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Uniqueness theorems concerning a question of Gross

By Hong-Xun Yi∗) and Wei-Chuan Lin∗∗),∗∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Sept. 13, 2004)

Abstract: In this paper, we deal with the problem of uniqueness of meromorphic functions
concerning one question of Gross, and obtain some results that are improvements of that of former
authors. Moreover, the example shows that the result is sharp.
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1. Introduction and main results. In this
paper, the term “meromorphic” will always mean
meromorphic in the complex plane C. We assume
that the reader is familiar with the basic results and
notations of Nevanlinna’s value distribution theory
(see [4] or [5]), such as T (r, f), N(r, f) and m(r, f).
Meanwhile, we need the following notations. Let
f(z) be a meromorphic function. We denote by
n1)(r, f) the number of simple poles of f in |z| ≤ r,
N1)(r, f) is defined in terms of n1)(r, f) in the usual
way (see [17]). We further define

δ1)(∞, f) = 1 − lim sup
r→∞

N1)(r, f)
T (r, f)

.

By the definition of N1)(r, f), we have

N1)(r, f) ≤ N(r, f) ≤ 1
2
N1)(r, f) +

1
2
N(r, f)

≤ 1
2
N1)(r, f) +

1
2
T (r, f).

From this we obtain
1
2
δ1)(∞, f) ≤ 1

2
δ1)(∞, f) +

1
2
δ(∞, f)(1)

≤ Θ(∞, f) ≤ δ1)(∞, f).

Let S be a subset of distinct elements in Ĉ. Define

E(S, f) =
⋃
a∈S

{z|f(z)−a = 0, counting multiplicity},

E(S, f) =
⋃
a∈S

{z|f(z)−a = 0, ignoring multiplicity}.
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Let f and g be two nonconstant meromorphic
functions. If E(S, f) = E(S, g), we say f and g share
the set S CM (counting multiplicity). If E(S, f) =
E(S, g), we say f and g share the set S IM (ignoring
multiplicity). Especially, let S = {a}, where a ∈ Ĉ,
we say f and g share the value a CM if E(S, f) =
E(S, g), and say f and g share the value a IM if
E(S, f) = E(S, g) (see [16]).

In [3] F. Gross proved that there exist three fi-
nite sets Sj (j = 1, 2, 3) such that any two noncon-
stant entire functions f and g satisfying E(Sj , f) =
E(Sj , g) for j = 1, 2, 3 must be identical, and asked
the following question (see [3, Question 6]):

Question A. Can one find two finite sets Sj
(j = 1, 2) such that any two entire functions f and
g satisfying E(Sj , f) = E(Sj , g) (j = 1, 2) must be
identical?

H. Yi seems to have been the first to draw the af-
firmative answer to the above question A completely
(see [12]). Since then, many results have been ob-
tained for this and related topics (see [1, 2, 6–11, 14]
and [15]).

In [3], F. Gross asked: “If the answer to Ques-
tion 6 is affirmative, it would be interesting to know
how large both sets would have to be.” It is natural
to ask the following question:

Question B. What are the smallest cardinal-
ities of S1 and S2 respectively, where S1 and S2 are
two finite sets such that any two entire functions f
and g satisfying E(Sj , f) = E(Sj , g) for j = 1, 2 must
be identical?

In 1998, H. Yi proved the following theorems.
Theorem A (see [16, Theorem 4]). Let S1 =

{0} and S2 = {w|wn(w+ a) − b = 0}, where n (≥ 2)
is an integer, a and b are two nonzero constants such
that the algebraic equation wn(w+ a)− b = 0 has no
multiple roots. If f and g are two entire functions
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satisfying E(Sj , f) = E(Sj , g) for j = 1, 2, then f ≡
g.

Theorem B (see [16, Theorem 2]). Let S1

and S2 are two finite sets such that any two
entire functions f and g satisfying E(Sj , f) =
E(Sj , g) for j = 1, 2 must be identical, then
max{#(S1),#(S2)} ≥ 3, where #(S) denotes the
cardinality of the set S.

