Two examples of nonconvex self-similar solution curves for a crystalline curvature flow

By Tetsuya Ishiwata, ${ }^{*)}$ Takeo K. Ushijima, ${ }^{* *)}$ Hiroki Yagisita, ${ }^{* *)}$
and Shigetoshi Yazaki ${ }^{* * *)}$

(Communicated by Shigefumi Mori, M. J. A., Oct. 12, 2004)

Abstract

This note gives examples of nonconvex self-similar solutions for a crystalline curvature flow with an interfacial energy of which the Wulff shape is a regular triangle or a square.

Key words: Crystalline curvature; nonconvex self-similar shrinking curve; curve shortening flow equation; blow-up rate.

1. Introduction. In this note, we present two examples of homothetically shrinking nonconvex polygonal curves in the plane \boldsymbol{R}^{2} moving under crystalline curvature flows. Such flows were originally defined by [3] and [9]. Since then several authors have considered its generalization; in a typical case the speed of motion of each edge is determined by a homogeneous function of some degree in its length.

Let us formulate the flow in this paragraph. Assume that an interfacial energy density γ is a convex function on \boldsymbol{R}^{2} and satisfies $\gamma(r \cos \theta, r \sin \theta)=r \sigma(\theta)$ $\left(r \geq 0, \theta \in S^{1}=\boldsymbol{R} / 2 \pi \boldsymbol{Z}\right)$ for some positive function $\sigma \in C\left(S^{1}\right)$. We consider the case where the Wulff shape of $\gamma, \mathcal{W}_{\gamma}=\bigcap_{\theta \in S^{1}}\left\{(x, y) \in \boldsymbol{R}^{2} \mid x \cos \theta+\right.$ $y \sin \theta \leq \sigma(\theta)\}$, is a polygon. In this case, γ is called a crystalline energy, and we may express its Wulff shape as
$\mathcal{W}_{\gamma}=\bigcap_{n=1}^{N}\left\{(x, y) \in \boldsymbol{R}^{2} \mid x \cos \widetilde{\theta}_{n}+y \sin \widetilde{\theta}_{n} \leq \sigma\left(\widetilde{\theta}_{n}\right)\right\}$,
where $\widetilde{\theta}_{n}$ is the exterior normal angle of the n-th edge with $\widetilde{\theta}_{n} \in\left(\widetilde{\theta}_{n-1}, \widetilde{\theta}_{n-1}+\pi\right)$ for each n, and N is a number of edges $(N \geq 3)$. Let \mathcal{P} be a simple closed K-sided polygonal curve in \boldsymbol{R}^{2}, and label the vertices $\left(x_{k}, y_{k}\right)(k=1,2, \ldots, K)$ in an anticlockwise order with $\left(x_{0}, y_{0}\right)=\left(x_{K}, y_{K}\right)$:

[^0]\[

$$
\begin{aligned}
& \mathcal{P}=\bigcup_{k=1}^{K} \mathcal{S}_{k} \\
& \mathcal{S}_{k}=\left\{(1-t)\left(x_{k-1}, y_{k-1}\right)+t\left(x_{k}, y_{k}\right) \mid 0 \leq t \leq 1\right\}
\end{aligned}
$$
\]

and let θ_{k} be the exterior normal angle of the k-th edge \mathcal{S}_{k}. We say that \mathcal{P} is a K-admissible curve if the normal angles θ_{k} of all edges \mathcal{S}_{k} belong to $\widetilde{\Theta}_{\gamma}=$ $\left\{\widetilde{\theta}_{1}, \widetilde{\theta}_{2}, \ldots, \widetilde{\theta}_{N}\right\}$ and the angles of all adjacent edges in \mathcal{P} are adjacent in $\widetilde{\Theta}_{\gamma}\left(\subset S^{1}\right)$. For each edge \mathcal{S}_{k} a crystalline curvature is defined by $H_{k}=\chi_{k} \widetilde{l}_{n(k)} / l_{k}$, where l_{k} is the length of \mathcal{S}_{k} and $\widetilde{l}_{n(k)}$ is the length of the n-th edge of \mathcal{W}_{γ} satisfying $\widetilde{\theta}_{n}=\theta_{k}$. The quantity χ_{k} is a transition number, which takes -1 (resp., +1) if \mathcal{P} is convex (resp., concave) at \mathcal{S}_{k} in the outward normal direction $\left(\cos \theta_{k}, \sin \theta_{k}\right)$. Otherwise we set $\chi_{k}=0$. Note that $\chi_{k} \equiv-1(\forall k)$ if \mathcal{P} is a convex polygon and that the crystalline curvature of \mathcal{W}_{γ} is -1 on each edge. Under a crystalline curvature flow each edge \mathcal{S}_{k} keeps the same direction but moves in the outward normal direction with the velocity V_{k} determined by a homogeneous function of some degree $\alpha>0$ in the crystalline curvature H_{k} :

