An algebraic result on the topological closure of the set of rational points on a sphere whose center is non-rational

By Jun-ichi MATSUSHITA*)

Aoyama T/G Seminar, ARIA3F 4-9-18, Jingumae, Shibuya-ku, Tokyo 150-0001 (Communicated by Heisuke HIRONAKA, M. J. A., Sept. 13, 2004)

Abstract: Let S be a sphere in \mathbb{R}^n whose center is not in \mathbb{Q}^n . We pose the following problem on S.

"What is the closure of $S \cap \mathbf{Q}^n$ with respect to the Euclidean topology?"

In this paper we give a simple solution for this problem in the special case that the center $a = (a_i) \in \mathbf{R}^n$ of S satisfies

$$\left\{\sum_{i=1}^{n} r_i(a_i - b_i); \ r_1, \dots, r_n \in \mathbf{Q}\right\} = K$$

for some $b = (b_i) \in S \cap \mathbf{Q}^n$ and some Galois extension K of **Q**. Our solution represents the closure of $S \cap \mathbf{Q}^n$ for such S in terms of the Galois group of K over **Q**.

Key words: Sphere; rational point; topological closure; Galois group.

1. Introduction.

Notation 1. Let \mathbf{Q} and \mathbf{R} denote the field of rational numbers and the field of real numbers, respectively. Let |x| and $\langle x, y \rangle$ represent the standard Euclidean norm of $x \in \mathbf{R}^n$ and the standard Euclidean inner product of $x, y \in \mathbf{R}^n$, respectively. Let $\operatorname{Cl} X$ represent the closure of a subset X of \mathbf{R}^n with respect to the Euclidean topology, $\dim_{\mathbf{Q}(\operatorname{resp.} \mathbf{R})} Y$ the dimension of an affine or vector space Y over \mathbf{Q} (resp. \mathbf{R}), and $\rho(Z)$ the rank of a matrix Z. Define the symbol span_{\mathbf{Q}} as follows: For $z_1, \ldots, z_n \in \mathbf{R}$,

$$\operatorname{span}_{\mathbf{Q}}\left\{z_{1},\ldots,z_{n}\right\} = \left\{\sum_{i=1}^{n} r_{i} z_{i}; r_{1},\ldots,r_{n} \in \mathbf{Q}\right\}.$$

Fix $b = (b_i) \in \mathbf{Q}^n$ and, for each $a = (a_i) \in \mathbf{R}^n$, let S_a denote the sphere through b whose center is a, that is,

(1)
$$S_a = \{x \in \mathbf{R}^n; |x - a| = |b - a|\}.$$

(Note that $b \in S_a \cap \mathbf{Q}^n$ and hence $S_a \cap \mathbf{Q}^n \neq \emptyset$.) We now pose the following problem on S_a .

Problem 2. What is $Cl(S_a \cap \mathbf{Q}^n)$?

While it is not difficult to see the solution of this problem in the case $a \in \mathbf{Q}^n$ is

(2)
$$\operatorname{Cl}(S_a \cap \mathbf{Q}^n) = S_a$$

it seems difficult to give some simple solution for this problem in the case $a \notin \mathbf{Q}^n$. Nevertheless, even if $a \notin \mathbf{Q}^n$, we can give a quite simple solution for this problem provided $a = (a_i)$ satisfies a special algebraic condition. The purpose of this paper is to show this fact. Let K be a Galois extension of \mathbf{Q} such that $K \subset \mathbf{R}$ and $[K : \mathbf{Q}] \leq n$. Let G denote the Galois group of K over \mathbf{Q} and define

$$g(a) = (g(a_i))$$

for $g \in G$, $a = (a_i) \in K^n$. Then our result is stated as follows:

Theorem 3. If $a = (a_i)$ satisfies

(3)
$$\operatorname{span}_{\mathbf{Q}} \{ a_1 - b_1, \dots, a_n - b_n \} = K,$$

then

(4)
$$\operatorname{Cl}(S_a \cap \mathbf{Q}^n) = \bigcap_{g \in G} S_{g(a)}.$$

Note that if $K = \mathbf{Q}$, then (3) and (4) coincide with $a \in \mathbf{Q}^n - \{b\}$ and (2), respectively. We prove this theorem in the following sections.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14G05, 14P25; Secondary 12F10.

^{*)}Contact Address: 6-5-15, Higashiogu, Arakawa-ku, Tokyo 116-0012.

