On a distribution property of the residual order of $a(\bmod p)$

By Koji Chinen*) and Leo Murata**)
(Communicated by Heisuke Hironaka, m. J. a., Feb. 12, 2003)

Abstract

Let a be a positive integer which is not a perfect h-th power with $h \geq 2$, and $Q_{a}(x ; k, l)$ be the set of primes $p \leq x$ such that the residual order of a in $\mathbf{Z} / p \mathbf{Z}^{\times}$is congruent to $l \bmod k$. It seems that no one has ever considered the density of $Q_{a}(x ; k, l)$ for $l \neq 0$ when $k \geq 3$. In this article, the natural densities of $Q_{a}(x ; 4, l)(l=0,1,2,3)$ are considered. When $l=0,2$, calculations of $\sharp Q_{a}(x ; 4, l)$ are simple, and we can get these natural densities unconditionally. On the contrary, the distribution properties of $Q_{a}(x ; 4, l)$ for $l=1,3$ are rather complicated. Under the assumption of Generalized Riemann Hypothesis, we determine completely the natural densities of $\sharp Q_{a}(x ; 4, l)$ for $l=1,3$.

Key words: Residual order; Artin's conjecture (for primitive roots).

1. Introduction. Let \mathbf{P} be the set of all prime numbers.

For a fixed natural number $a \geq 2$, we can define two functions, I_{a} and D_{a}, from \mathbf{P} to \mathbf{N} :

$$
\begin{equation*}
I_{a}: p \mapsto I_{a}(p)=\left|(\mathbf{Z} / p \mathbf{Z})^{\times}:\langle a(\bmod p)\rangle\right| \tag{1.1}
\end{equation*}
$$

(the residual index of $a(\bmod p)$),
$D_{a}: p \mapsto D_{a}(p)=\sharp\langle a(\bmod p)\rangle$
(the residual order of $a(\bmod p)$ in $\left.(\mathbf{Z} / p \mathbf{Z})^{\times}\right)$, where $(\mathbf{Z} / p \mathbf{Z})^{\times}$denotes the multiplicative group of all invertible residue classes $\bmod p,\langle a(\bmod p)\rangle$ denotes the cyclic group generated by $a(\bmod p)$ in $(\mathbf{Z} / p \mathbf{Z})^{\times}$, and |:| the index of the subgroup.

We have a simple relation

$$
\begin{equation*}
I_{a}(p) D_{a}(p)=p-1, \tag{1.2}
\end{equation*}
$$

but both of these functions fluctuate quite irregularly. C. F. Gauss already noticed that $I_{10}(p)=1$ happens rather frequently. And the famous Artin's conjecture for primitive roots asks whether the cardinality of the set

$$
\begin{equation*}
N_{a}(x):=\left\{p \leq x ; I_{a}(p)=1\right\} \tag{1.3}
\end{equation*}
$$

[^0]tends to ∞ or not as $x \rightarrow \infty$. On the assumption of the Generalized Riemann Hypothesis for a certain type of Dedekind zeta functions, C. Hooley [6] succeeded in calculating the natural density of $N_{a}(x)$. There are various variations of Artin's conjecture, among which two papers Lenstra [8] and Murata [9] considered the surjectivity of the map I_{a}. For any natural number n, we define
\[

$$
\begin{equation*}
N_{a}(x ; n):=\left\{p \leq x ; I_{a}(p)=n\right\} \tag{1.4}
\end{equation*}
$$

\]

Then their results show that, for a square free a with $a \not \equiv 1(\bmod 4)$, we have, under GRH, an asymptotic formula

$$
\begin{equation*}
\sharp N_{a}(x ; n) \sim C_{a}^{(n)} \operatorname{li} x \tag{1.5}
\end{equation*}
$$

and $C_{a}^{(n)}>0$, where li $x:=\int_{2}^{x}(\log t)^{-1} d t$ and the constant $C_{a}^{(n)}$ depends on a and n. Therefore, for such an a, the map I_{a} is surjective from \mathbf{P} onto \mathbf{N}.