From Theorem A and Theorem B, we immedi-
ately obtain that the smallest cardinalities of S1 and
S2 are 1 and 3 respectively, where S1 and S2 are two
finite sets such that any two entire functions f and
g satisfying E(Sj , f) = E(Sj , g) for j = 1, 2 must
be identical. Obviously, Theorem A and Theorem B
answer the above Question B.

Now it is natural to ask the following question:
Question 1. What can be said if f and g are

two meromorphic functions satisfying E({∞}, f) =
E({∞}, g) in Theorem A?

In this paper, we prove the following theorems,
which answer Question 1.

Theorem 1. Let S1 = {0}, S2 = {∞} and
S3 = {w|wn(w + a) − b = 0}, where n (≥ 3) is an
integer, a and b are two nonzero constants such that
the algebraic equation wn(w+a)−b = 0 has no mul-
tiple roots. If f and g are two meromorphic func-
tions satisfying E(Sj , f) = E(Sj , g) for j = 1, 2, 3
and Θ(∞, f) > 0, then f ≡ g.

Remark 1. The assumption “Θ(∞, f) > 0”
in Theorem 1 can be replaced by “δ1)(∞, f) > 0”.

Remark 2. From (1), we know that
Θ(∞, f) > 0 if and only if δ1)(∞, f) > 0. This
shows that Theorem 1 and Remark 1 are equivalent
to each other. The following example shows that
Theorem 1 is sharp.

Example 1. Let

f(z) = −ae
z(enz − 1)

e(n+1)z − 1
, g(z) = − a(enz − 1)

e(n+1)z − 1
.

It is easy to see that f and g satisfy E(Sj , f) =
E(Sj , g) for j = 1, 2, 3, and Θ(∞, f) = 0 and
δ1)(∞, f) = 0. However, f �≡ g. This shows that
the assumption “Θ(∞, f) > 0” in Theorem 1 is best
possible.

Theorem 2. Let S1 = {0}, S2 = {∞} and
S3 = {w|wn(w + a) − b = 0}, where n (≥ 2) is an
integer, a and b are two nonzero constants such that
the algebraic equation wn(w + a) − b = 0 has no
multiple roots. If f and g are meromorphic functions

satisfying E(Sj , f) = E(Sj , g) for j = 1, 2, 3 and
Θ(∞, f) > 1/2, then f ≡ g.

Theorem 3. Let S1, S2 and S3 be defined as
in Theorem 2. If f and g are meromorphic functions
satisfying E(Sj , f) = E(Sj , g) for j = 1, 2, 3 and
δ1)(∞, f) > 5/6, then f ≡ g.

Remark 3. Obviously, Theorem 2 and Theo-
rem 3 answer the Question A and Question B posed
by Gross. In case that f is an entire function, we have
Θ(∞, f) = δ1)(∞, f) = 1, so both of Theorem 2 and
Theorem 3 improve Theorem A.

Suppose that f has no simple poles, then
δ1)(∞, f) = 1. Therefore, as an application of Theo-
rem 3, we obtain the following result.

Corollary 1. Let S1, S2 and S3 be defined as
in Theorem 2. If f and g are meromorphic functions
satisfying E(Sj , f) = E(Sj , g) for j = 1, 2, 3 and f

has no simple poles, then f ≡ g.
Remark 4. In case that f is an entire func-

tion, f has no simple poles, so Corollary 1 improves
Theorem A.

Moreover, as an immediate consequence of
Corollary 1, we have

Corollary 2. Let S1, S2 and S3 be defined as
in Theorem 2. For a positive integer k, if f and g

are meromorphic functions satisfying E(Sj , f(k)) =
E(Sj , g(k)) for j = 1, 2, 3, then f(k) ≡ g(k).

2. Some Lemmas. In this section, f and
g are two nonconstant meromorphic functions, and
S3 = {w|wn(w+a)−b = 0}, where n (≥ 2) is an inte-
ger, a and b are two nonzero constants such that the
algebraic equation wn(w+a)−b = 0 has no multiple
roots. We denote by

(2) F =
fn(f + a)

b
, G =

gn(g + a)
b

.

Obviously, if E(S3, f) = E(S3, g) then F and G share
1 CM.

Lemma 1. Suppose that E({0}, f)=E({0}, g)
and Θ(∞, f) > 0. If F ≡ G, where F and G are
defined as (2), then f ≡ g.

