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Flips in dimension three via crepant descent method
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Abstract: We prove the existence of 3-dimensional flips by using the crepant descent
method. Our proof depends on the existence of good members in the anticanonical linear system
and uses explicit computations of blowing ups of terminal singularities.
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1. Introduction. In this article, we shall
give a proof of the existence of flips in dimension
three. This was first proved by [15] and completed
the Minimal Model Program. The method in [15]
was to find a good member in | −K| or | − 2K| and
construct a double cover by using this. Here we shall
give another approach, which is based on the exis-
tence of a good member in | −K| and some compu-
tations of blowing ups of terminal singularities. The
material here is sketched in [2, 1.6].

We shall outline our proof briefly. Let f : X →
Z be a flipping contraction. We want to construct a
flip f+ : X+ → Z of f . Let HX = |−KX |, then there
is a member S ∈ HX such that S has only rational
double points. This is proved by [12, 2.1] assuming
that the exceptional locus of f is an irreducible curve,
and by Mori (unpublished) in general. Hence the pair
(X,HX) is canonical, and the existence of flips is a
consequence of the existence of flops with respect to
KX + HX . Our aim here is to construct canonical
flops with respect to KX + HX . In order to con-
struct such flops, we use the crepant descent method
explained in [11, Chap. 6]. The proof is done by in-
duction on e(X,HX), the number of crepant prime
divisors with respect to KX + HX . By explicit com-
putations of blowing ups of terminal singularities, we
construct a pair (Y,HY ) and a birational morphism
q : Y → X such that e(Y,HY ) = e(X,HX) − 1. We
can reduce the problem on (X,HX) to the problem
on (Y,HY ). The argument here is the same as in [11,
Chap. 6]. If e(X,HX) = 0, then the pair (X,HX)
is terminal, and in particular X has only Gorenstein
terminal singularities. In this case, flops with respect
to KX + HX are usual terminal flops. See (2.5) and
(2.6) for details.
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This article is organized as follows: In Section 2,
we discuss about the existence and the termination
of flops for a canonical pair (X,HX). Necessary def-
initions are included here. Section 3 deals with the
existence of flips as an application of the results in
the previous section. In Section 4, we discuss about
blowing ups of 3-dimensional terminal singularities,
which are the basis for the crepant descent method in
Section 2. We always work over the complex number
field C.

2. Flops for canonical pairs. Let X be a
normal Q-factorial 3-fold and let HX be a movable
linear system on X without fixed components.

2.1. Let µ : X̃ → X be a resolution of sin-
gularities of X such that the birational transform
HX̃ = µ−1

∗ HX is free. We write

KX̃ + HX̃ = µ∗(KX + HX) +
∑

a(E,X,HX)E,

where the sum runs over all exceptional prime di-
visors E of µ and a(E,X,HX) ∈ Q. We call
a(E,X,HX) the discrepancy of E over X with re-
spect to KX + HX . This depends only on the dis-
crete valuation on the function field C(X) of X de-
termined by E, and does not depend on the partic-
ular choice of the resolution µ. Thus a(E,X,HX) is
defined for all exceptional prime divisors E over X.

We say that KX + HX (or the pair (X,HX)) is
canonical (resp. terminal) if a(E,X,HX) ≥ 0 (resp.
a(E,X,HX) > 0) for all exceptional prime divisors
E over X. In this case, we also say that (X,HX) is
a canonical (resp. terminal) pair .

For a canonical pair (X,HX), we define

e(X,HX)

= #
{
E :

exceptional prime
divisor over X

∣∣∣ a(E,X,HX) = 0
}
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and call it the number of crepant divisors over X
with respect to KX + HX . We easily see that
e(X,HX) < +∞ and that (X,HX) is terminal if
and only if e(X,HX) = 0. It is also obvious that if
(X,HX) is canonical (resp. terminal), then X itself
has only canonical (resp. terminal) singularities.

2.2. Let (X,HX) be a canonical pair. Let f :
X → Z be a projective birational morphism onto a
normal 3-fold Z and let D be an effective Q-divisor
on X.

We say that f : X → Z is a D-flopping con-
traction with respect to KX + HX if ρ(X/Z) = 1,
dimExc(f) = 1, KX + HX is f-trivial and −D is f-
ample, where Exc(f) denotes the exceptional locus
of f .

