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Two examples of nonconvex self-similar solution curves for

a crystalline curvature flow

By Tetsuya Ishiwata,∗) Takeo K. Ushijima,∗∗) Hiroki Yagisita,∗∗)
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Abstract: This note gives examples of nonconvex self-similar solutions for a crystalline
curvature flow with an interfacial energy of which the Wulff shape is a regular triangle or a square.
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1. Introduction. In this note, we present
two examples of homothetically shrinking nonconvex
polygonal curves in the plane R2 moving under crys-
talline curvature flows. Such flows were originally
defined by [3] and [9]. Since then several authors
have considered its generalization; in a typical case
the speed of motion of each edge is determined by a
homogeneous function of some degree in its length.

Let us formulate the flow in this paragraph. As-
sume that an interfacial energy density γ is a convex
function on R2 and satisfies γ(r cos θ, r sin θ) = rσ(θ)
(r ≥ 0, θ ∈ S1 = R/2πZ) for some positive function
σ ∈ C(S1). We consider the case where the Wulff
shape of γ, Wγ =

⋂
θ∈S1{(x, y) ∈ R2 | x cos θ +

y sin θ ≤ σ(θ)}, is a polygon. In this case, γ is called
a crystalline energy, and we may express its Wulff
shape as

Wγ =
N⋂

n=1

{
(x, y)∈R2 | x cos θ̃n + y sin θ̃n ≤ σ(θ̃n)

}
,

where θ̃n is the exterior normal angle of the n-th
edge with θ̃n ∈ (θ̃n−1, θ̃n−1 + π) for each n, and N

is a number of edges (N ≥ 3). Let P be a simple
closed K-sided polygonal curve in R2, and label the
vertices (xk, yk) (k = 1, 2, . . . , K) in an anticlockwise
order with (x0, y0) = (xK , yK):
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P =
K⋃

k=1

Sk,

Sk = {(1 − t)(xk−1, yk−1) + t(xk, yk) | 0 ≤ t ≤ 1},
and let θk be the exterior normal angle of the k-th
edge Sk. We say that P is a K-admissible curve if
the normal angles θk of all edges Sk belong to Θ̃γ =
{θ̃1, θ̃2, . . . , θ̃N} and the angles of all adjacent edges
in P are adjacent in Θ̃γ (⊂ S1). For each edge Sk a
crystalline curvature is defined by Hk = χk l̃n(k)/lk,
where lk is the length of Sk and l̃n(k) is the length of
the n-th edge of Wγ satisfying θ̃n = θk. The quantity
χk is a transition number, which takes −1 (resp., +1)
if P is convex (resp., concave) at Sk in the outward
normal direction (cos θk, sin θk). Otherwise we set
χk = 0. Note that χk ≡ −1 (∀k) if P is a convex
polygon and that the crystalline curvature of Wγ is
−1 on each edge. Under a crystalline curvature flow
each edge Sk keeps the same direction but moves
in the outward normal direction with the velocity
Vk determined by a homogeneous function of some
degree α > 0 in the crystalline curvature Hk:

(1) Vk = σ(θk)|Hk|α−1Hk on Sk

for k = 1, 2, . . . , K. It is easy to show that if K =
N and P is homothety of ∂Wγ , then P is a self-
similar solution curve of (1); For N = 3 all admissible
triangles are self-similar.

In this paper we give examples of a noncon-
vex self-similar solution curve shrinking to a point
when the Wulff shape is a regular triangle or a reg-
ular square. Among other results we show that if
α ∈ (0, 1), then such a nonconvex self-similar solu-
tion exists even if the motion is orientation-free, i.e.,
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Fig. 1. Two examples in §2 and §3. From left to right: the Wulff triangle with z0 = 0; the 5-admissible
self-similar solution curve in the case α = 1 and c = (

√
5 − 1)/2; the Wulff square with z0 = −1/2; and

the 6-admissible self-similar solution curve in the case α = 1 and c = 2.

σ(θ + π) = σ(θ). This is a strong contrast to a mo-
tion by smooth interfacial energy density where the
curve becomes convex in a finite time [4]. From our
example it seems that general convexity statement in
[5, Lemma 2 (i) (a)] is somewhat overstated. If α ≥ 1
and σ(θ + π) = σ(θ), then a solution curve Pt of (1)
with a K-admissible initial curve P0 converges to a
single point or a K′-admissible curve with K′ < K

as t tends to a finite time T > 0, and eventually Pt

shrinks to a point at a finite time T∗ ≥ T ([5]). Al-
though it was stated that a solution becomes convex
before it shrinks to a point ([5, Proposition 6]), a
further investigation seems to be necessary to clarify
in what generality such a convexity result hold.

