180 Proc. Japan Acad., 80, Ser. A (2004)

[Vol. 80(A),

A conjecture on Euler numbers

By Pingzhi YUAN

Department of Mathematics, Sun Yat-Sen University
Guangzhou 510275, P. R. China
(Communicated by Heisuke HIRONAKA, M. J. A., Nov. 12, 2004)

Abstract:
(mod p).
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1. Imntroduction. The Euler numbers Fs,

(n=0,1,2,...) are defined by the Taylor series
& 2n
_ _1yn z m
secx = ngo( 1)"Eap o)’ lz| < 5"

The following conjecture is on Euler numbers (see [3]
B45).

Conjecture 1.1. Ifp=1 (mod 4) is a prime,
then E,_1y/2 # 0 (mod p).

Recently, Guodong Liu [2] proved the conjecture
forp =5 (mod 8).

In this paper, using a result of [2] and the class
number formula for the quadratic field with negative
discriminant, we will prove the above conjecture. We
have

Theorem 1.1. Ifp = 1 (mod 4) is a prime,
then E(,_1y/2 # 0 (mod p).

2. Some lemmas. The following Lemma 2.1
due to Liu [2] is crucial to the proof of Theorem 1.1.
To be more self-contained, we present a simplified
proof here.

Lemma 2.1. For positive integers n and k, we

have
(1)
n 2k
Z (Z;L) (2k: +1)2n—2jE2j :Z(_l)s(2k — 25)2n
=0 s=0

Proof. For any real number x and any nonneg-
ative integer k, since
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2k
(Z(_l)s cos(2k — 25)30) cos

s=0
k—
= Z s cos(2k — 2s)x cos x + (—1)* cos z
(2k: + 1)z,
we have
2k
Z( 1)® cos(2k—2s)x = sec z-cos(2k+1)z, |z| < 5

s=0

Thus, we have the following Taylor series
2k
s= O n=0
ff( o) (e
—1)" Egp—— —1)"(2k+1)*"
= "(2n)! = (2n)!
(oo} n
TL 2 1 2n— 2_]E

S (57) r v
n=0 Jj=

It follows that

2n

2n)!

"(2k — 25)%"
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2n

2k
2n 2n—2j3 s 2n
Z (23> (2k +1) By =Y (—1)°(2k — 25)
3=0 s=0
This completes the proof. O
Lemma 2.2 ([1] Corollary 5.3.13.). If D < —4
is a fundamental discriminant, then
1 D
1<r<|D|
1 D
5,0
2-(3) 1<r<|D|/2 "

where (D/r) is the Kronecker symbol (see [1] page 28)
and h(D) denotes the class number of the quadratic



No. 9]

field with discriminant D.
Lemma 2.3. If p=1 (mod 4), then

:%Z: (25+1>¢_o (mod p).

Proof. By Lemma 2.2, we have

12;0—1 _4p
h(—4p) = = — .
=5 3 (52
r=1
Let r = 2s + 1. Then we have

h(—4p)

1 «— —4p
S ()

3 1(—1)8 (25+1> <p,

p

NN

cr

and so h(—4p) £ 0 (mod p). Lemma 2.3 is proved.
Ol
3. Proof of Theorem 1.1.
Proof of Theorem 1.1. For every positive inte-
gers n and k, by Lemma 2.1, we have

2k

(2)  Ean=) (-1)%(2k —2s)™"

s=0
If p=1 (mod 4) is a prime, we let k = (p—1)/2 and

(mod 2k + 1).
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n = (p—1)/4, then, by (2) and Lemma 2.3, we have

p—1

Ep-np=y (-1)°(p—2s—1)"7  (mod p)
s=0
p—1
=Y "(-1)*@2s+ 1) (mod p)
s=0
p—1
2 1
S (22
s=0 p
=2h(—4p) #0 (mod p).
This completes the proof. O
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