Let f : X → Z be a D-flopping contraction. A
projective birational morphism f+ : X+ → Z from
a normal 3-fold X+ is called a D-flop of f with re-
spect to KX+HX if ρ(X+/Z) = 1, dimExc(f+) = 1,
KX+ +HX+ is f+-trivial and D+ is f-ample, where
D+ (resp. HX+) is the birational transform of D
(resp. HX). It is easy to see that such a morphism
f+ : X+ → Z is unique if it exists. The birational
map X ��� X+ is also called a D-flop with respect
to KX + HX .

We shall omit the phrase “with respect to KX+
HX” if there is no danger of confusion.

2.3. Let (X,HX) be a canonical pair and let
D be an effective Q-divisor on X.

We say that the D-flop exists if the D-flop f+ :
X+ → Z exists for any D-flopping contraction f :
X → Z, and that a sequence of D-flops for (X,HX)
terminates if there exists no infinite sequence

X = X0 ��� X1 ��� X2 ��� · · · ,
where Xi ��� Xi+1 is aDi-flop with respect to KXi +
HXi , and Di (resp. HXi ) is the birational transform
of D (resp. HX).

Lemma 2.4. Let (X,HX) be a canonical pair
and let D be an effective Q-divisor on X. Let X ���
X+ be the D-flop with respect to KX + HX . Then
a(E,X,HX) = a(E,X+,HX+) for each exceptional
prime divisor E over X, where HX+ is the bira-
tional transform of HX. In particular, (X+,HX+)
is canonical and e(X,HX) = e(X+,HX+).

Proof. This follows from [11, 2.28].
Lemma 2.5. Let (X,HX) be a canonical pair.

Then we have the following :
(1) (X,HX) is terminal if and only if X has

only terminal singularities and the base locus BsHX

of HX consists only of isolated nonsingular points P
of X such that multP HX = 1.

(2) If (X,HX) is terminal and if HX ⊆ |−KX |,
then X has only Gorenstein terminal singularities.

Proof. (1) follows from [1, 1.22]. If HX ⊆ | −
KX |, then every point P ∈ X with index ≥ 2 is
contained in BsHX , and hence (2) follows from (1).

Proposition 2.6. Let (X,HX) be a terminal
pair with HX ⊆ | − KX |, and let D be an effective
Q-divisor on X. Then the D-flop of (X,HX) exists
and a sequence of D-flops for (X,HX) terminates.

Proof. Let f : X → Z be a D-flopping con-
traction. Since dimBsHX ≤ 0 and since HX ⊆ |
−KX |, we see that −KX is f-nef. Since ρ(X/Z) = 1,
−KX is either f-ample or f-trivial. By (2.5), X has
only Gorenstein terminal singularities, hence it fol-
lows from [14] and [3] that −KX is f-trivial. There-
fore f is a D-flopping contraction with respect to
KX . Thus, by [6] or [10], the D-flop of (X,HX)
exists and a sequence of D-flops for (X,HX) termi-
nates.

Thus we proved the existence and the termi-
nation of D-flops for a terminal pair (X,HX) with
HX ⊆ | −KX |. In order to study the canonical pair
(X,HX) by the crepant descent method, we need a
terminalization of (X,HX) and a step to construct
a terminalization of (X,HX). In the following (2.7),
we shall use the results in Section 4.

Theorem 2.7. Let (X,HX) be a canonical
pair with HX ⊆ | − KX |, and assume that this is
not terminal. Then there is a canonical pair (Y,HY )
with HY ⊆ | −KY | and a projective birational mor-
phism q : Y → X such that

(i) KY + HY = q∗(KX + HX), and
(ii) E = Exc(q) is a prime divisor.

In particular, e(Y,HY ) = e(X,HX) − 1 and
ρ(Y/X) = 1.

Proof. We shall prove this by dividing into sev-
eral cases.

(1) If X has non-terminal singularities, then
by [6, 6.2], [10, 6.4] or [11, 6.10], there is a projective
birational morphism q : Y → X such that KY =
q∗KX and that E = Exc(q) is a prime divisor. Let
HY = q−1∗ HX . We can write HY = q∗HX − aE for
some 0 ≤ a ∈ Q. Since KX+HX is canonical, we see
that a = 0. Therefore we get KY + HY = q∗(KX +
HX) in this case.

