An algebraic result on the topological closure of the set of rational points on a sphere whose center is non-rational

By Jun-ichi Matsushita*)
Aoyama T/G Seminar, ARIA3F 4-9-18, Jingumae, Shibuya-ku, Tokyo 150-0001

(Communicated by Heisuke Hironaka, M. J. a., Sept. 13, 2004)

Abstract

Let S be a sphere in \mathbf{R}^{n} whose center is not in \mathbf{Q}^{n}. We pose the following problem on S. "What is the closure of $S \cap \mathbf{Q}^{n}$ with respect to the Euclidean topology?" In this paper we give a simple solution for this problem in the special case that the center $a=$ $\left(a_{i}\right) \in \mathbf{R}^{n}$ of S satisfies $$
\left\{\sum_{i=1}^{n} r_{i}\left(a_{i}-b_{i}\right) ; r_{1}, \ldots, r_{n} \in \mathbf{Q}\right\}=K
$$ for some $b=\left(b_{i}\right) \in S \cap \mathbf{Q}^{n}$ and some Galois extension K of \mathbf{Q}. Our solution represents the closure of $S \cap \mathbf{Q}^{n}$ for such S in terms of the Galois group of K over \mathbf{Q}.

Key words: Sphere; rational point; topological closure; Galois group.

1. Introduction.

Notation 1. Let \mathbf{Q} and \mathbf{R} denote the field of rational numbers and the field of real numbers, respectively. Let $|x|$ and $\langle x, y\rangle$ represent the standard Euclidean norm of $x \in \mathbf{R}^{n}$ and the standard Euclidean inner product of $x, y \in \mathbf{R}^{n}$, respectively. Let $\mathrm{Cl} X$ represent the closure of a subset X of \mathbf{R}^{n} with respect to the Euclidean topology, $\operatorname{dim}_{\mathbf{Q}(\text { resp. } \mathbf{R})} Y$ the dimension of an affine or vector space Y over \mathbf{Q} (resp. R), and $\rho(Z)$ the rank of a matrix Z. Define the symbol $\operatorname{span}_{\mathbf{Q}}$ as follows: For $z_{1}, \ldots, z_{n} \in \mathbf{R}$,

$$
\operatorname{span}_{\mathbf{Q}}\left\{z_{1}, \ldots, z_{n}\right\}=\left\{\sum_{i=1}^{n} r_{i} z_{i} ; r_{1}, \ldots, r_{n} \in \mathbf{Q}\right\}
$$

Fix $b=\left(b_{i}\right) \in \mathbf{Q}^{n}$ and, for each $a=\left(a_{i}\right) \in \mathbf{R}^{n}$, let S_{a} denote the sphere through b whose center is a, that is,

$$
\begin{equation*}
S_{a}=\left\{x \in \mathbf{R}^{n} ;|x-a|=|b-a|\right\} \tag{1}
\end{equation*}
$$

While it is not difficult to see the solution of this problem in the case $a \in \mathbf{Q}^{n}$ is

$$
\begin{equation*}
\mathrm{Cl}\left(S_{a} \cap \mathbf{Q}^{n}\right)=S_{a} \tag{2}
\end{equation*}
$$

it seems difficult to give some simple solution for this problem in the case $a \notin \mathbf{Q}^{n}$. Nevertheless, even if $a \notin \mathbf{Q}^{n}$, we can give a quite simple solution for this problem provided $a=\left(a_{i}\right)$ satisfies a special algebraic condition. The purpose of this paper is to show this fact. Let K be a Galois extension of \mathbf{Q} such that $K \subset \mathbf{R}$ and $[K: \mathbf{Q}] \leq n$. Let G denote the Galois group of K over \mathbf{Q} and define

$$
g(a)=\left(g\left(a_{i}\right)\right)
$$

for $g \in G, a=\left(a_{i}\right) \in K^{n}$. Then our result is stated as follows:

Theorem 3. If $a=\left(a_{i}\right)$ satisfies

$$
\begin{equation*}
\operatorname{span}_{\mathbf{Q}}\left\{a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right\}=K \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathrm{Cl}\left(S_{a} \cap \mathbf{Q}^{n}\right)=\bigcap_{g \in G} S_{g(a)} \tag{4}
\end{equation*}
$$