Proof. Suppose that f �≡ g. Since F ≡ G, we
have

(3) fn(f + a) = gn(g + a),

and hence, f and g share 0, ∞ CM. Thus, we may
assume that

(4)
f

g
= eα,
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where α is an entire function. By f �≡ g, we obtain
that eα �≡ 1. From (3) and (4) we deduce

(5) f = −ae
α(enα − 1)
e(n+1)α − 1

, g = − a(enα − 1)
e(n+1)α − 1

.

Now we distinguish the following two cases.
Case 1. If eα is a constant, then it follows from

(5) that f is also constant. This is a contradiction.
Case 2. If eα is nonconstant, then we have from

(5) that

T (r, f) = nT (r, eα) + S(r, f),

N(r, f) = nT (r, eα) + S(r, f).

It follows that Θ(∞, f) = 0. This contradicts
Θ(∞, f) > 0.

This completes the proof of Lemma 1.
Lemma 2. Let Sj (j = 1, 2, 3) be defined as

in Theorem 2, and let F and G be defined as (2). If
E(S1, f) = E(S1, g), E(Sj , f) = E(Sj , g) for j = 2, 3
and F �≡ G, then

(6) N
(
r,

1
f

)
= N

(
r,

1
g

)
= S(r, f) + S(r, g).

Proof. Set

(7) H1 :=
F ′

F − 1
− G′

G− 1
.

Since E(Sj , f) = E(Sj , g) for j = 2, 3, we have F
and G share 1, ∞ CM, and hence, (7) implies that
N(r, H1) = S(r, f) + S(r, g). Moreover, by a loga-
rithmic derivative theorem, we get that m(r, H1) =
S(r, f) + S(r, g), so

(8) T (r, H1) = S(r, f) + S(r, g).

We discuss the following two cases.
Case 1. Suppose that H1 ≡ 0. By integration,

we have from (7)

(9) F − 1 = A(G− 1),

where A is a nonzero constant. Since F �≡ G, we
have A �= 1. Noting that E(S1, f) = E(S1, g), from
(2) and (9) we obtain that 0 is a Picard exceptional
value of f and g. Thus, (6) holds.

Case 2. Suppose that H1 �≡ 0. Assume that
z0 is a zero-point of f , by E(S1, f) = E(S1, g), we
obtain that z0 is also zero-point of H1. Thus, from
this and (8), we have

N
(
r,

1
f

)
= N

(
r,

1
g

)
≤ N

(
r,

1
H1

)
= S(r, f)+S(r, g),

which proves Lemma 2.

Lemma 3. Under the condition of Lemma 2,
we have

N(r, f) = N(r, g)(10)

≤ 1
n

(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

and

N(r, f) = N(r, g)(11)

≤ 1
5
(T (r, f) + T (r, g)) +

3
5
N1)(r, f)

+ S(r, f) + S(r, g).

Proof. Set

(12) H2 :=
( F ′

F − 1
− G′

G− 1

)
−
(F ′

F
− G′

G

)
,

then

H2 =
F ′

F (F − 1)
− G′

G(G− 1)
.

It follows that

N(r, H2)(13)

≤ N
(
r,

1
f

)
+N

(
r,

1
f + a

)
+N

(
r,

1
g + a

)
.

Therefore, by a logarithmic derivative theorem, (6)
and (13), we get that

(14) T (r, H2) ≤ T (r, f)+T (r, g)+S(r, f)+S(r, g).

We discuss the following two cases.
Case 1. Suppose that H2 ≡ 0. By integration,

we have from (12)

(15)
F − 1
F

= B
G− 1
G

,

where B is nonzero constant. Since F �≡ G, we have
B �= 1. Again by (15), we deduce that ∞ is a Picard
exceptional value of f . Therefore, (10) and (11) hold.

Case 2. Suppose that H2 �≡ 0. Assume that z1
is a pole of f with multiplicity p, then an elementary
calculation gives that z1 is the zero of H2 with mul-
tiplicity at least (n+1)p−1. From this and (14), we
obtain

(2n+ 1)N(r, f) − (n + 1)N1)(r, f)(16)

≤ N
(
r,

1
H2

)
≤ T (r, f) + T (r, g)

+ S(r, f) + S(r, g).

