 (∀j �∈ J),
|J | = r − 1.

The first two of (∗∗) are obvious since J is maximal.
Hence, mj (∀j �∈ J) has the following lower bound:

mj = (mJ +mj) −mJ ≥ d+ 2 − (td − 1)

= d+ 3 − td.

If there are two distinct j1, j2 ∈ [1, r] \ J , then

td − 1 ≥ m{j1,j2} ≥ 2(d+ 3 − td),

which contradicts td = [2d/3] + 2. Hence, |J | = r −
1 as claimed. Renumbering mi’s, we may assume
J = [2, r]. Since P1 �∈ L is in general position, the
conditions of Lemma 5, (2) are satisfied and we have
H1(S,O(d,m)) = 0 by the lemma. Thus Case (A2)
is done.

In Case (A3), we deny Case C and obtain

(AC3)
{
mI = td − 1 = d, 1 ≤ d ≤ 3,
m{p,q} ≤ d (∀p, q �∈ I with p �= q).

If |I| ≤ r − 2, then mp = 1 for some p �∈ I since
mp +mq ≤ d ≤ 3. Then with I′ = I ∪ {p}, we are in
Case A and we are done. If |I| ≥ r − 1, then we are
done by Lemma 5. Thus Case (A3) is done.

When all the points are in general position, the
vanishing theorem needs fewer conditions.

Corollary 7. Let d, m, M(d) be as in Theo-
rem 1. Let P1, . . . , Pr ∈ P2 be r distinct points in
general position. If d, m satisfy the following condi-
tions (a) and (b), then H1(S,O(d,m)) = 0.
(a)

∑r
i=1mi(mi + 1)/2 ≤M(d),

(b) m{i,j} ≤ d+ 1 (1 ≤ ∀i < ∀j ≤ r).
Proof. Let L be a line not containing any of

Pi’s on P2. Then I = ∅ and the conditions of Theo-
rem 1 are satisfied.

Adding the upper bound of m: mi ≤ m0 (1 ≤
∀i ≤ r), we can improve M(d) in Theorem 1. The
following Corollary is Ballico’s result [1].

Corollary 8. Let d, m, P, L, I be as in The-
orem 1. Let mi ≤ m0 (1 ≤ ∀i ≤ r). Let

M ′(d) =
1
2
(d+ 1)(d+ 2) − (m0 − 1)d.

If d, m satisfy the following conditions (a) and (b),
then H1(S,O(d,m)) = 0.
(a)

∑r
i=1mi(mi + 1)/2 ≤M ′(d),

(b) mI ≤ d+ 1.
Proof. We use induction on d. When d = 0 it

is clear. Assume d ≥ 1. We may assume m[1,r] ≥ d+
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2 by Lemma 5, (1). Since mI ≤ d + 1, there exists
a subset I′(⊃ I) of [1, r] such that mI′ ≤ d + 1 and
mI′ +mj ≥ d+ 2 for every j ∈ [1, r] \ I′. Hence

d+ 2 −m0 ≤ mI′ ≤ d+ 1.

We can use the argument used in Case A of Theo-
rem 1 since M ′(d) has the following property:

M ′(d) = M ′(d− 1) + (d+ 2 −m0) (d ≥ 1).

3. Existence theorem. In this section, K
is assumed to be of characteristic zero. Let
d,m1, . . . , mr be positive integers.

Sd(P,m) denotes the set of reduced irreducible
curves of degree d with an ordinary singular point of
multiplicity mi at Pi for each i as their only singu-
larities.

Theorem 9. Let L, I=I(L), P1, . . . , Pr,M(d)
be as in Theorem 1. Assume that char(K) = 0
and that d,m1, . . . , mr ∈ Z>0 satisfy the following
conditions (a)–(e). Then there exists a curve C ∈
Sd(P,m) transversal to L and Lij for all i, j.
(a)

∑r
i=1mi(mi + 1)/2 ≤M(d− 1),

(b) mJ ≤ d for all J ⊂ [1, r] with |J | = 2,
(c) mI ≤ d,
(d) mJ ≤ 2d− 1 for all J ⊃ I with |J | = |I| + 2.
(e) m �= (d) (i.e. r > 1 or m1 �= d).

Remark 10. If d,m1, . . . , mr ∈ Z>0 satisfy
the conditions (a) and (e) above, note that we have

(O(d,m)2) = d2 −
∑
i

m2
i > 0.

