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An algebraic result on the topological closure of the set of

rational points on a sphere whose center is non-rational
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Abstract: Let S be a sphere in Rn whose center is not in Qn. We pose the following
problem on S.

“What is the closure of S ∩ Qn with respect to the Euclidean topology?”

In this paper we give a simple solution for this problem in the special case that the center a =
(ai) ∈ Rn of S satisfies {

n∑
i=1

ri(ai − bi); r1, . . . , rn ∈ Q

}
= K

for some b = (bi) ∈ S ∩Qn and some Galois extension K of Q. Our solution represents the closure
of S ∩ Qn for such S in terms of the Galois group of K over Q.
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1. Introduction.
Notation 1. Let Q and R denote the field of

rational numbers and the field of real numbers, re-
spectively. Let |x| and 〈x, y〉 represent the standard
Euclidean norm of x ∈ Rn and the standard Eu-
clidean inner product of x, y ∈ Rn, respectively. Let
ClX represent the closure of a subset X of Rn with
respect to the Euclidean topology, dimQ(resp. R) Y

the dimension of an affine or vector space Y over Q
(resp. R), and ρ(Z) the rank of a matrix Z. Define
the symbol spanQ as follows: For z1, . . . , zn ∈ R,

spanQ {z1, . . . , zn} =

{
n∑
i=1

rizi; r1, . . . , rn ∈ Q

}
.

Fix b = (bi) ∈ Qn and, for each a = (ai) ∈ Rn,
let Sa denote the sphere through b whose center is a,
that is,

(1) Sa = {x ∈ Rn; |x− a| = |b− a|} .
(Note that b ∈ Sa∩Qn and hence Sa ∩Qn �= ∅.) We
now pose the following problem on Sa.

Problem 2. What is Cl(Sa ∩Qn)?
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While it is not difficult to see the solution of this
problem in the case a ∈ Qn is

(2) Cl(Sa ∩ Qn) = Sa,

it seems difficult to give some simple solution for this
problem in the case a /∈ Qn. Nevertheless, even if
a /∈ Qn, we can give a quite simple solution for this
problem provided a = (ai) satisfies a special alge-
braic condition. The purpose of this paper is to show
this fact. Let K be a Galois extension of Q such that
K ⊂ R and [K : Q] ≤ n. Let G denote the Galois
group of K over Q and define

g(a) = (g(ai))

for g ∈ G, a = (ai) ∈ Kn. Then our result is stated
as follows:

Theorem 3. If a = (ai) satisfies

(3) spanQ {a1 − b1, . . . , an − bn} = K,

then

(4) Cl(Sa ∩Qn) =
⋂
g∈G

Sg(a).

Note that if K = Q, then (3) and (4) coincide
with a ∈ Qn − {b} and (2), respectively. We prove
this theorem in the following sections.
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2. Reduction of (4). For each a ∈ Rn, de-
fine a hyperplane Πa by

Πa = {A ∈ Rn; 〈A, a− b〉 + 1 = 0} .
(Note 0 /∈ Πa, that is, Πa ⊂ Rn−{0}.) The purpose
of this section is to show that (4) is equivalent to

(5) Cl(Πa ∩ Qn) =
⋂
g∈G

Πg(a).

First we prove the following.
Proposition 4. There is a homeomorphism

(with respect to the Euclidean topology) ϕ : Rn −
{0} → Rn − {b} defined by

(6) ϕ(A) = b− 2

|A|2A.

Furthermore, for every a ∈ Rn,

(7) ϕ(Πa) = Sa − {b}
and

(8) ϕ(Πa ∩Qn) = Sa ∩ Qn − {b}
hold.

