146 Proc. Japan Acad., 80, Ser. A (2004)

[Vol. 80(A),

An algebraic result on the topological closure of the set of

rational points on a sphere whose center is non-rational

By Jun-ichi MATSUSHITA™

Aoyama T/G Seminar, ARIA3F 4-9-18, Jingumae, Shibuya-ku, Tokyo 150-0001
(Communicated by Heisuke HIRONAKA, M. J. A., Sept. 13, 2004)

Abstract:
problem on S.

Let S be a sphere in R™ whose center is not in Q™. We pose the following

“What is the closure of S N Q" with respect to the Euclidean topology?”

In this paper we give a simple solution for this problem in the special case that the center a =

(a;) € R™ of S satisfies

{Zm(ai —b); 1, € Q} =K
i=1

for some b = (b;) € SNQ™ and some Galois extension K of Q. Our solution represents the closure
of SN Q" for such S in terms of the Galois group of K over Q.
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1. Introduction.

Notation 1. Let Q and R denote the field of
rational numbers and the field of real numbers, re-
spectively. Let |x| and (z, y) represent the standard
Euclidean norm of z € R™ and the standard Eu-
clidean inner product of z, y € R"™, respectively. Let
Cl X represent the closure of a subset X of R™ with
respect to the Euclidean topology, dimgqesp. R) Y
the dimension of an affine or vector space Y over Q
(resp. R), and p(Z) the rank of a matrix Z. Define
the symbol spang, as follows: For z1,...,2, € R,

n
spang {z1,...,2n} = {Zmzi; T1,...,Tp € Q} )
i=1

Fix b = (b;) € Q™ and, for each a = (a;) € R",
let S, denote the sphere through b whose center is a,
that is,

(1) Se={zxeR"; |t —a|=|b—al}.

(Note that b € S, N Q"™ and hence S, NQ™ # 0.) We
now pose the following problem on S,.

Problem 2. What is Cl(S, N Q™)?
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While it is not difficult to see the solution of this
problem in the case a € Q™ is

(2) Cl(Sa N Qn) = S,

it seems difficult to give some simple solution for this
problem in the case a ¢ Q™. Nevertheless, even if
a ¢ Q", we can give a quite simple solution for this
problem provided a = (a;) satisfies a special alge-
braic condition. The purpose of this paper is to show
this fact. Let K be a Galois extension of Q such that
K Cc Rand [K:Q] <n. Let G denote the Galois
group of K over Q and define

g(a) = (9(as))
for g € G, a = (a;) € K™. Then our result is stated
as follows:

Theorem 3. If a = (a;) satisfies

(3) spang {a1 — by, ...,an — by} = K,

then

(4) Cl(Sa NQ™) = [ Sy(a)-
geG

Note that if K = Q, then (3) and (4) coincide
with a € Q™ — {b} and (2), respectively. We prove
this theorem in the following sections.
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2. Reduction of (4).
fine a hyperplane II, by

II,={AeR"; (4, a—b)+1=0}.

(Note 0 ¢ I1,, that is, IT, € R™ —{0}.) The purpose
of this section is to show that (4) is equivalent to

) Mya)-

geaG

For each a € R", de-

(5) CI(II, N Q") =

First we prove the following.
Proposition 4. There is a homeomorphism
(with respect to the Euclidean topology) ¢ : R™ —

{0} = R"™ — {b} defined by
2
(6) P(A) =b— W
Furthermore, for every a € R™,
(7) @(Ha) =8, — {b}
and
(8) @(Ha N Qn) = Sa N Qn - {b}
hold.

Proof. ¢ is clearly well-defined as a map. And,

since each x € R™ — {b} satisfies

2
—(b—x
‘P(lb_xlg( )>
2 2
=b——; 5 5(b—x)
et |b—z|” |b— x|
=b—(b—2x)=ux,

 is surjective. We see ¢ is also injective, because if

©(A) = p(A’), that is,

1 1
9 —A=—"_A,
© |A]? A7
then
(10) Al=rA

holds for some r € R — {0} and, by substituting (10)
to (9), we get r = 1, that is, A’ = A. We have thus
shown that ¢ is a bijection such that

(11) o) = ——5 (b— ),

b~ 2/’

and, by the continuity of (6) and (11), we see ¢ is a

homeomorphism. Furthermore, since
€S, —|xr—a|l=1b—a

<—><b—x, a—b—;x>=0
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is easily seen and ¢(A) satisfies

<b —o(A), a- %>

2 1
N E I
<|A|2 A

a—"0b)+1),

we have
p(A)e S, —{b} = (A, a=b)+1=0< AeTl,
and hence (7). By (7) and
AeQ" < p(4)eqQr,

which follows from (6) and (11), we see (8) also holds.
This completes the proof. O

By noting CI(II, N Q™) C II, ¢ R™ — {0} and
using the fact that ¢ is a homeomorphism and (8),
we have

¢(Cl(IL, N Q™)) = Cl(p(Ila N Q™)) — {b}
=Cl(Sa N Q" — {b}) — {b}.