Indeed ifm[1,r] ≤ d, the inequality easily follows from
(e). If m[1,r] ≥ d+ 1, it follows from (a) and

d2 −
∑
i

m2
i > 2M(d− 1) −

∑
i

mi(mi + 1).

Proof of Theorem 9. When 1≤ r≤ 3, |O(d,m)|
is base point free by Lemma 5 and the hypothe-
sis (b). Hence a general member C ∈ |O(d,m)| is
smooth and transversal to L′ and L′

ij for all i, j by
Bertini’s Theorem and is irreducible since C2 = d2−∑r

i=1m
2
i > 0. Hence f(C) ∈ Sd(P,m) has the re-

quired properties. We may assume r ≥ 4. We prove
this theorem by induction on d. We assume d ≥ 4
for simplicity.

Our division and arguments will be similar to
those in the proof of Theorem 1.

Case A: There exists a subset I′(⊃ I) of [1, r]
such that td−1 ≤ mI′ ≤ d and m{k,l} ≤ d − 1 for all
distinct k, l �∈ I′.

First of all, if this theorem holds for L with
I(L) = I′, then the original theorem holds by the
argument in the proof of [2, Lemma 3.3.1] since
H1(S,O(d,m)) = 0 by Theorem 1 and the upper
semi-continuity of h1. Hence we may assume: td−1 ≤
mI and m{k,l} ≤ d− 1 for all distinct k, l �∈ I.

We define m′
i ∈ Z≥0 (1 ≤ i ≤ r) by

m′
i =

{
mi − 1 (i ∈ I),
mi (i �∈ I).

We omit the index i with m′
i = 0 and renumber

the remaining m′
i’s. Assume that there exists j such

that m′
j = d− 1. Then we see I = [1, r] \ {j}. Since

m[1,r]\{j} ≤ d and (b), we see that |O(d,m)| is free by
Lemma 5, (2). Hence f(C) ∈ Sd(d,m) is the required
curve if C is a general member of |O(d,m)|.

Now we assume m′ �= (d − 1). Using the ar-
gument used in Case A of Theorem 1, we see that
d − 1, m′ satisfy the conditions (a)–(e) of the theo-
rem. Hence, there exists a curve Cd−1 ∈ Sd−1(P,m′)
which is transversal to L and Lij for all i, j by the
induction assumption.

Let s = d + 1 − mI and Pr+1, . . . , Pr+s be s

distinct points on L outside Cd−1 and mr+1 = · · · =
mr+s = 1. Let I = I ∪ {r + 1, . . . , r + s}. We
check that d,m1, . . . , mr+s, {P1, . . . , Pr+s}, I satisfy
the conditions of Theorem 1. The condition (a) is
satisfied:

r+s∑
i=1

1
2
mi(mi + 1) =

r∑
i=1

1
2
mi(mi + 1) + s

≤M(d− 1) + d+ 1 −mI

≤M(d− 1) + d+ 1 − td−1

≤M(d− 1) + td = M(d).

If 1 ≤ i < j ≤ r, then m{i,j} ≤ d by the hypothesis
(b). If 1 ≤ i ≤ r and r+1 ≤ j ≤ r+s, then m{i,j} =
mi + 1 ≤ d since mi ≤ d − 1 by the hypotheses (b)
and (e). If r+1 ≤ i < j ≤ r+s, then m{i,j} = 2 ≤ d.
Hence d,m1, . . . , mr+s satisfy the stronger condition
(b′) m{i,j} ≤ d (1 ≤ ∀i < ∀j ≤ r+ s). The condition
(c) is satisfied because

mI = mI + s = d+ 1.

And (d) follows from the above (b′) and (c). Hence

H1(P2, I(d)) = H1(S,O(d, (mi)r+si=1 )) = 0,

where I =
∏r+s
i=1 mmi

Pi
(mPi is the maximal ideal of

Pi). In particular, we have an exact sequence,

0 → H0(P2, I(d)) → H0(P2,O(d)) → O/I → 0.
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So there exists a curve C̃ of degree d with multiplicity
≥ mi at Pi (i = 1, . . . , r+s−1) such that C̃ �� Pr+s.
Note that C̃ is transversal to L and the multiplicity
of C̃ at Pi (i ∈ I) is mi since mI\{r+s} = d.

Let C be a general member in the linear system
generated by Cd−1 +L and C̃. Considering the con-
struction of Cd−1 +L and C̃ and Bertini’s Theorem,
we have the fact that C is in Sd(P,m) and transver-
sal to L by the proof of [2, Lemma 3.3.1]. We have
only to prove that the general C is transversal to Lij
which is not L. It is obvioius because the special
member Cd−1 + L is transversal to such lines.