And the surjectivity of the map D_{a} is also well known. Indeed, except for at most finitely many n 's, the map D_{a} is surjective from \mathbf{P} onto \mathbf{N}.

Thus these two maps are surjective for those a 's, but between their surjective-properties we notice a big difference. Under GRH, for any $n \in \mathbf{N}$, (1.5) means that

$$
\begin{equation*}
I_{a}^{-1}(n)=\left\{p \in \mathbf{P} ; I_{a}(p)=n\right\} \tag{1.6}
\end{equation*}
$$

contains infinite elements, but on the contrary, the set

$$
\begin{equation*}
D_{a}^{-1}(n)=\left\{p \in \mathbf{P} ; D_{a}(p)=n\right\} \tag{1.7}
\end{equation*}
$$

contains only a finite number of elements. In fact, if
$D_{a}(p)=n$, then

$$
n+1 \leq p \leq a^{n}
$$

And recent study on cryptography shows that characterizing D_{a} is very difficult.

For the purpose of considering the distribution property of the map D_{a}, here we take an arbitrary natural number $k \geq 2$ and an arbitrary residual class $l(\bmod k)$ and consider the asymptotic behavior of the cardinality of the following set:

$$
\begin{equation*}
Q_{a}(x ; k, l):=\left\{p \leq x ; D_{a}(p) \equiv l(\bmod k)\right\} . \tag{1.8}
\end{equation*}
$$

It is more than 40 years ago, W. Sierpinski first considered about this problem and H. Hasse proved, by our notations, that, for odd prime q,

$$
\text { the Dirichlet density of } Q_{a}(x ; q, 0)=\frac{q}{q^{2}-1}
$$

$([4,5])$. Odoni [10] proved the existence of the natural density of $Q_{a}(x ; q, 0)$, and he obtained a similar results on $Q_{a}(x ; k, 0)$ for a composite square free moduli k.

In this paper we take $k=4$ and consider the distribution property of $Q_{a}(x ; 4, l)$ for all residue classes $l=0,1,2,3$. We assume $a \in \mathbf{N}$ is not a perfect h-th power with $h \geq 2$, and put

$$
a=a_{1} a_{2}^{2}, \quad a_{1}: \text { square free. }
$$

When $a_{1} \equiv 2(\bmod 4)$, we define a_{1}^{\prime} by

$$
a_{1}=2 a_{1}^{\prime}
$$

With these settings, our results can be stated as follows:

Theorem 1.1. When $l=0,2$, we have

$$
\sharp Q_{a}(x ; 4, l)=\delta_{l} \operatorname{li} x+O\left(\frac{x}{\log x \log \log x}\right),
$$

where

$$
\begin{array}{ll}
\delta_{0}=\delta_{2}=1 / 3, & \text { if } a_{1} \neq 2 \\
\delta_{0}=5 / 12 \text { and } \delta_{2}=7 / 24, & \text { if } a_{1}=2
\end{array}
$$

Theorem 1.2. We assume GRH. And we define an absolute constant C by

$$
\begin{equation*}
C:=\prod_{\substack{p \equiv 3(\bmod 4) \\ p: \text { prime }}}\left(1-\frac{2 p}{\left(p^{2}+1\right)(p-1)}\right) \approx 0.64365 \tag{1.9}
\end{equation*}
$$

Then, for $l=1,3$, we have an asymptotic formula

$$
\sharp Q_{a}(x ; 4, l)=\delta_{l} \operatorname{li} x+O\left(\frac{x}{\log x \log \log x}\right),
$$

and the leading coefficients $\delta_{l}(l=1,3)$ are given by the following way:
(I) If $a_{1} \equiv 1,3(\bmod 4)$, then $\delta_{1}=\delta_{3}=1 / 6$.
(II) When $a_{1} \equiv 2(\bmod 4)$,
(i) If $a_{1}^{\prime}=1$, i.e., $a=2 \cdot($ a square number), then

$$
\delta_{1}=\frac{7}{48}-\frac{C}{8}, \quad \delta_{3}=\frac{7}{48}+\frac{C}{8} .
$$