$$
\begin{equation*}
V_{k}=\sigma\left(\theta_{k}\right)\left|H_{k}\right|^{\alpha-1} H_{k} \quad \text { on } \quad \mathcal{S}_{k} \tag{1}
\end{equation*}
$$

for $k=1,2, \ldots, K$. It is easy to show that if $K=$ N and \mathcal{P} is homothety of $\partial \mathcal{W}_{\gamma}$, then \mathcal{P} is a selfsimilar solution curve of (1); For $N=3$ all admissible triangles are self-similar.

In this paper we give examples of a nonconvex self-similar solution curve shrinking to a point when the Wulff shape is a regular triangle or a regular square. Among other results we show that if $\alpha \in(0,1)$, then such a nonconvex self-similar solution exists even if the motion is orientation-free, i.e.,

Fig. 1. Two examples in $\S 2$ and $\S 3$. From left to right: the Wulff triangle with $z_{0}=0$; the 5 -admissible self-similar solution curve in the case $\alpha=1$ and $c=(\sqrt{5}-1) / 2$; the Wulff square with $z_{0}=-1 / 2$; and the 6 -admissible self-similar solution curve in the case $\alpha=1$ and $c=2$.
$\sigma(\theta+\pi)=\sigma(\theta)$. This is a strong contrast to a motion by smooth interfacial energy density where the curve becomes convex in a finite time [4]. From our example it seems that general convexity statement in [5, Lemma 2 (i) (a)] is somewhat overstated. If $\alpha \geq 1$ and $\sigma(\theta+\pi)=\sigma(\theta)$, then a solution curve \mathcal{P}_{t} of (1) with a K-admissible initial curve \mathcal{P}_{0} converges to a single point or a K^{\prime}-admissible curve with $K^{\prime}<K$ as t tends to a finite time $T>0$, and eventually \mathcal{P}_{t} shrinks to a point at a finite time $T_{*} \geq T$ ([5]). Although it was stated that a solution becomes convex before it shrinks to a point ([5, Proposition 6]), a further investigation seems to be necessary to clarify in what generality such a convexity result hold.

For convex solution curves, on the other hand, detailed properties are known $([2,5,6,7])$. If $\alpha=1$, $\sigma(\theta+\pi)=\sigma(\theta)$ and $N \geq 6$, then the only convex selfsimilar solution curve is a homothety of $\partial W_{\gamma}([8])$. For a smooth interfacial energy density γ see, e.g., $[1,4]$.
2. The first example (case $N=3$ and $\boldsymbol{K}=\mathbf{5})$. We put $\left(p_{n}, q_{n}\right)=\left(z_{0}+\cos (2 n \pi / 3)\right.$, $\sin (2 n \pi / 3))$ for $n=0,1,2$ and $z_{0} \in(-1,1 / 2)$. Let a crystalline energy density γ be

$$
\begin{aligned}
& \gamma(r \cos \theta, r \sin \theta) \\
& \quad=r \sigma(\theta)=r \max _{n=0,1,2}\left\{p_{n} \cos \theta+q_{n} \sin \theta\right\}
\end{aligned}
$$

Then the Wulff shape of γ is a triangle with the vertices $\left(p_{n}, q_{n}\right)(n=0,1,2)$:

$$
\mathcal{W}_{\gamma}=\bigcap_{n=1}^{3}\left\{(x, y) \in \boldsymbol{R}^{2} \mid x \cos \widetilde{\theta}_{n}+y \sin \widetilde{\theta}_{n} \leq \widetilde{h}_{n}\right\}
$$