Noting that

(2n+ 1)N(r, f) − (n + 1)N1)(r, f) ≥ nN(r, f),
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we obtain from (16) that (10) holds. Again by (16),
we have

(2n+1)N(r, f) ≤ T (r, f)+T (r, g)

+ (n+1)N1)(r, f)+S(r, f)+S(r, g).

It follows from n ≥ 2 that (11) holds. This completes
the proof of Lemma 3.

Finally, we need the following important lemma
due to Yi (see [13]). We first introduce some nota-
tions.

Let F (z) be a meromorphic function, we denote
by n2(r, F ) the number of poles of F in |z| ≤ r,
where a simple pole is counted once and a multiple
pole is counted two times, N2(r, F ) is defined as the
counting function of n2(r, F ). Moreover, we denote
by E any set with finite linear measure.

Lemma 4. Let F and G be two nonconstant
meromorphic functions such that F and G share 1,
∞ CM. If

(17)

N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+ 2N(r, F ) < λT (r) + S(r),

where λ < 1, T (r) = max{T (r, F ), T (r, G)} and
S(r) = o{T (r)} (r → ∞, r �∈ E), then F ≡ G or
F G ≡ 1.

3. Proof of main results.
3.1. Proof of Theorem 1. We define F and

G as (2), then F and G share 1 CM.
Suppose that F �≡ G. Lemma 2 implies that

N(r, 1/f) = N(r, 1/g) = S(r). Therefore, we have

(18)

N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+ 2N(r, F )

≤ N
(
r,

1
f + a

)
+N

(
r,

1
g + a

)
+ 2N(r, f) + S(r).

Set T1(r) := max{T (r, f), T (r, g)}, then we obtain
from (2) that

(19) T (r) = (n+ 1)T1(r) + O(1),

where T (r) = max{T (r, F ), T (r, G)}. From (10),
(18) and (19) we deduce that

N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+ 2N(r, F )(20)

≤ 2 + 4
n

n+ 1
T (r) + S(r).

Since n ≥ 3, we have 2 + (4/n) < n + 1. Using
Lemma 4, we have F G ≡ 1. From (2) we obtain

fn (f + a) gn (g + a) ≡ b2,

which implies that 0, −a and ∞ are all Picard ex-
ceptional values of f . This is a contradiction. And
hence, we obtain that F ≡ G, and by Lemma 1, we
have that f ≡ g.

This completes the proof of Theorem 1.
3.2. Proof of Theorem 2. If n ≥ 3, by

Theorem 1, we have f ≡ g. Next we assume that
n = 2. Proceeding as in the proof of Theorem 1, we
have (18) and (19). From (18) and (19), we deduce
that

N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+ 2N(r, F )(21)

≤ 4 − 2 Θ(∞, f)
3

T (r) + S(r).

Noting that 4− 2Θ(∞, f) < 3 when Θ(∞, f) > 1/2,
and using Lemma 4, we also obtain the conclusion of
Theorem 2.

3.3. Proof of Theorem 3. If n ≥ 3, by
Theorem 1, we have f ≡ g. Next we assume that
n = 2. Proceeding as in the proof of Theorem 1,
we also have (18) and (19). From (11) and (18), we
deduce that

N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+ 2N(r, F )(22)

≤ 14
5
T1(r) +

6
5
N1)(r, f) + S(r).

From (19) and (22) we obtain

N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+ 2N(r, F )

≤ 4 − 6
5
δ1)(∞, f)
3

T (r) + S(r).

Noting that δ1)(∞, f) > 5/6 and using Lemma 4 and
a similar method to the above proof, we obtain the
conclusion of Theorem 3.

4. Concluding Remarks. In fact, we can
obtain the following result from Section 3.

Remark 5. The assumption “E(S1, f) =
E(S1, g)” in Theorem 1 can be replaced by
“E(S1 , f) = E(S1 , g)”.

Similarly, in Remark 1, Theorem 2, Theorem 3
the assumption “E(S1, f) = E(S1 , g)”can be re-
placed by “E(S1, f) = E(S1, g)”.
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