(ii) If $a_{1}^{\prime} \equiv 1(\bmod 4)$ with $a_{1}^{\prime}>1$, then (ii-1) if a_{1}^{\prime} has a prime divisor p with $p \equiv 1$ $(\bmod 4)$, then $\delta_{1}=\delta_{3}=1 / 6$,
(ii-2) if all prime divisors p of a_{1}^{\prime} satisfy $p \equiv 3$ $(\bmod 4)$, then

$$
\begin{aligned}
& \delta_{1}=\frac{1}{6}-\frac{C}{8} \prod_{p \mid a_{1}^{\prime}}\left(\frac{-2 p}{p^{3}-p^{2}-p-1}\right), \\
& \delta_{3}=\frac{1}{6}+\frac{C}{8} \prod_{p \mid a_{1}^{\prime}}\left(\frac{-2 p}{p^{3}-p^{2}-p-1}\right) .
\end{aligned}
$$

(iii) If $a_{1}^{\prime} \equiv 3(\bmod 4)$, then
(iii-1) if a_{1}^{\prime} has a prime divisor p with $p \equiv 1$ $(\bmod 4)$, then $\delta_{1}=\delta_{3}=1 / 6$,
(iii-2) if all prime divisors p of a_{1}^{\prime} satisfy $p \equiv 3$ $(\bmod 4)$, then

$$
\begin{aligned}
& \delta_{1}=\frac{1}{6}+\frac{C}{8} \prod_{p \mid a_{1}^{\prime}}\left(\frac{-2 p}{p^{3}-p^{2}-p-1}\right) \\
& \delta_{3}=\frac{1}{6}-\frac{C}{8} \prod_{p \mid a_{1}^{\prime}}\left(\frac{-2 p}{p^{3}-p^{2}-p-1}\right)
\end{aligned}
$$

It seems an interesting phenomenon that, in (II)-(ii) and -(iii), the densities δ_{1} and δ_{3} are controled by whether a_{1}^{\prime} has a prime factor p with $p \equiv 1$ $(\bmod 4)$ or not. Moreover, we can check easily that, in all cases, we have a mysterious inequality

$$
\delta_{1} \leq \delta_{3}
$$

Remark. The contents of this article appeared in conference proceedings [1-3]. For the full proofs, see e-Print archive, http://xxx.lanl.gov/archive/math, article number math.NT/0211077 and math.NT/0211083.
2. Preliminaries. In this section we introduce some notations and lemmas. For $k \in \mathbf{N}$, let $\zeta_{k}=\exp (2 \pi i / k)$. We denote Euler's totient and the Möbius function by $\varphi(k)$ and $\mu(k)$, respectively. For a prime power $q^{e}, q^{e}| | m$ means that $q^{e} \mid m$ and $q^{e+1} \nmid$ m.

Let K be an algebraic number field. Then we
define
(2.1)

$$
\pi(x, K)=\sharp\{\mathfrak{p}: \text { a prime ideal in } K, N \mathfrak{p} \leq x\}
$$

and

$$
\begin{align*}
& \pi^{(1)}(x, K) \tag{2.2}\\
& =\sharp\{\mathfrak{p}: \text { a prime ideal of degree } 1 \text { in } K, N \mathfrak{p} \leq x\}
\end{align*}
$$

where $N \mathfrak{p}$ is the (absolute) norm of \mathfrak{p}. Moreover let L / K be a finite Galois extension. Then for a prime ideal \mathfrak{p} in K, we define the Frobenius symbol by
$(\mathfrak{p}, L / K)=$
$\left\{\begin{array}{cc} & \mathfrak{q}^{\sigma}=\mathfrak{q} \text { for some prime } \mathfrak{q} \\ \sigma \in \operatorname{Gal}(L / K) ; & \text { in } L \text { above } \mathfrak{p}, \\ \alpha^{\sigma} \equiv \alpha^{N \mathfrak{p}}(\bmod \mathfrak{q}) \text { for all } \alpha \in L\end{array}\right\}$.
We need the prime ideal theorem for a certain type of Kummer fields:

Theorem 2.1. For a prime q and $i, j \in \mathbf{N} \cup$ $\{0\}$, we define an extension field

$$
K_{i, j}^{(q)}=\mathbf{Q}\left(\zeta_{q^{i}}, \zeta_{q^{j}}, a^{1 / q^{j}}\right)
$$

and we put

$$
\begin{aligned}
n & =\left[K_{i, j}^{(q)}: \mathbf{Q}\right] \\
D & =\text { the discriminant of } K_{i, j}^{(q)}
\end{aligned}
$$

Then, under the condition

$$
x \geq \exp \left(10 n \log ^{2}|D|\right)
$$

we have

$$
\pi^{(1)}\left(x, K_{i, j}^{(q)}\right)=\operatorname{li} x+O\left(n x e^{-c \sqrt{\log x} / n^{2}}\right)
$$

where the constant implied by O-symbol and the positive constant c depend only on a and q.

Proof. For the field $K_{i, j}^{(q)}$, we have an estimate

$$
|D| \leq\left(n^{2}|a|\right)^{n}
$$

Then Theorems 1.3 and 1.4 of Lagarias-Odlyzko [7] give the desired formula.

And we need the Chebotarev theorem with GRH:

Theorem 2.2 (Chebotarev density theorem, GRH). Let K be an algebraic number field, L / K be a finite Galois extension and C be a conjugacy class in $G=\operatorname{Gal}(L / K)$. We define $\pi(x ; L / K, C)$ by
(2.4) $\pi(x ; L / K, C)$
$=\sharp\{\mathfrak{p}:$ a prime ideal in K,

$$
\text { unramified in } L,(\mathfrak{p}, L / K)=C, \mathbf{N} \mathfrak{p} \leq x\}
$$

Then, under GRH for the field L, we have

$$
\begin{align*}
& \pi(x ; L / K, C) \tag{2.5}\\
&= \frac{\sharp C}{\sharp G} \operatorname{li} x+O\left(\frac{\sharp C}{\sharp G} \sqrt{x} \log \left(d_{L} x^{n_{L}}\right)+\log d_{L}\right), \\
& \text { as } x \rightarrow \infty
\end{align*}
$$

where d_{L} is the discriminant of L and $n_{L}=[L: \mathbf{Q}]$.
Proof. Lagarias-Odlyzko [7, Theorem 1.1].

3. Outline of proof.

Proof of Theorem 1.1. Generally speaking, the condition " $D_{a}(p) \equiv j(\bmod 4)$ " is rather difficult to handle. So, using the relation (1.2), we transform the condition on $D_{a}(p)$ into some conditions on $I_{a}(p)$. First we consider $Q_{a}(x ; 4,0)$:
(3.1) $\sharp Q_{a}(x ; 4,0)$

$$
\begin{aligned}
= & \sharp\{p \leq x ; p \equiv 1(\bmod 4)\} \\
& -\sum_{j \geq 1} \sharp\left\{p \leq x ; p \equiv 1\left(\bmod 2^{j+1}\right), 2^{j} \mid I_{a}(p)\right\} \\
& +\sum_{j \geq 1} \sharp\left\{p \leq x ; p \equiv 1\left(\bmod 2^{j+2}\right), 2^{j} \mid I_{a}(p)\right\} .
\end{aligned}
$$

The first term of the right hand side of (3.1) is calculated by the Siegel-Walfisz theorem. As to the other terms, we note that, when $i \geq j, " p \equiv 1\left(\bmod 2^{i}\right)$ and $2^{j} \mid I_{a}(p)$ " if and only if p splits completely in the field $K_{i, j}^{(2)}$. So we can use Theorem 2.1 to estimate them. In a similar way to Hooley [6], we obtain
$\sharp Q_{a}(x ; 4,0)$
$=\left\{\frac{1}{\varphi(4)}-\sum_{j \geq 1}\left(\frac{1}{\left[K_{j+1, j}^{(2)}: \mathbf{Q}\right]}-\frac{1}{\left[K_{j+2, j}^{(2)}: \mathbf{Q}\right]}\right)\right\}$ li x

$$
+O\left(\frac{x}{\log x \log \log x}\right)
$$

Explicit calculation of the extension degrees in the above formula brings the desired result.