Note that if $K=\mathbf{Q}$, then (3) and (4) coincide with $a \in \mathbf{Q}^{n}-\{b\}$ and (2), respectively. We prove this theorem in the following sections.
2. Reduction of (4). For each $a \in \mathbf{R}^{n}$, define a hyperplane Π_{a} by

$$
\Pi_{a}=\left\{A \in \mathbf{R}^{n} ;\langle A, a-b\rangle+1=0\right\}
$$

(Note $0 \notin \Pi_{a}$, that is, $\Pi_{a} \subset \mathbf{R}^{n}-\{0\}$.) The purpose of this section is to show that (4) is equivalent to

$$
\begin{equation*}
\mathrm{Cl}\left(\Pi_{a} \cap \mathbf{Q}^{n}\right)=\bigcap_{g \in G} \Pi_{g(a)} \tag{5}
\end{equation*}
$$

First we prove the following.
Proposition 4. There is a homeomorphism (with respect to the Euclidean topology) $\varphi: \mathbf{R}^{n}-$ $\{0\} \rightarrow \mathbf{R}^{n}-\{b\}$ defined by

$$
\begin{equation*}
\varphi(A)=b-\frac{2}{|A|^{2}} A \tag{6}
\end{equation*}
$$

Furthermore, for every $a \in \mathbf{R}^{n}$,

$$
\begin{equation*}
\varphi\left(\Pi_{a}\right)=S_{a}-\{b\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi\left(\Pi_{a} \cap \mathbf{Q}^{n}\right)=S_{a} \cap \mathbf{Q}^{n}-\{b\} \tag{8}
\end{equation*}
$$

hold.
Proof. φ is clearly well-defined as a map. And, since each $x \in \mathbf{R}^{n}-\{b\}$ satisfies

$$
\begin{aligned}
& \varphi\left(\frac{2}{|b-x|^{2}}(b-x)\right) \\
& \quad=b-\frac{2}{\frac{4}{|b-x|^{4}}|b-x|^{2}} \frac{2}{|b-x|^{2}}(b-x) \\
& \quad=b-(b-x)=x
\end{aligned}
$$

φ is surjective. We see φ is also injective, because if $\varphi(A)=\varphi\left(A^{\prime}\right)$, that is,

$$
\begin{equation*}
\frac{1}{|A|^{2}} A=\frac{1}{\left|A^{\prime}\right|^{2}} A^{\prime} \tag{9}
\end{equation*}
$$

then

$$
\begin{equation*}
A^{\prime}=r A \tag{10}
\end{equation*}
$$

holds for some $r \in \mathbf{R}-\{0\}$ and, by substituting (10) to (9), we get $r=1$, that is, $A^{\prime}=A$. We have thus shown that φ is a bijection such that

$$
\begin{equation*}
\varphi^{-1}(x)=\frac{2}{|b-x|^{2}}(b-x) \tag{11}
\end{equation*}
$$

and, by the continuity of (6) and (11), we see φ is a homeomorphism. Furthermore, since

$$
\begin{aligned}
x \in S_{a} & \leftrightarrow|x-a|=|b-a| \\
& \leftrightarrow\left\langle b-x, a-\frac{b+x}{2}\right\rangle=0
\end{aligned}
$$

is easily seen and $\varphi(A)$ satisfies

$$
\begin{aligned}
\langle b & \left.=\varphi(A), a-\frac{b+\varphi(A)}{2}\right\rangle \\
& =\left\langle\frac{2}{|A|^{2}} A, a-b+\frac{1}{|A|^{2}} A\right\rangle \\
& =\frac{2}{|A|^{2}}(\langle A, a-b\rangle+1),
\end{aligned}
$$

we have

$$
\varphi(A) \in S_{a}-\{b\} \leftrightarrow\langle A, a-b\rangle+1=0 \leftrightarrow A \in \Pi_{a}
$$

and hence (7). By (7) and

$$
A \in \mathbf{Q}^{n} \leftrightarrow \varphi(A) \in \mathbf{Q}^{n}
$$

which follows from (6) and (11), we see (8) also holds. This completes the proof.