For convex solution curves, on the other hand,
detailed properties are known ([2, 5, 6, 7]). If α = 1,
σ(θ+π) = σ(θ) and N ≥ 6, then the only convex self-
similar solution curve is a homothety of ∂Wγ ([8]).
For a smooth interfacial energy density γ see, e.g.,
[1, 4].

2. The first example (case N = 3 and
K = 5). We put (pn, qn) = (z0 + cos(2nπ/3),
sin(2nπ/3)) for n = 0, 1, 2 and z0 ∈ (−1, 1/2). Let a
crystalline energy density γ be

γ(r cos θ, r sin θ)

= rσ(θ) = r max
n=0,1,2

{pn cos θ + qn sin θ}.

Then the Wulff shape of γ is a triangle with the ver-
tices (pn, qn) (n = 0, 1, 2):

Wγ =
3⋂

n=1

{
(x, y) ∈ R2 | x cos θ̃n + y sin θ̃n ≤ h̃n

}
,

where θ̃n = π(2n − 1)/3 and h̃n = 1/2 + z0 cos θ̃n.
See Fig. 1 (far left). The length of each edge is

l̃n ≡ √
3 (∀n). We construct the 5-admissible curve

P =
⋃5

k=1 Sk with the vertices (xk, yk) satisfying for
b > a > 0 (x0, y0) = (x5, y5) = (0, 0), (x1, y1) =
(
√

3a, a)/2, (x2, y2) = (
√

3(a−b), a+b)/2, (x3, y3) =
(
√

3(a − b),−(a + b))/2 and (x4, y4) = (
√

3a,−a)/2.
The length of Sk, lk = |(xk − xk−1, yk − yk−1)|, and
its crystalline curvature satisfy l1 = l5 = a, l2 = l4 =
b, l3 = a + b and H1 = H5 = 0, H2 = H4 = −√

3/b,
H3 = −√

3/(a + b), respectively. Hence, by virtue of
σ(θk) = h̃n(k) and V1 = V5 = 0, V2 = V4 =

√
3ȧ/2,

V3 =
√

3(ḃ − ȧ)/2, evolution equations (1) are given
as

ȧ = −1 + z0√
3

(√
3

b

)α

, ḃ−ȧ = −1 − 2z0√
3

( √
3

a + b

)α

.

Here and hereafter h̃n(k) = h̃n for θ̃n = θk, and u̇

means du/dt. Putting b − a = ac, we have

ċ =
√

3
α−1

(1 + z0)
aα+1(c + 2)α

(
(c + 2)αc

(c + 1)α
− 1 − 2z0

1 + z0

)
.

The nonconvex solution curve is self-similar if and
only if ċ = 0, that is

f(c, α) :=
(c + 2)αc

(c + 1)α
=

1 − 2z0

1 + z0

holds. Then we have limc→+0 f(c, α) = 0 and
limc→+∞ f(c, α) = +∞. If 0 < α < 3 + 2

√
2, then

∂f(c, α)/∂c > 0 holds for all c > 0. If α ≥ 3 +
2
√

2, then ∂f(c, α)/∂c = 0 holds only for c =
(
α −

3 ± √
(α − 3)2 − 8

)
/2 > 0. Therefore, we have the

following two cases:
Case 0 < α ≤ 3 + 2

√
2. For any z0 ∈

(−1, 1/2) there exists a unique c > 0 such that the
solution is self-similar. See Fig. 1 (left).
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Case α > 3 + 2
√

2. There exists two con-
stants −1 < z− < z+ < 1/2 such that the following
three cases hold : (i) For any z0 ∈ (−1, z−)∪(z+ , 1/2)
there exists a unique c > 0 such that the solution is
self-similar. (ii) For any z0 ∈ {z−, z+} there exist
two positive constants c1 and c2 such that the solu-
tion is self-similar if and only if c = c1 or c2. (iii) For
any z0 ∈ (z−, z+) there exist three positive constants
c1, c2 and c3 such that the solution is self-similar if
and only if c = c1, c2 or c3.

3. The second example (case N = 4 and
K = 6). We put (pn, qn) = (z0 + cos(nπ/2),
sin(nπ/2)) for n = 0, 1, 2, 3 and z0 ∈ (−1, 1). Let
a crystalline energy density γ be

γ(r cos θ, r sin θ)

= rσ(θ) = r max
n=0,1,2,3

{pn cos θ + qn sin θ}.