where $\widetilde{\theta}_{n}=\pi(2 n-1) / 3$ and $\widetilde{h}_{n}=1 / 2+z_{0} \cos \widetilde{\theta}_{n}$. See Fig. 1 (far left). The length of each edge is
$\widetilde{l}_{n} \equiv \sqrt{3}(\forall n)$. We construct the 5 -admissible curve $\mathcal{P}=\bigcup_{k=1}^{5} \mathcal{S}_{k}$ with the vertices $\left(x_{k}, y_{k}\right)$ satisfying for $b>a>0\left(x_{0}, y_{0}\right)=\left(x_{5}, y_{5}\right)=(0,0),\left(x_{1}, y_{1}\right)=$ $(\sqrt{3} a, a) / 2,\left(x_{2}, y_{2}\right)=(\sqrt{3}(a-b), a+b) / 2,\left(x_{3}, y_{3}\right)=$ $(\sqrt{3}(a-b),-(a+b)) / 2$ and $\left(x_{4}, y_{4}\right)=(\sqrt{3} a,-a) / 2$. The length of $\mathcal{S}_{k}, l_{k}=\left|\left(x_{k}-x_{k-1}, y_{k}-y_{k-1}\right)\right|$, and its crystalline curvature satisfy $l_{1}=l_{5}=a, l_{2}=l_{4}=$ $b, l_{3}=a+b$ and $H_{1}=H_{5}=0, H_{2}=H_{4}=-\sqrt{3} / b$, $H_{3}=-\sqrt{3} /(a+b)$, respectively. Hence, by virtue of $\sigma\left(\theta_{k}\right)=\widetilde{h}_{n(k)}$ and $V_{1}=V_{5}=0, V_{2}=V_{4}=\sqrt{3} \dot{a} / 2$, $V_{3}=\sqrt{3}(\dot{b}-\dot{a}) / 2$, evolution equations (1) are given as
$\dot{a}=-\frac{1+z_{0}}{\sqrt{3}}\left(\frac{\sqrt{3}}{b}\right)^{\alpha}, \quad \dot{b}-\dot{a}=-\frac{1-2 z_{0}}{\sqrt{3}}\left(\frac{\sqrt{3}}{a+b}\right)^{\alpha}$. Here and hereafter $\widetilde{h}_{n(k)}=\widetilde{h}_{n}$ for $\widetilde{\theta}_{n}=\theta_{k}$, and \dot{u} means $d u / d t$. Putting $b-a=a c$, we have

$$
\dot{c}=\frac{\sqrt{3}^{\alpha-1}\left(1+z_{0}\right)}{a^{\alpha+1}(c+2)^{\alpha}}\left(\frac{(c+2)^{\alpha} c}{(c+1)^{\alpha}}-\frac{1-2 z_{0}}{1+z_{0}}\right) .
$$

The nonconvex solution curve is self-similar if and only if $\dot{c}=0$, that is

$$
f(c, \alpha):=\frac{(c+2)^{\alpha} c}{(c+1)^{\alpha}}=\frac{1-2 z_{0}}{1+z_{0}}
$$

holds. Then we have $\lim _{c \rightarrow+0} f(c, \alpha)=0$ and $\lim _{c \rightarrow+\infty} f(c, \alpha)=+\infty$. If $0<\alpha<3+2 \sqrt{2}$, then $\partial f(c, \alpha) / \partial c>0$ holds for all $c>0$. If $\alpha \geq 3+$ $2 \sqrt{2}$, then $\partial f(c, \alpha) / \partial c=0$ holds only for $c=(\alpha-$ $\left.3 \pm \sqrt{(\alpha-3)^{2}-8}\right) / 2>0$. Therefore, we have the following two cases:

Case $0<\alpha \leq \mathbf{3}+\mathbf{2} \sqrt{\mathbf{2}}$. For any $z_{0} \in$ $(-1,1 / 2)$ there exists a unique $c>0$ such that the solution is self-similar. See Fig. 1 (left).

Case $\alpha>3+2 \sqrt{2}$. There exists two constants $-1<z_{-}<z_{+}<1 / 2$ such that the following three cases hold: (i) For any $z_{0} \in\left(-1, z_{-}\right) \cup\left(z_{+}, 1 / 2\right)$ there exists a unique $c>0$ such that the solution is self-similar. (ii) For any $z_{0} \in\left\{z_{-}, z_{+}\right\}$there exist two positive constants c_{1} and c_{2} such that the solution is self-similar if and only if $c=c_{1}$ or c_{2}. (iii) For any $z_{0} \in\left(z_{-}, z_{+}\right)$there exist three positive constants c_{1}, c_{2} and c_{3} such that the solution is self-similar if and only if $c=c_{1}, c_{2}$ or c_{3}.
3. The second example (case $N=4$ and $\boldsymbol{K}=\mathbf{6})$. We put $\left(p_{n}, q_{n}\right)=\left(z_{0}+\cos (n \pi / 2)\right.$, $\sin (n \pi / 2))$ for $n=0,1,2,3$ and $z_{0} \in(-1,1)$. Let a crystalline energy density γ be

$$
\begin{aligned}
& \gamma(r \cos \theta, r \sin \theta) \\
& \quad=r \sigma(\theta)=r \max _{n=0,1,2,3}\left\{p_{n} \cos \theta+q_{n} \sin \theta\right\}
\end{aligned}
$$