By noting $\mathrm{Cl}\left(\Pi_{a} \cap \mathbf{Q}^{n}\right) \subset \Pi_{a} \subset \mathbf{R}^{n}-\{0\}$ and using the fact that φ is a homeomorphism and (8), we have

$$
\begin{aligned}
\varphi\left(\mathrm{Cl}\left(\Pi_{a} \cap \mathbf{Q}^{n}\right)\right) & =\mathrm{Cl}\left(\varphi\left(\Pi_{a} \cap \mathbf{Q}^{n}\right)\right)-\{b\} \\
& =\mathrm{Cl}\left(S_{a} \cap \mathbf{Q}^{n}-\{b\}\right)-\{b\}
\end{aligned}
$$

Here $\operatorname{Cl}\left(S_{a} \cap \mathbf{Q}^{n}-\{b\}\right)-\{b\}$ can be rewritten as $\mathrm{Cl}\left(S_{a} \cap \mathbf{Q}^{n}\right)-\{b\}$, because if b is an accumulation point of $S_{a} \cap \mathbf{Q}^{n}-\{b\}$, then $\mathrm{Cl}\left(S_{a} \cap \mathbf{Q}^{n}-\{b\}\right)=$ $\mathrm{Cl}\left(S_{a} \cap \mathbf{Q}^{n}\right)$, and if b is not, then $\mathrm{Cl}\left(S_{a} \cap \mathbf{Q}^{n}-\{b\}\right)=$ $\mathrm{Cl}\left(S_{a} \cap \mathbf{Q}^{n}\right)-\{b\}$. Hence

$$
\begin{equation*}
\varphi\left(\mathrm{Cl}\left(\Pi_{a} \cap \mathbf{Q}^{n}\right)\right)=\mathrm{Cl}\left(S_{a} \cap \mathbf{Q}^{n}\right)-\{b\} \tag{12}
\end{equation*}
$$

On the other hand, by using the fact that φ is bijective and (7), we have

$$
\begin{equation*}
\varphi\left(\bigcap_{g \in G} \Pi_{g(a)}\right)=\bigcap_{g \in G} \varphi\left(\Pi_{g(a)}\right)=\bigcap_{g \in G} S_{g(a)}-\{b\} \tag{13}
\end{equation*}
$$

By (12), (13), and the fact that φ is bijective, we see

$$
\begin{aligned}
(4) & \leftrightarrow \operatorname{Cl}\left(S_{a} \cap \mathbf{Q}^{n}\right)-\{b\}=\bigcap_{g \in G} S_{g(a)}-\{b\} \\
& \leftrightarrow \varphi\left(\operatorname{Cl}\left(\Pi_{a} \cap \mathbf{Q}^{n}\right)\right)=\varphi\left(\bigcap_{g \in G} \Pi_{g(a)}\right) \\
& \leftrightarrow(5) .
\end{aligned}
$$

We have thus attained the purpose of this section.
3. Proof of (5). In this section we complete the proof of Theorem 3 by proving (5) under the assumption (3). For this purpose we need the following lemma, which immediately follows from Dedekind's theorem (Bourbaki [1], Chapter V, $\S 6$, Corollary 2 of Theorem 1).

Lemma 5. All elements of G are linearly independent over \mathbf{R}.

The following is our proof of (5).
Proof. For every $g \in G$, every $A=\left(A_{i}\right) \in \Pi_{a} \cap$ \mathbf{Q}^{n} satisfies

$$
\begin{aligned}
\langle A, g(a)-b\rangle+1 & =\sum_{i=1}^{n} A_{i}\left(g\left(a_{i}\right)-b_{i}\right)+1 \\
& =\sum_{i=1}^{n} g\left(A_{i}\right)\left(g\left(a_{i}\right)-g\left(b_{i}\right)\right)+g(1) \\
& =g\left(\sum_{i=1}^{n} A_{i}\left(a_{i}-b_{i}\right)+1\right) \\
& =g(\langle A, a-b\rangle+1) \\
& =g(0)=0
\end{aligned}
$$

and therefore, by continuity, every $A \in \mathrm{Cl}\left(\Pi_{a} \cap \mathbf{Q}^{n}\right)$ satisfies $\langle A, g(a)-b\rangle+1=0$. Hence we have

$$
\forall g \in G \quad \mathrm{Cl}\left(\Pi_{a} \cap \mathbf{Q}^{n}\right) \subset \Pi_{g(a)},
$$

that is,

$$
\begin{equation*}
\mathrm{Cl}\left(\Pi_{a} \cap \mathbf{Q}^{n}\right) \subset \bigcap_{g \in G} \Pi_{g(a)} \tag{14}
\end{equation*}
$$