When $l=2$, we notice that

$$
\sharp Q_{a}(x ; 4,2)=\sharp Q_{a}(x ; 2,0)-\sharp Q_{a}(x ; 4,0) .
$$

We already have the asymptotic formula for $\sharp Q_{a}(x ; 4,0)$, and from Odoni's result, we have

$$
\sharp Q_{a}(x ; 2,0)=\delta \operatorname{li} x+O\left(\frac{x}{\log x \log \log x}\right),
$$

where $\delta=2 / 3$ if $a_{1} \neq 2$ and $\delta=17 / 24$ if $a_{1}=2$. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. First we introduce the set

$$
\begin{align*}
& N_{a}(x ; k ; s(\bmod t)) \tag{3.3}\\
& :=\left\{p \leq x ; p \in N_{a}(x ; k), p \equiv s(\bmod t)\right\}
\end{align*}
$$

Then, in a similar way to (3.1), we can deduce the following formulas:

$$
\begin{equation*}
\sharp Q_{a}(x ; 4,1) \tag{3.4}
\end{equation*}
$$

$$
=\sum_{f \geq 1} \sum_{l \geq 0} \sharp N_{a}\left(x ; 2^{f}+l \cdot 2^{f+2} ; 1+2^{f}\left(\bmod 2^{f+2}\right)\right)
$$

$$
+\sum_{f \geq 1} \sum_{l \geq 0} \sharp N_{a}\left(x ; 3 \cdot 2^{f}+l \cdot 2^{f+2} ; 1+3 \cdot 2^{f}\left(\bmod 2^{f+2}\right)\right)
$$

and
$(3.5) \quad \sharp Q_{a}(x ; 4,3)$
$=\sum_{f \geq 1} \sum_{l \geq 0} \sharp N_{a}\left(x ; 3 \cdot 2^{f}+l \cdot 2^{f+2} ; 1+2^{f}\left(\bmod 2^{f+2}\right)\right)$
$+\sum_{f \geq 1} \sum_{l \geq 0} \sharp N_{a}\left(x ; 2^{f}+l \cdot 2^{f+2} ; 1+3 \cdot 2^{f}\left(\bmod 2^{f+2}\right)\right)$.
As was pointed out in Introduction, the natural density of the set $N_{a}(x ; k)$ is estimated under GRH with an error term in Murata [9]:

$$
\begin{align*}
\sharp N_{a}(x ; k)= & \frac{k_{0}}{\varphi\left(k_{0}\right)} \sum_{d \mid k_{0}} \frac{\mu(d)}{d} \sum_{n=1}^{\infty} \frac{\mu(n)}{\left[G_{n, k d}: \mathbf{Q}\right]} \operatorname{li} x \tag{3.6}\\
& +O\left(\{n \log \log x+\log a\} \frac{x}{\log ^{2} x}\right),
\end{align*}
$$

where

$$
\begin{aligned}
& k_{0}=\prod_{\substack{p \mid k \\
p: \text { prime }}} p \quad(\text { the core of } k), \\
& G_{n, k d}=\mathbf{Q}\left(\zeta_{n}, \zeta_{k d}, a^{1 / k n}\right)
\end{aligned}
$$

This is obtained by considering the decomposition of prime ideals of $K_{k}=\mathbf{Q}\left(\zeta_{k_{0}}, a^{1 / k}\right)$ in $G_{n, k d}$, and the prime ideal theorem (under GRH) for $G_{n, k d}$.