Case B: mI ≤ d− 2 and there exist p, q ∈ [1, r]
(p �= q) such that td−1 ≤ m{p,q}.

We may assume mi ≤ mp for all i, and mi ≤ mq

for all i �= p. If p, q ∈ I, then we are in Case A as in
the proof of Thoerem 1. Thus we may assume p �∈ I

or q �∈ I.
We define m′′

i ∈ Z≥0 (1 ≤ i ≤ r) by

m′′
i =

{
mi − 1 (i = p or q),
mi (otherwise).

We omit i if m′′
i = 0 and renumber the remaining

m′′
i ’s. We have m′′ �= (d − 1) since m′′ has at least

r− 2 (≥ 2) components m′′
i > 0. Then there exists a

curve Cd−1 ∈ Sd−1(P,m′′) transversal to L and Lij
for all i, j.

Let s = d+1−m{p,q} (> 0) and Pr+1, . . . , Pr+s
be s distinct points on Lpq outside Cd−1 and mr+1 =
· · · = mr+s = 1. Let I =

∏r+s
i=1 mmi

Pi
. We claim

H1(P2, I(d)) = 0. First H1(S,O(d− 1, (m′′
i )
r
i=1)) =

0 holds, since L, d− 1, m′′
1 , . . . , m

′′
r satisfy (a)–(d) of

Theorem 1. By L′
pq ∼ H−Ep−Eq−

∑r+s
i=r+1 Ei, we

have

O(d, (mi)r+si=1 ) 	 O(d− 1, (m′′
i )
r
i=1)(L

′
pq),(

dH −
r+s∑
i=1

miEi

)
L′
pq = d−m{p,q} − s = −1,

and L′
pq 	 P1. Hence the claim

H1(P2, I(d)) = H1(S,O(d, (mi)r+si=1 )) = 0

holds by Lemma 4. Then there exists a curve C̃ of
degree d with multiplicity at least mi at Pi (1 ≤ ∀i ≤
r+ s− 1) such that C̃ �� Pr+s. A general member C
in the linear system generated by Cd−1 +L and C̃ is
in Sd(P,m) and transversal to L and Lij for all i, j.

Case C: mI = d − 1 and there exist p, q �∈ I

(p �= q) such that m{p,q} = d.
This can be done similarly to Case B.

Case D: otherwise.
If m[1,r] ≤ d then f(C) ∈ Sd(P,m) is transversal

to L and Lij for all i, j where C is a general member
of |O(d,m)| by Lemma 5 and d2−

∑r
i=1m

2
i > 0. We

may assume m[1,r] ≥ d + 1. There exists a subset
J(⊃ I) of [1, r] such that mJ ≤ td−1 − 1 and |J | =
r − 1 by Case D of Theorem 1. This theorem holds
for I(L) = J by Lemma 5 and d2 −

∑r
i=1m

2
i > 0.

Hence the original theorem holds by the argument in
the proof of [2, Lemma 3.3.1] since H1(S,O(d,m)) =
0 by Theorem 1 and the upper semi-continuity of h1.
The proof is complete.

Like the previous section, we have two corollar-
ies. Their proofs are obvious in view of the proofs of
Theorem 9 and corollaries in Section 2.

When all the points are in general position, the
existence theorem needs fewer conditions.

Corollary 11. Let d, m, M(d) be as in The-
orem 1. Let P1, . . . , Pr ∈ P2 be r distinct points in
general position. If d, m satisfy the following condi-
tions (a) and (b), then there is a curve in Sd(P,m)
transversal to L and Lij for all i, j.
(a)

∑r
i=1mi(mi + 1)/2 ≤M(d− 1),

(b) m{i,j} ≤ d (1 ≤ ∀i < ∀j ≤ r).
When we add the upper bound mi ≤ m0 (1 ≤

i ≤ r), we can replace M(d − 1) with M ′(d − 1) in
Theorem 9. Like Corollary 8, we obtain Ballico’s
result [1].

Corollary 12. Let d, m, P, L, I be as in The-
orem 1. Let mi ≤ m0 (1 ≤ ∀i ≤ r). Let M ′(d) be as
in Corollary 8. If d, m satisfy the following condi-
tions (a) and (b), then there is a curve in Sd(P,m)
transversal to L and Lij for all i, j.
(a)

∑r
i=1mi(mi + 1)/2 ≤M ′(d− 1),

(b) mI ≤ d.
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