Proof. ϕ is clearly well-defined as a map. And,
since each x ∈ Rn − {b} satisfies

ϕ

(
2

|b− x|2 (b− x)
)

= b− 2
4

|b−x|4 |b− x|2
2

|b− x|2 (b− x)

= b− (b− x) = x,

ϕ is surjective. We see ϕ is also injective, because if
ϕ(A) = ϕ(A′), that is,

(9)
1

|A|2A =
1

|A′|2A
′,

then

(10) A′ = rA

holds for some r ∈ R−{0} and, by substituting (10)
to (9), we get r = 1, that is, A′ = A. We have thus
shown that ϕ is a bijection such that

(11) ϕ−1(x) =
2

|b− x|2 (b− x),

and, by the continuity of (6) and (11), we see ϕ is a
homeomorphism. Furthermore, since

x ∈ Sa ↔ |x− a| = |b− a|

↔
〈
b− x, a− b+ x

2

〉
= 0

is easily seen and ϕ(A) satisfies〈
b− ϕ(A), a− b+ ϕ(A)

2

〉
=
〈

2
|A|2A, a− b+

1
|A|2A

〉
=

2
|A|2 (〈A, a− b〉 + 1),

we have

ϕ(A) ∈ Sa − {b} ↔ 〈A, a− b〉 + 1 = 0 ↔ A ∈ Πa

and hence (7). By (7) and

A ∈ Qn ↔ ϕ(A) ∈ Qn,

which follows from (6) and (11), we see (8) also holds.
This completes the proof.

By noting Cl(Πa ∩ Qn) ⊂ Πa ⊂ Rn − {0} and
using the fact that ϕ is a homeomorphism and (8),
we have

ϕ(Cl(Πa ∩ Qn)) = Cl(ϕ(Πa ∩ Qn)) − {b}
= Cl(Sa ∩ Qn − {b}) − {b} .

Here Cl(Sa ∩ Qn − {b}) − {b} can be rewritten as
Cl(Sa ∩ Qn) − {b}, because if b is an accumulation
point of Sa ∩ Qn − {b}, then Cl(Sa ∩ Qn − {b}) =
Cl(Sa∩Qn), and if b is not, then Cl(Sa∩Qn−{b}) =
Cl(Sa ∩ Qn) − {b}. Hence

(12) ϕ(Cl(Πa ∩ Qn)) = Cl(Sa ∩ Qn) − {b} .
On the other hand, by using the fact that ϕ is bijec-
tive and (7), we have

(13)

ϕ
( ⋂
g∈G

Πg(a)

)
=
⋂
g∈G

ϕ(Πg(a)) =
⋂
g∈G

Sg(a) − {b} .

By (12), (13), and the fact that ϕ is bijective, we see

(4) ↔ Cl(Sa ∩ Qn) − {b} =
⋂
g∈G

Sg(a) − {b}

↔ ϕ(Cl(Πa ∩ Qn)) = ϕ
( ⋂
g∈G

Πg(a)

)
↔ (5).

We have thus attained the purpose of this section.
3. Proof of (5). In this section we complete

the proof of Theorem 3 by proving (5) under the as-
sumption (3). For this purpose we need the following
lemma, which immediately follows from Dedekind’s
theorem (Bourbaki [1], Chapter V, §6, Corollary 2 of
Theorem 1).
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Lemma 5. All elements of G are linearly in-
dependent over R.

The following is our proof of (5).
Proof. For every g ∈ G, every A = (Ai) ∈ Πa∩

Qn satisfies

〈A, g(a) − b〉 + 1 =
n∑
i=1

Ai(g(ai) − bi) + 1

=
n∑
i=1

g(Ai)(g(ai) − g(bi)) + g(1)

= g

( n∑
i=1

Ai(ai − bi) + 1
)

= g(〈A, a − b〉 + 1)

= g(0) = 0

and therefore, by continuity, every A ∈ Cl(Πa ∩Qn)
satisfies 〈A, g(a) − b〉 + 1 = 0. Hence we have

∀g ∈ G Cl(Πa ∩ Qn) ⊂ Πg(a),

that is,

(14) Cl(Πa ∩ Qn) ⊂
⋂
g∈G

Πg(a).

Hereafter let l denote [K : Q]. We now prove

Cl(Πa ∩ Qn) is a (n − l)-dimensional affine(15)

subspace of Rn

as follows: As is easily seen,

Πa ∩ Qn =
{
(Ai) ∈ Qn;

n∑
i=1

Ai(ai − bi) + 1 = 0
}

is an affine subspace of Qn. And, by

spanQ {a1 − b1, . . . , an − bn} = K � −1,

this affine subspace is non-empty. Let us compute its
dimension. RegardK as a l-dimensional vector space
over Q and fix a basis of K. For each i = 1, . . . , n,
let (a′i1, . . . , a

′
il) denote the coordinate of ai− bi ∈ K

with respect to this basis, and define

M =

a
′
11 · · · a′n1
...