In the following, we shall assume that X has
only terminal singularities. We may also assume that
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BsHX �= ∅, since otherwise (X,HX) is terminal.
(2) If BsHX contains a singular point P of

X, then it follows from (4.1) and (4.2) that there
is a projective birational morphism q : Y → X such
that E = Exc(q) is a prime divisor and that KY =
q∗KX +(1/r)E, where r is the index of X at P . Let
HY = q−1∗ HX . Then we see that HY = q∗HX − aE

for some 1/r ≤ a ∈ Q. Since KX + HX is canoni-
cal, we know that a = 1/r and we get KY + HY =
q∗(KX + HX).

Thus we may assume that X is nonsingular at
each point of BsHX .

(3) First we assume that BsHX contains a
point P with multP HX ≥ 2. In this case, let q :
Y → X be the usual blow up at P and let HY =
q−1∗ HX . Then we can argue as in the case (2) and
get KY + HY = q∗(KX + HX). We also see that
multP HX = 2. Otherwise, every point P ∈ BsHX

satisfies multP HX = 1, hence a general member of
HX is nonsingular at each point of BsHX . It follows
from (2.5) that BsHX contains an irreducible curve
C. In this case, the blow up q : Y → X along C

satisfies our requirement.
Corollary 2.8. Let (X,HX) be a canonical

pair with HX ⊆ | − KX |. Then there is a terminal
pair (W,HW ) with HW ⊆ | −KW | and a projective
birational morphism ϕ : W → X such that KW +
HW = ϕ∗(KX + HX).

Proof. This follows from (2.7) by induction on
e(X,HX).

Remark 2.9. Let X be a 3-fold with only
canonical singularities, and assume that X has non-
terminal singularities. Then it follows from [17, 3.7]
that there is a projective birational morphism q :
Y → X such that KY = q∗KX and that Exc(q) con-
tains a divisor (which is not necessarily prime). The
construction of q : Y → X in [17, 3.7] (see also [16,
2.11] and [17, 2.6]) is very concrete, and our termi-
nalization process in (2.7) and (2.8) becomes more
explicit if we can take the above q : Y → X so that
Exc(q) is a prime divisor.

Now we are ready to use the crepant descent
method. In what follows, the argument is the same
as in [11, Chap. 6].

Theorem 2.10. Let e be a nonnegative inte-
ger. Let (X,HX) be a canonical pair such that HX ⊆
| −KX | and e(X,HX) = e. Let D be a Weil divisor
on X. Then there is an integer m ∈ [1, 32e−1] such
that mD is Cartier.

Proof. We shall show this by induction on e. If

e = 0, then X has only Gorenstein terminal singu-
larities by (2.5). Since X is Q-factorial, every Weil
divisor on X is Cartier. Let e > 0. By (2.7), there is
a canonical pair (Y,HY ) with HY ⊆ | − KY | and a
projective birational morphism q : Y → X such that
e(Y,HY ) = e− 1. We denote the exceptional divisor
of q by E. By [6, 6.8], [7, Step 2] or [11, 6.13], we
see that there is a rational curve C on Y such that
q(C) is a point and −3 ≤ (KY +E ·C) < 0. Since Y
has only canonical singularities, we can write KY =
q∗KX + αE with 0 ≤ α ∈ Q. Then we get −3 ≤
−3/(α+ 1) = (E ·C) < 0.

Let D be a Weil divisor on X and let D′ be
its birational transform on Y . By induction hypoth-
esis, there are m1, m2 ∈ [1, 32e−1−1] ∩ Z such that
both m1E and m2D

′ are Cartier. Then the divisor
−(m1E · C)m2D

′ + (m2D
′ · C)m1E is Cartier and

q-trivial. By [9, 3-2-5], we see that −(m1E ·C)m2D

is a Cartier divisor on X. Since 0 < −(m1E ·C)m2 ≤
3m1m2 ≤ 32e−1, we complete the proof.

Theorem 2.11. Let (X,HX) be a canonical
pair such that HX ⊆ | − KX |. Then we have the
following :

(1) For any effective Q-divisor D on X, the D-
flop of (X,HX) exists.

(2) For any effective Q-divisor D on X, a se-
quence of D-flops for (X,HX) terminates.

Proof. We shall prove these by induction on
e(X,HX). If e(X,HX) = 0, then (1) and (2) are
already proved in (2.6).