Hereafter let l denote $[K: \mathbf{Q}]$. We now prove
(15) $\mathrm{Cl}\left(\Pi_{a} \cap \mathbf{Q}^{n}\right)$ is a $(n-l)$-dimensional affine subspace of \mathbf{R}^{n}
as follows: As is easily seen,

$$
\Pi_{a} \cap \mathbf{Q}^{n}=\left\{\left(A_{i}\right) \in \mathbf{Q}^{n} ; \sum_{i=1}^{n} A_{i}\left(a_{i}-b_{i}\right)+1=0\right\}
$$

is an affine subspace of \mathbf{Q}^{n}. And, by

$$
\operatorname{span}_{\mathbf{Q}}\left\{a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right\}=K \ni-1
$$

this affine subspace is non-empty. Let us compute its dimension. Regard K as a l-dimensional vector space over \mathbf{Q} and fix a basis of K. For each $i=1, \ldots, n$, let $\left(a_{i 1}^{\prime}, \ldots, a_{i l}^{\prime}\right)$ denote the coordinate of $a_{i}-b_{i} \in K$ with respect to this basis, and define

$$
M=\left(\begin{array}{ccc}
a_{11}^{\prime} & \cdots & a_{n 1}^{\prime} \\
\vdots & & \vdots \\
a_{1 l}^{\prime} & \cdots & a_{n l}^{\prime}
\end{array}\right)
$$

Then we have

$$
\begin{aligned}
& \operatorname{dim}_{\mathbf{Q}} \Pi_{a} \cap \mathbf{Q}^{n} \\
& =\operatorname{dim}_{\mathbf{Q}}\left\{\left(A_{i}\right) \in \mathbf{Q}^{n} ; \sum_{i=1}^{n} A_{i}\left(a_{i}-b_{i}\right)+1=0\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{dim}_{\mathbf{Q}}\left\{\left(A_{i}\right) \in \mathbf{Q}^{n} ; \sum_{i=1}^{n} A_{i}\left(a_{i}-b_{i}\right)=0\right\} \\
& =\operatorname{dim}_{\mathbf{Q}}\left\{\left(A_{i}\right) \in \mathbf{Q}^{n} ; \forall j \in\{1, \ldots, l\} \sum_{i=1}^{n} A_{i} a_{i j}^{\prime}=0\right\} \\
& =n-\rho(M)
\end{aligned}
$$

On the other hand, since the definition of M implies that $\rho(M)$ equals the dimension (over \mathbf{Q}) of $\operatorname{span}_{\mathbf{Q}}\left\{a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right\}=K$, we have $\rho(M)=$ l. Hence

$$
\operatorname{dim}_{\mathbf{Q}} \Pi_{a} \cap \mathbf{Q}^{n}=n-l
$$

By this,

$$
\Pi_{a} \cap \mathbf{Q}^{n}=\beta_{0}+\left(\mathbf{Q} \beta_{1} \oplus \cdots \oplus \mathbf{Q} \beta_{n-l}\right)
$$

holds for some $\beta_{0}, \beta_{1}, \ldots, \beta_{n-l} \in \mathbf{Q}^{n}$. And it is easy to see that such $\beta_{0}, \beta_{1}, \ldots, \beta_{n-l}$ satisfy

$$
\mathrm{Cl}\left(\Pi_{a} \cap \mathbf{Q}^{n}\right)=\beta_{0}+\left(\mathbf{R} \beta_{1} \oplus \cdots \oplus \mathbf{R} \beta_{n-l}\right)
$$

Thus we see (15) holds.