Then the Wulff shape of γ is a square with the vertices $\left(p_{n}, q_{n}\right)(n=0,1,2,3)$:

$$
\mathcal{W}_{\gamma}=\bigcap_{n=1}^{4}\left\{(x, y) \in \mathbf{R}^{2} \mid x \cos \widetilde{\theta}_{n}+y \sin \widetilde{\theta}_{n} \leq \widetilde{h}_{n}\right\}
$$

where $\widetilde{\theta}_{n}=\pi(2 n-1) / 4$ and $\widetilde{h}_{n}=1 / \sqrt{2}+z_{0} \cos \widetilde{\theta}_{n}$. See Fig. 1 (right). The length of each edge is $\widetilde{l}_{n} \equiv$ $\sqrt{2}(\forall n)$. We construct the 6 -admissible curve $\mathcal{P}=$ $\bigcup_{k=1}^{6} \mathcal{S}_{k}$ with the vertices $\left(x_{k}, y_{k}\right)$ satisfying for $a>$ 0 and $b>0\left(x_{0}, y_{0}\right)=\left(x_{6}, y_{6}\right)=(0,0),\left(x_{1}, y_{1}\right)=$ $(a, a) / \sqrt{2},\left(x_{2}, y_{2}\right)=(a-b, a+b) / \sqrt{2},\left(x_{3}, y_{3}\right)=$ $(-2 b, 0) / \sqrt{2},\left(x_{4}, y_{4}\right)=(a-b,-(a+b)) / \sqrt{2}$ and $\left(x_{5}, y_{5}\right)=(a,-a) / \sqrt{2}$. The length of \mathcal{S}_{k} and its crystalline curvature satisfy $l_{1}=l_{6}=a, l_{2}=l_{5}=b, l_{3}=$ $l_{4}=a+b$ and $H_{1}=H_{6}=0, H_{2}=H_{5}=-\sqrt{2} / b$, $H_{3}=H_{4}=-\sqrt{2} /(a+b)$, respectively. Hence, by virtue of $\sigma\left(\theta_{k}\right)=\widetilde{h}_{n(k)}$ and $V_{1}=V_{6}=0, V_{2}=V_{5}=$ $\dot{a}, V_{3}=V_{4}=\dot{b}$, evolution equations (1) are given as

$$
\dot{a}=-\frac{1+z_{0}}{\sqrt{2}}\left(\frac{\sqrt{2}}{b}\right)^{\alpha}, \quad \dot{b}=-\frac{1-z_{0}}{\sqrt{2}}\left(\frac{\sqrt{2}}{a+b}\right)^{\alpha}
$$

Putting $b=a c$, we have

$$
\begin{equation*}
\dot{c}=\frac{\sqrt{2}^{\alpha-1}\left(1+z_{0}\right)}{a^{\alpha+1}(c+1)^{\alpha}}\left(\frac{(c+1)^{\alpha}}{c^{\alpha-1}}-\frac{1-z_{0}}{1+z_{0}}\right) . \tag{2}
\end{equation*}
$$

The nonconvex solution curve is self-similar if and only if $\dot{c}=0$, that is

$$
g(c, \alpha):=\frac{(c+1)^{\alpha}}{c^{\alpha-1}}=\frac{1-z_{0}}{1+z_{0}}
$$

holds.

Case $\mathbf{0}<\boldsymbol{\alpha}<\mathbf{1}$. Since $\lim _{c \rightarrow+0} g(c, \alpha)=0$, $\lim _{c \rightarrow+\infty} g(c, \alpha)=+\infty$ and $\partial g / \partial c>0(\forall c>0)$ hold, we have the following: For any $z_{0} \in(-1,1)$ there exists a unique $c>0$ such that the solution is self-similar.

Case $\boldsymbol{\alpha}=1$. Since $g(c, 1)=c+1$, we have the following two cases: (i) For any $z_{0} \in[0,1)$ and $c>0$ the solution is not self-similar. (ii) For any $z_{0} \in(-1,0)$ the solution is self-similar if and only if $c=-2 z_{0} /\left(1+z_{0}\right)>0$. See Fig. 1 (far right).