The set $N_{a}(x ; k ; s(\bmod t))$ can be estimated along the same lines, but we must appeal to the Chebotarev density theorem (see Theorem 2.2) instead of the prime ideal theorem to deal with the condition $p \equiv s(\bmod t)$. For $k=(j+4 l) \cdot 2^{f}, s=$ $1+i \cdot 2^{f}, t=2^{f+2}$ with $f \geq 1, l \geq 0, i=1$ or 3 and $j=1$ or 3 , we have, under GRH,

$$
\begin{align*}
& \sharp N_{a}(x ; k ; s(\bmod t)) \tag{3.7}\\
& =\frac{k_{0}}{\varphi\left(k_{0}\right)} \sum_{d \mid k_{0}} \frac{\mu(d)}{d} \sum_{n=1}^{\infty} \frac{\mu(n) c_{i}(k, n, d)}{\left[\tilde{G}_{n, k d}: \mathbf{Q}\right]} \operatorname{li} x \\
& \quad+O\left(\frac{x}{\log ^{2} x}(\log \log x)^{4}\right),
\end{align*}
$$

where $\quad \tilde{G}_{n, k d}=G_{n, k d}\left(\zeta_{t}\right)$ and the coefficient $c_{i}(k, n, d)$ is determined in the following way: we consider $\sigma_{i}^{*} \in \operatorname{Gal}\left(\tilde{G}_{n, k d} / K_{k}\right)$ satisfying the conditions

$$
\begin{cases}1^{\circ} & \left.\sigma_{i}^{*}\right|_{G_{n, k d}}=\mathrm{id} \tag{3.8}\\ 2^{\circ} & \left.\sigma_{i}^{*}\right|_{\mathbf{Q}\left(\zeta_{t}\right)}=\sigma_{i}\end{cases}
$$

where $\sigma_{i} \in \operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{t}\right) / \mathbf{Q}\right)$ is an automorphism determined by $\zeta_{t} \mapsto \zeta_{t}^{s}$. Since there exists at most one σ_{i}^{*} with the above conditions, for $i=1,3$, we can define

$$
c_{i}(k, n, d)= \begin{cases}1, & \text { if } \sigma_{i}^{*} \text { exists } \\ 0, & \text { otherwise }\end{cases}
$$

If we combine (3.4) and (3.7), after estimation of the error terms we get the asymptotic formula for $\sharp Q_{a}(x ; 4, l)(l=1,3)$. Now we write $k=(1+4 l) \cdot 2^{f}$ and $k^{\prime}=(3+4 l) \cdot 2^{f}$. Then we have

$$
\sharp Q_{a}(x ; 4, l)=\delta_{l} \operatorname{li} x+O\left(\frac{x}{\log x \log \log x}\right),
$$

and the coefficients δ_{1} and δ_{3} are given by

$$
\begin{align*}
\delta_{1}= & \sum_{f \geq 1} \sum_{l \geq 0} \frac{k_{0}}{\varphi\left(k_{0}\right)} \sum_{d \mid k_{0}} \frac{\mu(d)}{d} \sum_{n} \frac{\mu(n) c_{1}(k, n, d)}{\left[\tilde{G}_{k, n, d}: \mathbf{Q}\right]} \tag{3.9}\\
& +\sum_{f \geq 1} \sum_{l \geq 0} \frac{k_{0}^{\prime}}{\varphi\left(k_{0}^{\prime}\right)} \sum_{d \mid k_{0}^{\prime}} \frac{\mu(d)}{d} \sum_{n} \frac{\mu(n) c_{3}\left(k^{\prime}, n, d\right)}{\left[\tilde{G}_{k^{\prime}, n, d}: \mathbf{Q}\right]},
\end{align*}
$$

$$
\begin{align*}
\delta_{3}= & \sum_{f \geq 1} \sum_{l \geq 0} \frac{k_{0}}{\varphi\left(k_{0}\right)} \sum_{d \mid k_{0}} \frac{\mu(d)}{d} \sum_{n} \frac{\mu(n) c_{3}(k, n, d)}{\left[\tilde{G}_{k, n, d}: \mathbf{Q}\right]} \tag{3.10}\\
& +\sum_{f \geq 1} \sum_{l \geq 0} \frac{k_{0}^{\prime}}{\varphi\left(k_{0}^{\prime}\right)} \sum_{d \mid k_{0}^{\prime}} \frac{\mu(d)}{d} \sum_{n} \frac{\mu(n) c_{1}\left(k^{\prime}, n, d\right)}{\left[\tilde{G}_{k^{\prime}, n, d}: \mathbf{Q}\right]} .
\end{align*}
$$