No. 7] The topological closure of the set of rational points on a sphere whose center is non-rational

2. Reduction of (4). For each $a \in \mathbf{R}^n$, define a hyperplane Π_a by

$$\Pi_a = \{ A \in \mathbf{R}^n; \ \langle A, \ a - b \rangle + 1 = 0 \}.$$

(Note $0 \notin \Pi_a$, that is, $\Pi_a \subset \mathbf{R}^n - \{0\}$.) The purpose of this section is to show that (4) is equivalent to

(5)
$$\operatorname{Cl}(\Pi_a \cap \mathbf{Q}^n) = \bigcap_{g \in G} \Pi_{g(a)}.$$

First we prove the following.

Proposition 4. There is a homeomorphism (with respect to the Euclidean topology) $\varphi : \mathbf{R}^n - \{0\} \rightarrow \mathbf{R}^n - \{b\}$ defined by

(6)
$$\varphi(A) = b - \frac{2}{|A|^2}A.$$

Furthermore, for every $a \in \mathbf{R}^n$,

(7)
$$\varphi(\Pi_a) = S_a - \{b\}$$

and

(8)
$$\varphi(\Pi_a \cap \mathbf{Q}^n) = S_a \cap \mathbf{Q}^n - \{b\}$$

hold.

Proof. φ is clearly well-defined as a map. And, since each $x \in \mathbf{R}^n - \{b\}$ satisfies

$$\varphi\left(\frac{2}{|b-x|^2}(b-x)\right) = b - \frac{2}{\frac{4}{|b-x|^4}|b-x|^2} \frac{2}{|b-x|^2}(b-x) = b - (b-x) = x,$$

 φ is surjective. We see φ is also injective, because if $\varphi(A)=\varphi(A'),$ that is,

(9)
$$\frac{1}{|A|^2}A = \frac{1}{|A'|^2}A',$$

then

(10)
$$A' = rA$$

holds for some $r \in \mathbf{R} - \{0\}$ and, by substituting (10) to (9), we get r = 1, that is, A' = A. We have thus shown that φ is a bijection such that

(11)
$$\varphi^{-1}(x) = \frac{2}{|b-x|^2}(b-x),$$

and, by the continuity of (6) and (11), we see φ is a homeomorphism. Furthermore, since

$$x \in S_a \leftrightarrow |x - a| = |b - a|$$
$$\leftrightarrow \left\langle b - x, \ a - \frac{b + x}{2} \right\rangle = 0$$

is easily seen and $\varphi(A)$ satisfies

$$\left\langle b - \varphi(A), \ a - \frac{b + \varphi(A)}{2} \right\rangle$$
$$= \left\langle \frac{2}{|A|^2} A, \ a - b + \frac{1}{|A|^2} A \right\rangle$$
$$= \frac{2}{|A|^2} (\langle A, \ a - b \rangle + 1),$$

we have

$$\varphi(A) \in S_a - \{b\} \leftrightarrow \langle A, \ a - b \rangle + 1 = 0 \leftrightarrow A \in \Pi_a$$

and hence (7). By (7) and

$$A \in \mathbf{Q}^n \leftrightarrow \varphi(A) \in \mathbf{Q}^n,$$

which follows from (6) and (11), we see (8) also holds. This completes the proof.

By noting $\operatorname{Cl}(\Pi_a \cap \mathbf{Q}^n) \subset \Pi_a \subset \mathbf{R}^n - \{0\}$ and using the fact that φ is a homeomorphism and (8), we have

$$\varphi(\operatorname{Cl}(\Pi_a \cap \mathbf{Q}^n)) = \operatorname{Cl}(\varphi(\Pi_a \cap \mathbf{Q}^n)) - \{b\}$$
$$= \operatorname{Cl}(S_a \cap \mathbf{Q}^n - \{b\}) - \{b\}$$

Here $\operatorname{Cl}(S_a \cap \mathbf{Q}^n - \{b\}) - \{b\}$ can be rewritten as $\operatorname{Cl}(S_a \cap \mathbf{Q}^n) - \{b\}$, because if *b* is an accumulation point of $S_a \cap \mathbf{Q}^n - \{b\}$, then $\operatorname{Cl}(S_a \cap \mathbf{Q}^n - \{b\}) = \operatorname{Cl}(S_a \cap \mathbf{Q}^n)$, and if *b* is not, then $\operatorname{Cl}(S_a \cap \mathbf{Q}^n - \{b\}) = \operatorname{Cl}(S_a \cap \mathbf{Q}^n) - \{b\}$. Hence

(12)
$$\varphi(\operatorname{Cl}(\Pi_a \cap \mathbf{Q}^n)) = \operatorname{Cl}(S_a \cap \mathbf{Q}^n) - \{b\}.$$

On the other hand, by using the fact that φ is bijective and (7), we have

$$\varphi\Big(\bigcap_{g\in G}\Pi_{g(a)}\Big)=\bigcap_{g\in G}\varphi(\Pi_{g(a)})=\bigcap_{g\in G}S_{g(a)}-\{b\}.$$

By (12), (13), and the fact that φ is bijective, we see

$$(4) \leftrightarrow \operatorname{Cl}(S_a \cap \mathbf{Q}^n) - \{b\} = \bigcap_{g \in G} S_{g(a)} - \{b\}$$
$$\leftrightarrow \varphi(\operatorname{Cl}(\Pi_a \cap \mathbf{Q}^n)) = \varphi\Big(\bigcap_{g \in G} \Pi_{g(a)}\Big)$$
$$\leftrightarrow (5).$$

We have thus attained the purpose of this section.