Then the Wulff shape of γ is a square with the ver-
tices (pn, qn) (n = 0, 1, 2, 3):

Wγ =
4⋂

n=1

{
(x, y) ∈ R2 | x cos θ̃n + y sin θ̃n ≤ h̃n

}
,

where θ̃n = π(2n − 1)/4 and h̃n = 1/
√

2 + z0 cos θ̃n.
See Fig. 1 (right). The length of each edge is l̃n ≡√

2 (∀n). We construct the 6-admissible curve P =⋃6
k=1 Sk with the vertices (xk, yk) satisfying for a >

0 and b > 0 (x0, y0) = (x6, y6) = (0, 0), (x1, y1) =
(a, a)/

√
2, (x2, y2) = (a − b, a + b)/

√
2, (x3, y3) =

(−2b, 0)/
√

2, (x4, y4) = (a − b,−(a + b))/
√

2 and
(x5, y5) = (a,−a)/

√
2. The length of Sk and its crys-

talline curvature satisfy l1 = l6 = a, l2 = l5 = b, l3 =
l4 = a + b and H1 = H6 = 0, H2 = H5 = −√

2/b,
H3 = H4 = −√

2/(a + b), respectively. Hence, by
virtue of σ(θk) = h̃n(k) and V1 = V6 = 0, V2 = V5 =
ȧ, V3 = V4 = ḃ, evolution equations (1) are given as

ȧ = −1 + z0√
2

(√
2

b

)α

, ḃ = −1 − z0√
2

( √
2

a + b

)α

.

Putting b = ac, we have

(2) ċ =
√

2
α−1

(1 + z0)
aα+1(c + 1)α

(
(c + 1)α

cα−1
− 1 − z0

1 + z0

)
.

The nonconvex solution curve is self-similar if and
only if ċ = 0, that is

g(c, α) :=
(c + 1)α

cα−1
=

1 − z0

1 + z0

holds.

Case 0 < α < 1. Since limc→+0 g(c, α) = 0,
limc→+∞ g(c, α) = +∞ and ∂g/∂c > 0 (∀c > 0)
hold, we have the following: For any z0 ∈ (−1, 1)
there exists a unique c > 0 such that the solution is
self-similar.

Case α = 1. Since g(c, 1) = c + 1, we have
the following two cases: (i) For any z0 ∈ [0, 1) and
c > 0 the solution is not self-similar. (ii) For any
z0 ∈ (−1, 0) the solution is self-similar if and only if
c = −2z0/(1 + z0) > 0. See Fig. 1 (far right).

Case α > 1. It holds that limc→+0 g(c, α) =
limc→+∞ g(c, α) = +∞. Further, ∂g(c, α)/∂c = 0
holds if and only if c = α − 1. Therefore, we have
the following three cases: Let z∗ = −{αα − (α −
1)α−1}/{αα + (α − 1)α−1} ∈ (−1, 0). (i) For any
z0 ∈ (z∗, 1) and c > 0 the solution is not self-similar.
(ii) For z0 = z∗ the solution is self-similar if and only
if c = α − 1 > 0. (iii) For any z0 ∈ (−1, z∗) there
exist two positive constants c1 and c2 such that the
solution is self-similar if and only if c = c1 or c2.

Remark in case α = 1. All convex solutions
are self-similar. On the other hand, when z0 ∈
(−1, 0) and c0 = c(0) ∈ (0,−2z0/(1 + z0)), the
nonconvex solution shrinks to a single point and
maxk 1/lk blows up to infinity as t tends to a finite
time T with its rate being faster than the self-similar
rate. Indeed, from (2), c < −2z0/(1+z0) implies ċ <

0. Hence, b(T ) = 0 (c0a(t) ≥ b(t) > 0) holds, and
so a(T ) = 0 holds since no degenerate pinching oc-
curs [5, Lemma 2 (iii)], which implies a single point
extinction. Also, the enclosed area A = (2a + b)b
satisfies A(t) = 4(T − t). Therefore, we obtain the
estimate b(t) ≤ C(T − t)d0 for some C > 0 since
ḃ = −(1 − z0)(c + 2)b/{(c + 1)A} ≤ −d0b/(T − t)
holds. Here d0 = (1− z0)(c0 + 2)/{4(c0 + 1)}, which
satisfies d0 ∈ (1/2, 1). Hence b(t) never does admit
the self-similar rate

√
T − t. Furthermore, a(t) ≥

2C−1(T − t)1−d0 − 2−1C(T − t)d0 holds, which im-
plies the isoperimetric ratio L(t)2/A(t) diverges to
infinity as t tends to T . Here L(t) = 2(a + b) is the
total length.
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