We shall assume that e = e(X,HX) ≥ 1. Let
f : X → Z be a D-flopping contraction. By (2.7),
there is a canonical pair (Y,HY ) and a projective bi-
rational morphism q : Y → X such that KY +HY =
q∗(KX + HX) and that E = Exc(q) is a prime divi-
sor. Since ρ(Y/Z) = 2, NE(Y/Z) has two edges Q
and R. One of these edges, say Q, is the extremal
ray which defines the morphism q. We shall study
another edge R. For a sufficiently small positive ra-
tional number ε, (KY + HY + εq∗D · R) < 0. By [9,
3-2-1], there is a projective birational morphism r :
Y → V such that ρ(Y/V ) = 1 and −q∗D is r-ample.

If dimExc(r) = 1, then r is a q∗D-flopping con-
traction. Since e(Y,HY ) = e(X,HX) − 1, we can
use the induction hypothesis to (Y,HY ). The q∗D-
flop of (Y,HY ) exists and a sequence of q∗D-flops
terminates. Thus there is a sequence of q∗D-flops

Y = Y (0) ��� Y (1) ��� Y (2) ��� · · · ��� Y (m),

and we may assume that this sequence terminates
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with (Y (m),HY (m) ). Let D(m) be the birational
transform of q∗D on Y (m). If D(m) is nef over Z,
then |lD(m)| is free for some positive integer l, hence
defines a projective birational morphism q1 : Y (m) →
X1 such that E1 = Exc(q1) is a prime divisor. If
D(m) is not nef over Z, then the unique extremal ray
of NE(Y (m)/Z) with respect to KY (m) + HY (m) +
εD(m) is of divisorial type. Hence there is a pro-
jective birational morphism q1 : Y (m) → X1 such
that E1 = Exc(q1) is a prime divisor. In the case
dimExc(r) = 2, we set m = 0, q1 = r and X1 = V .

By [11, 6.4, 6.5], we know thatX1 andX are not
isomorphic over Z and that X1 → Z is the D-flop of
f : X → Z. We remark that D(m) is q1-seminegative
in both cases.

Next we shall prove the termination of D-flops
for (X,HX). Let

X = X0 ��� X1 ��� X2 ��� · · ·
be an infinite sequence of D-flops. We shall denote
the birational transform of D on Xi by Di. By our
construction of D-flops, we have the following dia-
gram:

Y = Y0 ��� Y1 ��� Y2 ��� · · ·(q=q0 (q1 (q2
X = X0 ��� X1 ��� X2 ��� · · ·

where Yi ��� Yi+1 is a finite sequence of q∗iDi-flops,
qi : Yi → Xi is a projective birational morphism
such that ρ(Yi/Xi) = 1 and that Ei = Exc(qi) is a
prime divisor. Let D′

i be the birational transform of
q∗i−1Di−1 on Yi. Since D′

i is qi-seminegative, we have
D′
i = q∗iDi + αiEi for some 0 ≤ αi ∈ Q.

Here we remark that e(Xi,HXi) = e and
e(Yi,HYi) = e − 1 for all i. It follows from (2.10)
that there is a positive integer M = M(e) such that
MD′

i and MDi are Cartier divisors for all i. Hence
Mαi ∈ Z for all i.

If αi �= 0 for infinitely many i, then the divisor
q∗iDi cannot be effective for i >> 0, which is a con-
tradiction. Thus there is a positive integer N such
that αi = 0 for all i ≥ N . Then the sequence YN ���
YN+1 ��� YN+2 ��� · · · gives an infinite sequence
of q∗NDN -flops for (YN ,HYN ), which is impossible by
induction hypothesis. This completes the proof of
the termination of D-flops.

3. Flips in dimension three. Let X be a
normal Q-factorial 3-fold with only terminal singu-
larities.

3.1. A projective birational morphism f :
X → Z onto a normal 3-fold Z is called a flip-
ping contraction if ρ(X/Z) = 1, dimExc(f) = 1 and
−KX is f-ample.

Let f : X → Z be a flipping contraction. A
projective birational morphism f+ : X+ → Z from
a normal 3-foldX+ is called a flip of f if ρ(X+/Z) =
1, dimExc(f+) = 1 and KX+ is f+-ample. It is easy
to see that such a morphism f+ : X+ → Z is unique
if it exists. The birational map X ��� X+ is also
called a flip.

