A conjecture on Euler numbers

By Pingzhi Yuan

Department of Mathematics, Sun Yat-Sen University
Guangzhou 510275, P. R. China
(Communicated by Heisuke Hironaka, m. J. a., Nov. 12, 2004)

Abstract

In this paper, we will prove that for every prime $p \equiv 1(\bmod 4), E_{(p-1) / 2} \not \equiv 0$ $(\bmod p)$.

Key words: Euler numbers; congruences; class numbers.

1. Introduction. The Euler numbers $E_{2 n}$ ($n=0,1,2, \ldots$) are defined by the Taylor series

$$
\sec x=\sum_{n=0}^{\infty}(-1)^{n} E_{2 n} \frac{x^{2 n}}{(2 n)!}, \quad|x|<\frac{\pi}{2}
$$

The following conjecture is on Euler numbers (see [3] B45).

Conjecture 1.1. If $p \equiv 1(\bmod 4)$ is a prime, then $E_{(p-1) / 2} \not \equiv 0(\bmod p)$.

Recently, Guodong Liu [2] proved the conjecture for $p \equiv 5(\bmod 8)$.

In this paper, using a result of [2] and the class number formula for the quadratic field with negative discriminant, we will prove the above conjecture. We have

Theorem 1.1. If $p \equiv 1(\bmod 4)$ is a prime, then $E_{(p-1) / 2} \not \equiv 0(\bmod p)$.
2. Some lemmas. The following Lemma 2.1 due to Liu [2] is crucial to the proof of Theorem 1.1. To be more self-contained, we present a simplified proof here.

Lemma 2.1. For positive integers n and k, we have

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{2 n}{2 j}(2 k+1)^{2 n-2 j} E_{2 j}=\sum_{s=0}^{2 k}(-1)^{s}(2 k-2 s)^{2 n} \tag{1}
\end{equation*}
$$

Proof. For any real number x and any nonnegative integer k, since

[^0]\[

$$
\begin{aligned}
& \left(\sum_{s=0}^{2 k}(-1)^{s} \cos (2 k-2 s) x\right) \cos x \\
& =2 \sum_{s=0}^{k-1}(-1)^{s} \cos (2 k-2 s) x \cos x+(-1)^{k} \cos x \\
& =\cos (2 k+1) x
\end{aligned}
$$
\]

we have
$\sum_{s=0}^{2 k}(-1)^{s} \cos (2 k-2 s) x=\sec x \cdot \cos (2 k+1) x,|x|<\frac{\pi}{2}$.
Thus, we have the following Taylor series

$$
\begin{aligned}
& \sum_{s=0}^{2 k}(-1)^{s} \sum_{n=0}^{\infty}(-1)^{n}(2 k-2 s)^{2 n} \frac{x^{2 n}}{(2 n)!} \\
& =\left(\sum_{n=0}^{\infty}(-1)^{n} E_{2 n} \frac{x^{2 n}}{(2 n)!}\right)\left(\sum_{n=0}^{\infty}(-1)^{n}(2 k+1)^{2 n} \frac{x^{2 n}}{(2 n)!}\right) \\
& =\sum_{n=0}^{\infty}(-1)^{n} \sum_{j=0}^{n}\binom{2 n}{2 j}(2 k+1)^{2 n-2 j} E_{2 j} \frac{x^{2 n}}{(2 n)!} .
\end{aligned}
$$

It follows that
$\sum_{j=0}^{n}\binom{2 n}{2 j}(2 k+1)^{2 n-2 j} E_{2 j}=\sum_{s=0}^{2 k}(-1)^{s}(2 k-2 s)^{2 n}$.
This completes the proof.
Lemma 2.2 ([1] Corollary 5.3.13.). If $D<-4$ is a fundamental discriminant, then

$$
\begin{aligned}
h(D) & =\frac{1}{D} \sum_{1 \leq r<|D|} r\left(\frac{D}{r}\right) \\
& =\frac{1}{2-\left(\frac{D}{2}\right)} \sum_{1 \leq r<|D| / 2}\left(\frac{D}{r}\right),
\end{aligned}
$$

where (D / r) is the Kronecker symbol (see [1] page 28) and $h(D)$ denotes the class number of the quadratic
field with discriminant D.
Lemma 2.3. If $p \equiv 1(\bmod 4)$, then

$$
h(-4 p)=\frac{1}{2} \sum_{s=0}^{p-1}(-1)^{s}\left(\frac{2 s+1}{p}\right) \not \equiv 0 \quad(\bmod p) .
$$

Proof. By Lemma 2.2, we have

$$
h(-4 p)=\frac{1}{2} \sum_{r=1}^{2 p-1}\left(\frac{-4 p}{r}\right) .
$$

Let $r=2 s+1$. Then we have

$$
\begin{aligned}
h(-4 p) & =\frac{1}{2} \sum_{s=0}^{p-1}(-1)^{s}\left(\frac{-4 p}{2 s+1}\right) \\
& =\frac{1}{2} \sum_{s=0}^{p-1}(-1)^{s}\left(\frac{2 s+1}{p}\right)<p,
\end{aligned}
$$

and so $h(-4 p) \not \equiv 0(\bmod p)$. Lemma 2.3 is proved.

3. Proof of Theorem 1.1.

Proof of Theorem 1.1. For every positive integers n and k, by Lemma 2.1, we have
(2) $\quad E_{2 n} \equiv \sum_{s=0}^{2 k}(-1)^{s}(2 k-2 s)^{2 n} \quad(\bmod 2 k+1)$.

If $p \equiv 1(\bmod 4)$ is a prime, we let $k=(p-1) / 2$ and
$n=(p-1) / 4$, then, by (2) and Lemma 2.3, we have

$$
\begin{aligned}
E_{(p-1) / 2} & \equiv \sum_{s=0}^{p-1}(-1)^{s}(p-2 s-1)^{\frac{p-1}{2}} \quad(\bmod p) \\
& \equiv \sum_{s=0}^{p-1}(-1)^{s}(2 s+1)^{\frac{p-1}{2}} \quad(\bmod p) \\
& \equiv \sum_{s=0}^{p-1}(-1)^{s}\left(\frac{2 s+1}{p}\right) \quad(\bmod p) \\
& \equiv 2 h(-4 p) \not \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

This completes the proof.
Acknowledgement. It was supported by the Guangdong Provincial Natural Science Foundation (No. 04009801).

References

[1] Cohen, H.: A Course in Computational Algebra Number Theory. GTM 138, Springer, Berlin (1996).
[2] Liu, G.: The solution of a problem on Euler numbers. Acta Math. Sinica, 47, 825-828 (2004), (in Chinese).
[3] Guy, R. K.: Unsolved Problems in Number Theory. 2nd ed. Springer, New York (1994).

[^0]: 2000 Mathematics Subject Classification. 11B68.