Here C1(S, N Q™ — {b}) — {b} can be rewritten as
Cl(S, N Q™) — {b}, because if b is an accumulation
point of S, N Q™ — {b}, then CI(S, N Q"™ — {b}) =
Cl(S,NQ™), and if b is not, then C1(S,NQ™—{b}) =
Cl(S, N Q™) — {b}. Hence

(12)  ¢(Cl(Il, N Q™)) = CI(Sa N Q™) — {b} .

On the other hand, by using the fact that ¢ is bijec-
tive and (7), we have

(13)
@( N Hg(a)) = [ e(ly@) = [ So@ — {0}
geG geG geG
By (12), (13), and the fact that ¢ is bijective, we see
(4) = CUS. N Q") = {b} = [] Sy — {0}
geG
(Cl(H nNQM") = ( n 11 (a))
geG

— (5).

We have thus attained the purpose of this section.

3. Proof of (5). In this section we complete
the proof of Theorem 3 by proving (5) under the as-
sumption (3). For this purpose we need the following
lemma, which immediately follows from Dedekind’s
theorem (Bourbaki [1], Chapter V, §6, Corollary 2 of
Theorem 1).
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Lemma 5.
dependent over R.

All elements of G are linearly in-
The following is our proof of (5).

Proof. Forevery g € G, every A = (4;) € N
Q" satisfies

(4, gla) =b) +1 = ZAi(g(ai) —bi) +1

=g ZAi(ai _bz) +1>
=g((4, a—b)+1)
=9(0)=0

and therefore, by continuity, every A € C1(II, N Q")
satisfies (A, g(a) —b) + 1 = 0. Hence we have

Vge G Cl(Ha N Qn) C Hg(a);
that is,

(14) Cl(I, N Q™) C () Hy(a)-

9€G
Hereafter let [ denote [K : Q]. We now prove
(15) CI(II, N Q") is a (n — I)-dimensional affine
subspace of R"

as follows: As is easily seen,
n
i=1

is an affine subspace of Q™. And, by
spang {a1 —b1,...,an —bn} = K > —1,

this affine subspace is non-empty. Let us compute its
dimension. Regard K as a [-dimensional vector space
over Q and fix a basis of K. Foreach i =1,...,n,
let (aj,...,a};) denote the coordinate of a; —b; € K
with respect to this basis, and define

M =

Then we have

dimQ Ha N Qn

= dimQ{(Ai) c Q™ iAi(ai - bz) +1= 0}
1=1
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= dimQ{(Ai) S Qn; iAi(ai — bz) = 0}
1=1

1=1

On the other hand, since the definition of M im-
plies that p(M) equals the dimension (over Q) of
spang {a1 —b1,...,a, —bp} = K, we have p(M) =
l. Hence

dimQHaﬂann—l.
By this,
I,NQ"=05+ QB & - & QBn_y)

holds for some [y, B1, ..., On— € Q™. And it is easy
to see that such Gy, 1, ..., On—; satisfy

ClIL, NQ") =Fo+ (RB1 ® -+ - ® RBy—1).

Thus we see (15) holds.

Next we prove

(16) ﬂ Iy, also is a (n — [)-dimensional affine
geG
subspace of R"

as follows: Clearly gec g(a) 1s an affine subspace
of R™. And, since, as we have already seen, 11, N Q"
is non-empty, it follows from (14) that this affine sub-
space is non-empty. Let us compute its dimension.
By [K : Q] =1, G consists of exactly [ elements. Let
g1, - - ., g1 denote these [ elements of G and define

g1(a—10)
gi(a—10)
Then we have

dimR n Hg(a)
geG

= dimR{(Ai) ER" Vje{l,... 1}

g1(a1 —by) .- gl(an —bn)

gl(al - bl) gl(an _bn)

n

ZAi(gj(ai) - bi) +1= 0}

i=1

= dimR{(Ai) ER" Vje{l,... 1}

n
ZAigj(ai — bz) +1= 0}
1=1
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= dimR{(Ai) ER" Vje{l,... 1}

> Augy(as — b) = 0}
=n— p(N).

On the other hand, we see g1(a — b),...,qi(a — b)
are linearly independent over R and hence p(N) = I,
because if C, . . ., Cy € R satisfy 22:1 Cigj(a—0) =
0, that is,

l
Vi € {1, .. .,n} Zngj(ai — bz) =0,
j=1

then, by the Q-linearity of the operator 22:1 Cigj:
K — R, we have

Va € spang {a; — by, ..., an — by} = K
l
j=1

that is, 23:1 Cjg; = 0, and hence, by Lemma 5,
Ci1=---=C; =0. Therefore we see

dimg n My =n—1
geG
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holds and have thus proved (16).

From (14), (15), and (16), we obtain (5). This
completes the proof. Ol

Remark 6. As is easily seen from the argu-
ments in Section 2 and Section 3, Theorem 3 holds
even if we adopt a subfield k£ of R instead of Q and
let b, K, and G be a fixed element of k", a Galois
extension of k such that K C R, [K : k] < n, and
the Galois group of K over k, respectively.

Remark 7. Let ¢ be a non-degenerate and
positive-definite quadratic form on R™ with coeffi-
cients in Q and define S, by

Se={zeR" qg(r—a)=q(—0a)}

instead of (1). Even in this case, by modifying our
arguments in Section 2 slightly, we can prove that
(4) is equivalent to (5) without any change of the
definition of II,, and hence we see Theorem 3 holds.
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