3.2. Let f : X → Z be a flipping contraction.
First we shall work in the analytic category. In this
case, if we can prove the existence of a flip f+ :
X+ → Z under the extra assumption that Exc(f) is
an irreducible curve, then flips exist in general ([6,
8.4], [15, 0.4.3]). Under this assumption, [12, 2.1]
proved that a general member S of | −KX | has only
rational double points. In the algebraic category, we
cannot use such reductions. However, Mori (unpub-
lished) proved that a general member of | −KX | has
only rational double points even in the case Exc(f)
is reducible.

Theorem 3.3. Let f : X → Z be a flipping
contraction. Then the flip f+ : X+ → Z of f exists.

Proof. By (3.2), a general member S of |−KX |
has only rational double points. Thus we obtain a
movable linear system HX ⊆ |−KX | which contains
S as a general member. By [1, 1.21], we know that
the pair (X,HX) is canonical. Let m be a positive
integer and let D ∈ |mKX |. Then −D is f-ample
and the D-flop f+ : X+ → Z of (X,HX) exists by
(2.11). Since the birational transform D+ of D on
X+ is f+-ample, f+ : X+ → Z is the flip of f : X →
Z.

4. Terminal singularities in dimension
three. In this section, we shall study germs of 3-
dimensional terminal singularities, and the purpose
is to extract exactly one exceptional prime divisor
with minimal discrepancy. The results here are used
to construct a terminalization of (X,HX) in (2.7).

Similar computations are given in [8] and [13],
but we need a slightly refined results. We already
treat the index ≥ 2 case in [4] and [5] and get more
detailed results than the one given here. We shall
take a more simple approach which is appropriate
for our purpose.

For a polynomial or a power series ϕ and an
integer k, ordϕ denotes the order of zero at the origin
and ϕk denotes the degree k part of ϕ.
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Theorem 4.1. Let P ∈ X be a germ of a 3-
dimensional Gorenstein terminal singularity, and as-
sume that P ∈ X is not smooth. Then there is a nor-
mal 3-fold Y and a projective birational morphism q :
Y → X such that the exceptional locus E = Exc(q) is
a prime divisor and that the discrepancy a(E,X) =
1.

Proof. Since P ∈ X is an isolated cDV point,
we can embed X into C4 as a hypersurface.

(1) If P ∈ X is of type (cAn), n ≥ 1, then X =
{xy+f(z, u) = 0}. Let k = ord f(z, u). We take pos-
itive integers a, b such that a+b = k. Let q : Y → X

be the blow up with weight (x, y, z, u) = (a, b, 1, 1).
Then E � {xy+fk(z, u) = 0} ⊆ P(a, b, 1, 1), which is
a prime divisor. It is also easy to see that a(E,X) =
1.

(2) If P ∈ X is of type (cDn), n ≥ 4, then
X = {u2 + f(x, y, z) = 0}, where ord f(x, y, z) = 3
and f3(x, y, z) is not a cube of a linear polynomial. If
f3(x, y, z) is irreducible, then it is sufficient to take
the blow up q : Y → X with weight (x, y, z, u) =
(1, 1, 1, 2). Otherwise, by a linear change of co-
ordinates, we may assume that z | f3(x, y, z) and
z2 |/ f3(x, y, z). Then the blow up with weight
(x, y, z, u) = (1, 1, 2, 2) satisfies our requirement.

(3) If P ∈ X is of type (cEn), n = 6, 7 or 8,
then X = {u2 + x3 + g(y, z)x + h(y, z) = 0}, where
ord g(y, z) ≥ 3 and ordh(y, z) ≥ 4.

We first treat (cE7) and (cE8). In these cases,
we have h4(y, z) = 0 and either g3(y, z) �= 0 or
h5(y, z) �= 0. If g3(y, z) and h5(y, z) does not have a
common factor, then we take the blow up q : Y → X

with weight (x, y, z, u) = (2, 1, 1, 3). Otherwise, we
may assume that z | g3(y, z) and z | h5(y, z). Then we
take the blow up with weight (x, y, z, u) = (2, 1, 2, 3).

Lastly, we treat (cE6). In this case, we have
h4(y, z) �= 0. If h4(y, z) is not a square, then
we take the blow up q : Y → X with weight
(x, y, z, u) = (2, 1, 1, 2). Otherwise, we may assume
that h4(y, z) = y2z2 or z4.