Next we prove

(16) $\bigcap_{g \in G} \Pi_{g(a)}$ also is a $(n-l)$-dimensional affine subspace of \mathbf{R}^{n}
as follows: Clearly $\bigcap_{g \in G} \Pi_{g(a)}$ is an affine subspace of \mathbf{R}^{n}. And, since, as we have already seen, $\Pi_{a} \cap \mathbf{Q}^{n}$ is non-empty, it follows from (14) that this affine subspace is non-empty. Let us compute its dimension. By $[K: \mathbf{Q}]=l, G$ consists of exactly l elements. Let g_{1}, \ldots, g_{l} denote these l elements of G and define
$N=\left(\begin{array}{c}g_{1}(a-b) \\ \vdots \\ g_{l}(a-b)\end{array}\right)=\left(\begin{array}{ccc}g_{1}\left(a_{1}-b_{1}\right) & \cdots & g_{1}\left(a_{n}-b_{n}\right) \\ \vdots & & \vdots \\ g_{l}\left(a_{1}-b_{1}\right) & \cdots & g_{l}\left(a_{n}-b_{n}\right)\end{array}\right)$.
Then we have

$$
\begin{aligned}
& \operatorname{dim}_{\mathbf{R}} \bigcap_{g \in G} \Pi_{g(a)} \\
& =\operatorname{dim}_{\mathbf{R}}\left\{\left(A_{i}\right) \in \mathbf{R}^{n} ; \forall j \in\{1, \ldots, l\}\right. \\
& \left.\qquad \sum_{i=1}^{n} A_{i}\left(g_{j}\left(a_{i}\right)-b_{i}\right)+1=0\right\} \\
& =\operatorname{dim}_{\mathbf{R}}\left\{\left(A_{i}\right) \in \mathbf{R}^{n} ; \forall j \in\{1, \ldots, l\}\right. \\
& \left.\qquad \sum_{i=1}^{n} A_{i} g_{j}\left(a_{i}-b_{i}\right)+1=0\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{dim}_{\mathbf{R}}\left\{\left(A_{i}\right) \in \mathbf{R}^{n} ; \forall j \in\{1, \ldots, l\}\right. \\
& \left.\qquad \sum_{i=1}^{n} A_{i} g_{j}\left(a_{i}-b_{i}\right)=0\right\} \\
& =n-\rho(N) .
\end{aligned}
$$

On the other hand, we see $g_{1}(a-b), \ldots, g_{l}(a-b)$ are linearly independent over \mathbf{R} and hence $\rho(N)=l$, because if $C_{1}, \ldots, C_{l} \in \mathbf{R}$ satisfy $\sum_{j=1}^{l} C_{j} g_{j}(a-b)=$ 0 , that is,

$$
\forall i \in\{1, \ldots, n\} \quad \sum_{j=1}^{l} C_{j} g_{j}\left(a_{i}-b_{i}\right)=0
$$

then, by the \mathbf{Q}-linearity of the operator $\sum_{j=1}^{l} C_{j} g_{j}$: $K \rightarrow \mathbf{R}$, we have

$$
\begin{aligned}
& \forall \alpha \in \operatorname{span}_{\mathbf{Q}}\left\{a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right\}=K \\
& \qquad \sum_{j=1}^{l} C_{j} g_{j}(\alpha)=0,
\end{aligned}
$$

that is, $\sum_{j=1}^{l} C_{j} g_{j}=0$, and hence, by Lemma 5 , $C_{1}=\cdots=C_{l}=0$. Therefore we see

$$
\operatorname{dim}_{\mathbf{R}} \bigcap_{g \in G} \Pi_{g(a)}=n-l
$$

holds and have thus proved (16)
From (14), (15), and (16), we obtain (5). This completes the proof.

Remark 6. As is easily seen from the arguments in Section 2 and Section 3, Theorem 3 holds even if we adopt a subfield k of \mathbf{R} instead of \mathbf{Q} and let b, K, and G be a fixed element of k^{n}, a Galois extension of k such that $K \subset \mathbf{R},[K: k] \leq n$, and the Galois group of K over k, respectively.

Remark 7. Let q be a non-degenerate and positive-definite quadratic form on \mathbf{R}^{n} with coefficients in \mathbf{Q} and define S_{a} by

$$
S_{a}=\left\{x \in \mathbf{R}^{n} ; q(x-a)=q(b-a)\right\}
$$

instead of (1). Even in this case, by modifying our arguments in Section 2 slightly, we can prove that (4) is equivalent to (5) without any change of the definition of Π_{a}, and hence we see Theorem 3 holds.

References

[1] Bourbaki, N.: Elements of Mathematics. Algebra. Chapters 4-7. Springer, Berlin-Heidelberg-New York (1990). (Originally published as Algèbre. Chapitres 4 à 7. Lecture Notes in Mathematics, 864, Masson, Paris (1981).)