3. Proof of (5). In this section we complete the proof of Theorem 3 by proving (5) under the assumption (3). For this purpose we need the following lemma, which immediately follows from Dedekind's theorem (Bourbaki [1], Chapter V, §6, Corollary 2 of Theorem 1).

Lemma 5. All elements of G are linearly independent over \mathbf{R} .

The following is our proof of (5).

Proof. For every $g \in G$, every $A = (A_i) \in \Pi_a \cap \mathbf{Q}^n$ satisfies

$$\langle A, g(a) - b \rangle + 1 = \sum_{i=1}^{n} A_i (g(a_i) - b_i) + 1$$

$$= \sum_{i=1}^{n} g(A_i) (g(a_i) - g(b_i)) + g(1)$$

$$= g \left(\sum_{i=1}^{n} A_i (a_i - b_i) + 1 \right)$$

$$= g(\langle A, a - b \rangle + 1)$$

$$= g(0) = 0$$

and therefore, by continuity, every $A \in \operatorname{Cl}(\Pi_a \cap \mathbf{Q}^n)$ satisfies $\langle A, g(a) - b \rangle + 1 = 0$. Hence we have

$$\forall g \in G \quad \operatorname{Cl}(\Pi_a \cap \mathbf{Q}^n) \subset \Pi_{g(a)},$$

that is,

(14)
$$\operatorname{Cl}(\Pi_a \cap \mathbf{Q}^n) \subset \bigcap_{g \in G} \Pi_{g(a)}.$$

Hereafter let l denote $[K : \mathbf{Q}]$. We now prove

(15) $\operatorname{Cl}(\Pi_a \cap \mathbf{Q}^n)$ is a (n-l)-dimensional affine subspace of \mathbf{R}^n

as follows: As is easily seen,

$$\Pi_a \cap \mathbf{Q}^n = \left\{ (A_i) \in \mathbf{Q}^n; \ \sum_{i=1}^n A_i(a_i - b_i) + 1 = 0 \right\}$$

is an affine subspace of \mathbf{Q}^n . And, by

$$\operatorname{span}_{\mathbf{Q}} \{ a_1 - b_1, \dots, a_n - b_n \} = K \ni -1,$$

this affine subspace is non-empty. Let us compute its dimension. Regard K as a l-dimensional vector space over \mathbf{Q} and fix a basis of K. For each $i = 1, \ldots, n$, let $(a'_{i1}, \ldots, a'_{il})$ denote the coordinate of $a_i - b_i \in K$ with respect to this basis, and define

$$M = \begin{pmatrix} a'_{11} & \cdots & a'_{n1} \\ \vdots & & \vdots \\ a'_{1l} & \cdots & a'_{nl} \end{pmatrix}.$$

Then we have

 $\dim_{\mathbf{Q}} \Pi_a \cap \mathbf{Q}^n$

$$= \dim_{\mathbf{Q}} \Big\{ (A_i) \in \mathbf{Q}^n; \ \sum_{i=1}^n A_i(a_i - b_i) + 1 = 0 \Big\}$$

$$= \dim_{\mathbf{Q}} \left\{ (A_i) \in \mathbf{Q}^n; \sum_{i=1}^n A_i(a_i - b_i) = 0 \right\}$$
$$= \dim_{\mathbf{Q}} \left\{ (A_i) \in \mathbf{Q}^n; \forall j \in \{1, \dots, l\} \sum_{i=1}^n A_i a'_{ij} = 0 \right\}$$
$$= n - \rho(M).$$

On the other hand, since the definition of M implies that $\rho(M)$ equals the dimension (over **Q**) of span_{**Q**} $\{a_1 - b_1, \ldots, a_n - b_n\} = K$, we have $\rho(M) = l$. Hence

$$\dim_{\mathbf{Q}} \Pi_a \cap \mathbf{Q}^n = n - l.$$

By this,

$$\Pi_a \cap \mathbf{Q}^n = \beta_0 + (\mathbf{Q}\beta_1 \oplus \cdots \oplus \mathbf{Q}\beta_{n-l})$$

holds for some $\beta_0, \beta_1, \ldots, \beta_{n-l} \in \mathbf{Q}^n$. And it is easy to see that such $\beta_0, \beta_1, \ldots, \beta_{n-l}$ satisfy

$$\operatorname{Cl}(\Pi_a \cap \mathbf{Q}^n) = \beta_0 + (\mathbf{R}\beta_1 \oplus \cdots \oplus \mathbf{R}\beta_{n-l}).$$

Thus we see (15) holds.