Case $\boldsymbol{\alpha}>1$. It holds that $\lim _{c \rightarrow+0} g(c, \alpha)=$ $\lim _{c \rightarrow+\infty} g(c, \alpha)=+\infty$. Further, $\partial g(c, \alpha) / \partial c=0$ holds if and only if $c=\alpha-1$. Therefore, we have the following three cases: Let $z_{*}=-\left\{\alpha^{\alpha}-(\alpha-\right.$ $\left.1)^{\alpha-1}\right\} /\left\{\alpha^{\alpha}+(\alpha-1)^{\alpha-1}\right\} \in(-1,0)$. (i) For any $z_{0} \in\left(z_{*}, 1\right)$ and $c>0$ the solution is not self-similar. (ii) For $z_{0}=z_{*}$ the solution is self-similar if and only if $c=\alpha-1>0$. (iii) For any $z_{0} \in\left(-1, z_{*}\right)$ there exist two positive constants c_{1} and c_{2} such that the solution is self-similar if and only if $c=c_{1}$ or c_{2}.

Remark in case $\alpha=1$. All convex solutions are self-similar. On the other hand, when $z_{0} \in$ $(-1,0)$ and $c_{0}=c(0) \in\left(0,-2 z_{0} /\left(1+z_{0}\right)\right)$, the nonconvex solution shrinks to a single point and $\max _{k} 1 / l_{k}$ blows up to infinity as t tends to a finite time T with its rate being faster than the self-similar rate. Indeed, from (2), $c<-2 z_{0} /\left(1+z_{0}\right)$ implies $\dot{c}<$ 0 . Hence, $b(T)=0\left(c_{0} a(t) \geq b(t)>0\right)$ holds, and so $a(T)=0$ holds since no degenerate pinching occurs [5, Lemma 2 (iii)], which implies a single point extinction. Also, the enclosed area $A=(2 a+b) b$ satisfies $A(t)=4(T-t)$. Therefore, we obtain the estimate $b(t) \leq C(T-t)^{d_{0}}$ for some $C>0$ since $\dot{b}=-\left(1-z_{0}\right)(c+2) b /\{(c+1) A\} \leq-d_{0} b /(T-t)$ holds. Here $d_{0}=\left(1-z_{0}\right)\left(c_{0}+2\right) /\left\{4\left(c_{0}+1\right)\right\}$, which satisfies $d_{0} \in(1 / 2,1)$. Hence $b(t)$ never does admit the self-similar rate $\sqrt{T-t}$. Furthermore, $a(t) \geq$ $2 C^{-1}(T-t)^{1-d_{0}}-2^{-1} C(T-t)^{d_{0}}$ holds, which implies the isoperimetric ratio $L(t)^{2} / A(t)$ diverges to infinity as t tends to T. Here $L(t)=2(a+b)$ is the total length.

Acknowledgements. We would like to thank the referee for her or his comments and suggestions.

The authors are partially supported by Grant-in-Aid for Encouragement of Young Scientists (Ishiwata: No. 15740056, Ushijima: No. 14740085, Yazaki: No. 15740073).

References

[1] Andrews, B.: Evolving convex curves. Calc. Var. Partial Differential Equations, 7, 315-371 (1998).
[2] Andrews, B.: Singularities in crystalline curvature flows. Asian J. Math., 6, 101-122 (2002).
[3] Angenent, S., and Gurtin, M. E.: Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface, Arch. Rational Mech. Anal., 108, 323-391 (1989).
[4] Chou, K.-S., and Zhu, X.-P.: A convexity theorem for a class of anisotropic flows of plane curves. Indiana Univ. Math. J., 48, 139-154 (1999).
[5] Giga, M.-H., and Giga, Y.: Crystalline and level set flow - convergence of a crystalline algorithm for a general anisotropic curvature flow in the plane. GAKUTO Internat. Ser. Math. Sci. Appli., 13, 64-79 (2000).
[6] Ishiwata, T., and Yazaki, S.: On the blow-up rate for fast blow-up solutions arising in an anisotropic crystalline motion. J. Comput. Appl. Math., 159, 55-64 (2003).
[7] Ishiwata, T., and Yazaki, S.: A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. (Preprint).
[8] Stancu, A.: Uniqueness of self-similar solutions for a crystalline flow. Indiana Univ. Math. J., 45, 1157-1174 (1996).
[9] Taylor, J. E.: Constructions and conjectures in crystalline nondifferential geometry. Pitman Monogr. Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, pp. 321-336 (1991).

[^0]: 2000 Mathematics Subject Classification. Primary 53A04; Secondary 34A34, 74N05.
 *) Faculty of Education, Gifu University, 1-1 Yanagido, Gifu 501-1193.
 ${ }^{* *)}$ Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.
 ${ }^{* * *)}$ Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192.

