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A conjecture on Euler numbers
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Abstract: In this paper, we will prove that for every prime p ≡ 1 (mod 4), E(p−1)/2 	≡ 0
(mod p).
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1. Introduction. The Euler numbers E2n

(n = 0, 1, 2, . . .) are defined by the Taylor series

sec x =
∞∑

n=0

(−1)nE2n
x2n

(2n)!
, |x| <

π

2
.

The following conjecture is on Euler numbers (see [3]
B45).

Conjecture 1.1. If p ≡ 1 (mod 4) is a prime,
then E(p−1)/2 	≡ 0 (mod p).

Recently, Guodong Liu [2] proved the conjecture
for p ≡ 5 (mod 8).

In this paper, using a result of [2] and the class
number formula for the quadratic field with negative
discriminant, we will prove the above conjecture. We
have

Theorem 1.1. If p ≡ 1 (mod 4) is a prime,
then E(p−1)/2 	≡ 0 (mod p).

2. Some lemmas. The following Lemma 2.1
due to Liu [2] is crucial to the proof of Theorem 1.1.
To be more self-contained, we present a simplified
proof here.

Lemma 2.1. For positive integers n and k, we
have

(1)
n∑

j=0

(
2n

2j

)
(2k +1)2n−2jE2j =

2k∑
s=0

(−1)s(2k − 2s)2n.

Proof. For any real number x and any nonneg-
ative integer k, since
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(
2k∑

s=0

(−1)s cos(2k − 2s)x

)
cosx

= 2
k−1∑
s=0

(−1)s cos(2k − 2s)x cos x + (−1)k cos x

= cos(2k + 1)x,

we have
2k∑

s=0

(−1)s cos(2k−2s)x = sec x·cos(2k+1)x, |x| < π

2
.

Thus, we have the following Taylor series
2k∑

s=0

(−1)s
∞∑

n=0

(−1)n(2k − 2s)2n x2n

(2n)!

=

( ∞∑
n=0

(−1)nE2n
x2n

(2n)!

)( ∞∑
n=0

(−1)n(2k+1)2n x2n

(2n)!

)

=
∞∑

n=0

(−1)n
n∑

j=0

(
2n

2j

)
(2k + 1)2n−2jE2j

x2n

(2n)!
.

It follows that
n∑

j=0

(
2n

2j

)
(2k + 1)2n−2jE2j =

2k∑
s=0

(−1)s(2k − 2s)2n.

This completes the proof.
Lemma 2.2 ([1] Corollary 5.3.13.). If D < −4

is a fundamental discriminant, then

h(D) =
1
D

∑
1≤r<|D|

r

(
D

r

)

=
1

2 − (D
2 )

∑
1≤r<|D|/2

(
D

r

)
,

where (D/r) is the Kronecker symbol (see [1] page 28)
and h(D) denotes the class number of the quadratic
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field with discriminant D.
Lemma 2.3. If p ≡ 1 (mod 4), then

h(−4p) =
1
2

p−1∑
s=0

(−1)s

(
2s + 1

p

)
	≡ 0 (mod p).

Proof. By Lemma 2.2, we have

h(−4p) =
1
2

2p−1∑
r=1

(−4p

r

)
.

Let r = 2s + 1. Then we have

h(−4p) =
1
2

p−1∑
s=0

(−1)s

( −4p

2s + 1

)

=
1
2

p−1∑
s=0

(−1)s

(
2s + 1

p

)
< p,

and so h(−4p) 	≡ 0 (mod p). Lemma 2.3 is proved.

3. Proof of Theorem 1.1.
Proof of Theorem 1.1. For every positive inte-

gers n and k, by Lemma 2.1, we have

(2) E2n ≡
2k∑

s=0

(−1)s(2k − 2s)2n (mod 2k + 1).

If p ≡ 1 (mod 4) is a prime, we let k = (p−1)/2 and

n = (p− 1)/4, then, by (2) and Lemma 2.3, we have

E(p−1)/2 ≡
p−1∑
s=0

(−1)s(p − 2s − 1)
p−1
2 (mod p)

≡
p−1∑
s=0

(−1)s(2s + 1)
p−1
2 (mod p)

≡
p−1∑
s=0

(−1)s

(
2s + 1

p

)
(mod p)

≡ 2h(−4p) 	≡ 0 (mod p).

This completes the proof.
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