In order to calculate these infinite sums, we need the following lemma:

Lemma 3.1. Let \underline{k} be the odd part of k and $\langle a, b\rangle$ be the least common multiple of a and b. Then we have
(i)

$$
\begin{aligned}
& \sum_{l \geq 0} \frac{k_{0}}{\varphi\left(k_{0}\right)} \sum_{\substack{d \mid k_{0} \\
d: \text { odd }}} \frac{\mu(d)}{d} \sum_{n: \text { odd }} \frac{\mu(n)}{n k \varphi(\langle n, \underline{k} d\rangle)} \\
& +\left(\text { the same term but } k \rightarrow k^{\prime}\right) \\
& =\frac{1}{2^{f}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \sum_{l \geq 0} \frac{k_{0}}{\varphi\left(k_{0}\right)} \sum_{\substack{d \mid k_{0} \\
d: \text { odd }}} \frac{\mu(d)}{d} \sum_{\substack{n: \text { odd } \\
a_{1} \mid\langle n, k d\rangle}} \frac{\mu(n)}{n k \varphi(\langle n, \underline{k} d\rangle)} \\
& = \begin{cases}\frac{1}{2^{f}} & \text { if } a_{1}=1, \\
0 & \text { if } a_{1}>1 .\end{cases}
\end{aligned}
$$

We can determine the exact values of $\left[\tilde{G}_{n, k d}: \mathbf{Q}\right]$ and $c_{i}(k, n, d)$ (and the same quantities but $\left.k \rightarrow k^{\prime}\right)$, then we get the desired natural densities.

References

[1] Chinen, K., and Murata, L.: On a distribution property of the residual orders of $a(\bmod p)$. Analytic Number Theory - Expectations for the 21st Century -. RIMS Kokyuroku, 1219, 245255 (2001). (In Japanese).
[2] Chinen, K., and Murata, L.: On a distribution property of the residual orders of $a(\bmod p)$. Proceedings of the Conference AC2001 (Algebra and Computation) held at the Tokyo Metropolitan Univ. (2001). (In Japanese). (Published electronically in ftp://tnt.math.metrou.ac.jp/pub/ac/2001).
[3] Chinen, K., and Murata, L.: On a distribution property of the residual orders of $a(\bmod p)$, II. New Aspects of Analytic Number Theory. RIMS Kokyuroku, 1274, 62-69 (2002). (In Japanese).
[4] Hasse, H.: Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von durch eine vorgegebene Primzahl $l \neq 2$ teilbarer bzw. unteibarer Ordnung mod p ist. Math. Ann., 162, 74-76 (1965).
[5] Hasse, H.: Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von gerader bzw. ungerader Ordnung mod p ist. Math. Ann., 166, 19-23 (1966).
[6] Hooley, C.: On Artin's conjecture. J. Reine Angew. Math., 225, 209-220 (1967).
[7] Lagarias, J. C., and Odlyzko, A. M.: Effective versions of the Chebotarev density theorem. Algebraic Number Fields (Durham, 1975). Academic Press, London, pp. 409-464 (1977).
[8] Lenstra Jr., H. W.: On Artin's conjecture and Euclid's algorithm in global fields. Invent. Math., 42, 201-224 (1977).
[9] Murata, L.: A problem analogous to Artin's conjecture for primitive roots and its applications. Arch. Math., 57, 555-565 (1991).
[10] Odoni, R. W. K.: A conjecture of Krishnamurthy on decimal periods and some allied problems. J. Number Theory, 13, 303-319 (1981).

[^0]: 2000 Mathematics Subject Classification. Primary 11N05; Secondary 11N25, 11R18.
 *) Department of Mathematics, Faculty of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585.
 **) Department of Mathematics, Faculty of Economics, Meiji Gakuin University, 1-2-37, Shirokanedai, Minato-ku, Tokyo 108-8636.