Next we prove

(16) $\bigcap_{g \in G} \Pi_{g(a)}$ also is a (n-l)-dimensional affine subspace of \mathbf{R}^n

as follows: Clearly $\bigcap_{g \in G} \Pi_{g(a)}$ is an affine subspace of \mathbf{R}^n . And, since, as we have already seen, $\Pi_a \cap \mathbf{Q}^n$ is non-empty, it follows from (14) that this affine subspace is non-empty. Let us compute its dimension. By $[K : \mathbf{Q}] = l$, G consists of exactly l elements. Let g_1, \ldots, g_l denote these l elements of G and define

$$N = \begin{pmatrix} g_1(a-b) \\ \vdots \\ g_l(a-b) \end{pmatrix} = \begin{pmatrix} g_1(a_1-b_1) \cdots g_1(a_n-b_n) \\ \vdots & \vdots \\ g_l(a_1-b_1) \cdots g_l(a_n-b_n) \end{pmatrix}.$$

Then we have

$$\dim_{\mathbf{R}} \bigcap_{g \in G} \Pi_{g(a)}$$

$$= \dim_{\mathbf{R}} \left\{ (A_i) \in \mathbf{R}^n; \forall j \in \{1, \dots, l\} \right\}$$

$$\sum_{i=1}^n A_i (g_j(a_i) - b_i) + 1 = 0 \right\}$$

$$= \dim_{\mathbf{R}} \left\{ (A_i) \in \mathbf{R}^n; \forall j \in \{1, \dots, l\} \right\}$$

$$\sum_{i=1}^n A_i g_j (a_i - b_i) + 1 = 0 \right\}$$

148

No. 7]

The topological closure of the set of rational points on a sphere whose center is non-rational

$$= \dim_{\mathbf{R}} \left\{ (A_i) \in \mathbf{R}^n; \ \forall j \in \{1, \dots, l\} \right.$$
$$\sum_{i=1}^n A_i g_j (a_i - b_i) = 0 \right\}$$

 $= n - \rho(N).$

On the other hand, we see $g_1(a-b), \ldots, g_l(a-b)$ are linearly independent over **R** and hence $\rho(N) = l$, because if $C_1, \ldots, C_l \in \mathbf{R}$ satisfy $\sum_{j=1}^l C_j g_j(a-b) = 0$, that is,

$$\forall i \in \{1, \dots, n\} \quad \sum_{j=1}^{l} C_j g_j (a_i - b_i) = 0,$$

then, by the **Q**-linearity of the operator $\sum_{j=1}^{l} C_j g_j$: $K \to \mathbf{R}$, we have

$$\forall \alpha \in \operatorname{span}_{\mathbf{Q}} \left\{ a_1 - b_1, \dots, a_n - b_n \right\} = K$$

$$\sum_{j=1}^{l} C_j g_j(\alpha) = 0,$$

that is, $\sum_{j=1}^{l} C_j g_j = 0$, and hence, by Lemma 5, $C_1 = \cdots = C_l = 0$. Therefore we see

$$\dim_{\mathbf{R}} \bigcap_{g \in G} \Pi_{g(a)} = n - l$$

holds and have thus proved (16).

From (14), (15), and (16), we obtain (5). This completes the proof. \Box

Remark 6. As is easily seen from the arguments in Section 2 and Section 3, Theorem 3 holds even if we adopt a subfield k of \mathbf{R} instead of \mathbf{Q} and let b, K, and G be a fixed element of k^n , a Galois extension of k such that $K \subset \mathbf{R}$, $[K:k] \leq n$, and the Galois group of K over k, respectively.

Remark 7. Let q be a non-degenerate and positive-definite quadratic form on \mathbb{R}^n with coefficients in \mathbb{Q} and define S_a by

$$S_a = \{x \in \mathbf{R}^n; q(x-a) = q(b-a)\}$$

instead of (1). Even in this case, by modifying our arguments in Section 2 slightly, we can prove that (4) is equivalent to (5) without any change of the definition of Π_a , and hence we see Theorem 3 holds.

References

 Bourbaki, N.: Elements of Mathematics. Algebra. Chapters 4-7. Springer, Berlin-Heidelberg-New York (1990). (Originally published as Algèbre. Chapitres 4 à 7. Lecture Notes in Mathematics, 864, Masson, Paris (1981).)