On the solution of $x^{2}+d y^{2}=m$

By Julius Magalona Basilla*)
Department of Mathematics, Sophia University
7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554
(Communicated by Shokichi Iyanaga, M. J. A., May 12, 2004)

Abstract

A simple proof of the validity of Cornacchia's algorithm for solving the diophantine equation $x^{2}+d y^{2}=m$ is presented. Furthermore, the special case $d=1$ is solved completely.

Key words: Cornacchia's algorithm; quadratic forms; diophantine equations.

In 1908, G. Cornacchia gave an algorithm for solving the diophantine equation $x^{2}+d y^{2}=4 p$, for p prime (cf. [1]). The same algorithm can be used to solve the diophantine equation

$$
\begin{equation*}
x^{2}+d y^{2}=m \tag{1}
\end{equation*}
$$

where $1 \leq d<m$, m may not be prime. The algorithm is briefly described as follows:

1. Put $r_{0}=m$ and $r_{1}^{2} \equiv-d(\bmod m)$, where $0 \leq$ $r_{1} \leq(m / 2)$.
2. Using Euclidean algorithm, compute $r_{i+2} \equiv r_{i}$ $\left(\bmod r_{i+1}\right)$ recursively until we arrive at $r_{k}^{2}<$ m.
3. If $\left(m-r_{k}^{2} / d\right)$ is a square integer, say s^{2}, we get the solution $\left(r_{k}, s\right)$.
A proof of the validity of this algorithm relying on Diophantine Approximation was given by F. Morain and J.-L. Nicolas (cf. [2]). In this paper, we give a simpler proof. Moreover, we claim that if $r_{0}=m, r_{1}^{2} \equiv-1(\bmod m), 1 \leq r_{1}<(m / 2)$, then $m=r_{k}^{2}+r_{k+1}^{2}$, when $r_{k-1}^{2}>m>r_{k}^{2}$.
4. A simple proof. Let d and m be integers such that $1 \leq d<m$.

Lemma 1. If $\left(x_{0}, y_{0}\right)$ is a primitive solution of (1), then there exists an integer $t, 0<t<m, t^{2} \equiv$ $-d(\bmod m)$ such that $\left(x_{0}, y_{0}\right) \in\langle(m, 0),(t, 1)\rangle_{\mathbf{z}}$.

Proof. Clearly, $\operatorname{gcd}\left(y_{0}, m\right)=1$. Choose $t, 0<$ $t<m$ such that $y_{0} t \equiv x_{0}(\bmod m)$. We have $0 \equiv x_{0}^{2}+d y_{0}^{2} \equiv y_{0}^{2}\left(t^{2}+d\right)(\bmod m)$. Thus, $t^{2} \equiv$ $-d(\bmod m)$. Also, for some integer $l,\left(x_{0}, y_{0}\right)=$ $l(m, 0)+y_{0}(t, 1) \in\langle(m, 0),(t, 1)\rangle_{\mathbf{Z}}$.

2000 Mathematics Subject Classification. Primary 11Y16; Secondary 11D09.
${ }^{*}$) On study leave from the Department of Mathematics, University of the Philippines, Diliman, Quezon City Philippines.

Define $L_{t}:=\langle(m, 0),(t, 1)\rangle_{\mathbf{z}}$. Clearly, if the solutions $\left(x_{0}, y_{0}\right)$ and $\left(-x_{0},-y_{0}\right)$ are in L_{t}, the solutions $\left(-x_{0}, y_{0}\right)$ and $\left(x_{0},-y_{0}\right)$ are in L_{m-t}. This suggests that, to find all the primitive solutions of (1), it is enough to consider all square roots t of $-d$ modulo m, where $1 \leq t \leq(m / 2)$ and compute for all the vectors (x, y) in L_{t} with $x^{2}+d y^{2}=m$. We will discuss how to find these vectors.