...
a′1l · · · a′nl

 .

Then we have

dimQ Πa ∩ Qn

= dimQ

{
(Ai) ∈ Qn;

n∑
i=1

Ai(ai − bi) + 1 = 0
}

= dimQ

{
(Ai) ∈ Qn;

n∑
i=1

Ai(ai − bi) = 0
}

= dimQ

{
(Ai) ∈ Qn; ∀j ∈ {1, . . . , l}

n∑
i=1

Aia
′
ij = 0

}
= n− ρ(M).

On the other hand, since the definition of M im-
plies that ρ(M) equals the dimension (over Q) of
spanQ {a1 − b1, . . . , an − bn} = K, we have ρ(M) =
l. Hence

dimQ Πa ∩ Qn = n− l.

By this,

Πa ∩ Qn = β0 + (Qβ1 ⊕ · · · ⊕ Qβn−l)

holds for some β0, β1, . . . , βn−l ∈ Qn. And it is easy
to see that such β0, β1, . . . , βn−l satisfy

Cl(Πa ∩ Qn) = β0 + (Rβ1 ⊕ · · · ⊕ Rβn−l).

Thus we see (15) holds.
Next we prove⋂
g∈G

Πg(a) also is a (n− l)-dimensional affine(16)

subspace of Rn

as follows: Clearly
⋂
g∈G Πg(a) is an affine subspace

of Rn. And, since, as we have already seen, Πa∩Qn

is non-empty, it follows from (14) that this affine sub-
space is non-empty. Let us compute its dimension.
By [K : Q] = l, G consists of exactly l elements. Let
g1, . . . , gl denote these l elements of G and define

N =

g1(a− b)
...

gl(a− b)

 =

g1(a1 − b1) · · · g1(an − bn)
...

...
gl(a1 − b1) · · · gl(an − bn)

 .

Then we have

dimR

⋂
g∈G

Πg(a)

= dimR

{
(Ai) ∈ Rn; ∀j ∈ {1, . . . , l}

n∑
i=1

Ai(gj(ai) − bi) + 1 = 0
}

= dimR

{
(Ai) ∈ Rn; ∀j ∈ {1, . . . , l}

n∑
i=1

Aigj(ai − bi) + 1 = 0
}
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= dimR

{
(Ai) ∈ Rn; ∀j ∈ {1, . . . , l}

n∑
i=1

Aigj(ai − bi) = 0
}

= n− ρ(N).

On the other hand, we see g1(a − b), . . . , gl(a − b)
are linearly independent over R and hence ρ(N) = l,
because if C1, . . . , Cl ∈ R satisfy

∑l
j=1Cjgj(a−b) =

0, that is,

∀i ∈ {1, . . . , n}
l∑

j=1

Cjgj(ai − bi) = 0,

then, by the Q-linearity of the operator
∑l

j=1Cjgj :
K → R, we have

∀α ∈ spanQ {a1 − b1, . . . , an − bn} = K

l∑
j=1

Cjgj(α) = 0,

that is,
∑l

j=1Cjgj = 0, and hence, by Lemma 5,
C1 = · · · = Cl = 0. Therefore we see

dimR

⋂
g∈G

Πg(a) = n− l

holds and have thus proved (16).
From (14), (15), and (16), we obtain (5). This

completes the proof.
Remark 6. As is easily seen from the argu-

ments in Section 2 and Section 3, Theorem 3 holds
even if we adopt a subfield k of R instead of Q and
let b, K, and G be a fixed element of kn, a Galois
extension of k such that K ⊂ R, [K : k] ≤ n, and
the Galois group of K over k, respectively.

Remark 7. Let q be a non-degenerate and
positive-definite quadratic form on Rn with coeffi-
cients in Q and define Sa by

Sa = {x ∈ Rn; q (x− a) = q (b− a)}
instead of (1). Even in this case, by modifying our
arguments in Section 2 slightly, we can prove that
(4) is equivalent to (5) without any change of the
definition of Πa, and hence we see Theorem 3 holds.
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