In the case h4(y, z) = y2z2, we can change the
embedding and get X = {u2 + yzu+ x3 + g(y, z)x+
h(y, z) = 0}, where ord g(y, z) ≥ 3 and ordh(y, z) ≥
5. If “y |/ g3(y, z) or y |/ h5(y, z)” and “z |/ g3(y, z) or
z |/ h5(y, z)”, then we may take the blow up with
weight (x, y, z, u) = (2, 1, 1, 3). Otherwise, we may
assume that z | g3(y, z) and z | h5(y, z). Then we take
the blow up with weight (x, y, z, u) = (2, 1, 2, 3).

In the case h4(y, z) = z4, we again can change
the embedding and get X = {u2 + z2u + x3 +

g(y, z)x + h(y, z) = 0}, where ord g(y, z) ≥ 3 and
ordh(y, z) ≥ 5. If z |/ g3(y, z) or z |/ h5(y, z), then we
take the blow up q : Y → X with weight (x, y, z, u) =
(2, 1, 1, 3). Otherwise, we take the blow up with
weight (x, y, z, u) = (2, 1, 2, 3).

Next, we treat the index ≥ 2 case.
Theorem 4.2. Let P ∈ X be a germ of a

3-dimensional terminal singularity of index r ≥ 2.
Then there is a normal 3-fold Y and a projective
birational morphism q : Y → X such that the excep-
tional locus E = Exc(q) is a prime divisor and that
the discrepancy a(E,X) = 1/r.

Proof. We shall prove this by dividing into sev-
eral cases.

(1) If P ∈ X is of type (cA/r), (cAx/4) or
(cAx/2), then it follows from [4, 6.4, 7.4, 7.8, 8.4,
8.8] that there is a blow up q : Y → X with required
properties.

(2) If P ∈ X is of type (cD/3), thenX = {u2+
f(x, y, z) = 0}/Z3(2, 1, 1, 0), where ord f(x, y, z) =
3, and we may assume that f3(x, y, z) = x3 + y2z +
yz2, x3 + yz2 or x3 + z3. Let q : Y → X be the blow
up with weight (x, y, z, u) = (2/3, 1/3, 4/3, 1). Then
the exceptional locus E of q is a prime divisor and
satisfies a(E,X) = 1/3.

(3) If P ∈ X is of type (cD/2), thenX = {u2+
f(x, y, z) = 0}/Z2(1, 1, 0, 1), where ord f(x, y, z) =
3, and we may assume that f3(x, y, z) = xyz, xyz +
z3, y2z or y2z+z3. We first assume that f4(x, y, 0) =
0. Then we take the blow up q : Y → X with weight
(x, y, z, u) = (1/2, 1/2, 2, 3/2). Hence we shall as-
sume that f4(x, y, 0) �= 0 in the following.

In the case f3(x, y, z) = xyz or xyz+z3 , we shall
discuss as follows: If x |/ f4(x, y, 0) and y |/ f4(x, y, 0),
then we take the blow up with weight (x, y, z, u) =
(1/2, 1/2, 1, 3/2). Otherwise, we may assume that
y | f4(x, y, 0), then we take the blow up with weight
(x, y, z, u) = (1/2, 3/2, 1, 3/2).

The argument in the case f3(x, y, z) = y2z

or y2z + z3 are almost similar. If y |/ f4(x, y, 0),
then we take the blow up with weight (x, y, z, u) =
(1/2, 1/2, 1, 3/2). If y2 | f4(x, y, 0), then we can re-
duce to the case f4(x, y, 0) = 0 by changing coordi-
nates. Otherwise, we have y ‖ f4(x, y, 0). In this
case, we take the blow up with weight (x, y, z, u) =
(1/2, 3/2, 1, 3/2).

(4) If P ∈ X is of type (cE/2), then we can
write X = {u2 + x3 + g(y, z)x + h(y, z) = 0}/
Z2(0, 1, 1, 1), where ord g(y, z) ≥ 4 and ordh(y, z) =
4. We may also assume that z | h4(y, z). Then
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it is sufficient to take the blow up with weight
(x, y, z, u) = (1, 1/2, 3/2, 3/2).

Remark 4.3. (1) By [4] and [5], we can
choose q : Y → X in (4.2) so that Y has only termi-
nal singularities. We think that this is also true in
the Gorenstein terminal case. If this is true, the ter-
minalization process in (2.7) and (2.8) becomes more
explicit.

(2) By using (2.7), we see that Y in (4.1) and
(4.2) has only canonical singularities.
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