Lemma 2. Let $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle, \vec{v}=\left\langle v_{1}, v_{2}\right\rangle$ be generators of a lattice such that $0 \leq u_{2}, 0 \leq v_{2}$, $\left|v_{1}\right|<\left|u_{1}\right|, u_{1} v_{1}<0$. Then the vector $\vec{w}=\left\langle w_{1}, w_{2}\right\rangle$ with the least w_{2} such that $0<w_{2},\left|w_{1}\right|<\left|v_{1}\right|$ is given by $\vec{w}=\vec{u}+q \vec{v}$, where $q=\left\lfloor-\left(u_{1} / v_{1}\right)\right\rfloor$. Moreover, $\langle\vec{u}, \vec{v}\rangle_{\mathbf{Z}}=\langle\vec{v}, \vec{u}+q \vec{v}\rangle_{\mathbf{Z}}$.

For the proof (cf. [3]).
Lemma 3. Let r_{0}, r_{1} be positive integers. Construct the finite sequences $\left\{r_{i}\right\},\left\{q_{i}\right\},\left\{P_{i}\right\}$, and $\left\{Q_{i}\right\}$ as follows:

$$
\begin{array}{ll}
r_{i}=q_{i} r_{i+1}+r_{i+2}, & q_{i}=\left\lfloor\frac{r_{i}}{r_{i+1}}\right\rfloor \\
P_{-1}=0 ; P_{0}=1 ; & P_{i+1}=q_{i} P_{i}+P_{i-1} \\
Q_{-1}=1 ; Q_{0}=0 ; & Q_{i+1}=q_{i} Q_{i}+Q_{i-1}
\end{array}
$$

for $0 \leq i \leq n-1$, where $r_{n}=\operatorname{gcd}\left(r_{0}, r_{1}\right)$ and $r_{n+1}=$ 0 . Then, for $0 \leq i \leq n$,

$$
\begin{align*}
r_{0} & =P_{i} r_{i}+P_{i-1} r_{i+1} \tag{2}\\
r_{i+1} & =(-1)^{i}\left(P_{i} r_{1}-Q_{i} r_{0}\right) \tag{3}
\end{align*}
$$

The proof is by induction on i.
Putting $r_{0}=m$ and $r_{1}^{2} \equiv-d(\bmod m)$, from
(3) we get,

$$
\begin{equation*}
r_{i}^{2}+d P_{i-1}^{2} \equiv 0 \quad(\bmod m) \tag{4}
\end{equation*}
$$

for $0 \leq i \leq n+1$.
Proposition 4. Let $r_{0}=m$ and $r_{1}=t$ where $t^{2} \equiv-d(\bmod m)$. Construct the sequence $\left\{r_{i}\right\}$,
$\left\{P_{i}\right\}$ as in Lemma 3. The diophantine equation (1) has a solution in L_{t} if and only if $d P_{k-1}^{2}<m$, when $r_{k-1}^{2}>m>r_{k}^{2}$.

Proof. (\Rightarrow) Let $\left(x_{0}, y_{0}\right)$ be a solution of (1) in L_{t}. Without loss of generality, we can change the sign of x_{0} and assume $y_{0}>0$. If $r_{k-1}^{2}>m>r_{k}^{2}$, we have $\left|x_{0}\right|^{2}<x_{0}^{2}+d y_{0}^{2}=m<r_{k-1}^{2}$. That is $\left|x_{0}\right|<$ $\left|r_{k-1}\right|$.

Put $\overrightarrow{u_{0}}=(-m, 0)$ and $\overrightarrow{u_{1}}=(t, 1)$. By Lemma 2, the vector $\overrightarrow{u_{2}}=\left(-r_{2}, q\right)$ is the vector $\vec{w}=\left(w_{1}, w_{2}\right)$ with the least $w_{2}>0$ such that $\left|w_{1}\right|<|t|$. Note that the pair $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}$ satisfies the premises of Lemma 2 . Thus we can apply the Lemma repeatedly. Inductively, we can show that the vector $\vec{w}=\left(w_{1}, w_{2}\right)$ with the least $w_{2}>0$ such that $\left|w_{1}\right|<r_{i-1}$ is $\overrightarrow{u_{i}}=$ $\left((-1)^{i-1} r_{i}, P_{i-1}\right)$.

In particular, the vector $\vec{w}=\left(w_{1}, w_{2}\right)$ with the least w_{2} such that $\left|w_{1}\right|<\left|(-1)^{k-2} r_{k-1}\right|$ is $\left((-1)^{k-1} r_{k}, P_{k-1}\right)$. Since $\left|x_{0}\right|<r_{k-1}$, it follows that $P_{k-1} \leq y_{0}$ and hence, $d P_{k-1}^{2} \leq d y_{0}^{2}<m$.
(\Leftarrow) From (4), we have $d P_{k-1}^{2} \equiv-r_{k}^{2} \equiv m-r_{k}^{2}$ $(\bmod m)$. We get the solution $\left(r_{k}, P_{k-1}\right)$.

We now consider the special case $d=1$.
Proposition 5. Let $t^{2} \equiv-1(\bmod m), 0<$ $t<(m / 2)$. Set $r_{0}=m$ and $r_{1}=t$ and construct the finite sequence $\left\{r_{i}\right\}, r_{i}=q_{i} r_{i+1}+r_{i+2}$, for $0 \leq i \leq$ $n-1$, where $r_{0}>r_{1}>\cdots>r_{n}=1>r_{n+1}=0$. If $r_{k-1}^{2}>m>r_{k}^{2}$ then $m=r_{k}^{2}+r_{k+1}^{2}$.

Proof. Construct the sequence $\left\{P_{i}\right\}$ as in Lemma 3. We get the following relations.

$$
\begin{aligned}
m & =r_{0}=P_{n} r_{n}+P_{n-1} r_{n+1}=P_{n} \\
r_{n-1} & =q_{n-1} r_{n}+r_{n+1}=q_{n-1} \geq 2 \\
m & =P_{n}=q_{n-1} P_{n-1}+P_{n-2}>2 P_{n-1}
\end{aligned}
$$

since $n \geq 2$ and $P_{n-2} \neq 0$. Also

$$
\begin{aligned}
1=r_{n} & =(-1)^{n-1}\left(P_{n-1} r_{1}-Q_{n-1} r_{0}\right) \\
& \equiv(-1)^{n-1} P_{n-1} t \quad(\bmod m) \\
t & \equiv(-1)^{n} P_{n-1} \quad(\bmod m) .
\end{aligned}
$$

It follows that n must be even say $n=2 k$, and $t=$ P_{n-1}. Inductively, we can show $P_{n-i}=r_{i}$ for $0 \leq$ $i \leq n+1$. From Lemma 3, we have $m=r_{0}=$ $P_{k} r_{k}+P_{k-1} r_{k+1}=r_{k}^{2}+r_{k+1}^{2}$. Observe that $r_{k-1}^{2}=$ $\left(q_{k-1} r_{k}+r_{k+1}\right)^{2}>r_{k}^{2}+r_{k+1}^{2}=m>r_{k}^{2}$. This proves the proposition.
2. A proof of uniqueness. We now show that for a particular square root t modulo m of $-d$,
the only primitive solution of (1) belonging to the lattice $\langle(m, 0),(t, 1)\rangle_{\mathbf{Z}}$ is $\left(r_{k}, P_{k-1}\right)$. In the case $d=$ 1 , because of symmetry we have two: $\left(r_{k}, r_{k+1}\right)$ and $\left(r_{k+1}, r_{k}\right)$.

Assume that $\left(r_{k}, P_{k-1}\right)$ is the solution of (1) obtained by applying Cornacchia's algorithm. When $d=1$, it is clear that $d P_{k+1}^{2} \geq m$.

Lemma 6. If $d>1$, then $d P_{k}^{2} \geq m$.
Proof. Suppose that $d P_{k}^{2}<m$. As in the proof of Proposition 4, we get $r_{k+1}^{2}+d P_{k}^{2}=m$. From (2), we have

$$
\begin{aligned}
m=r_{0} & =P_{k} r_{k}+P_{k-1} r_{k+1} \\
& \leq \frac{r_{k}^{2}+P_{k}^{2}}{2}+\frac{r_{k+1}^{2}+P_{k-1}^{2}}{2} \\
& <\frac{r_{k}^{2}+d P_{k-1}^{2}+r_{k+1}^{2}+d P_{k}^{2}}{2}=m .
\end{aligned}
$$

We have a contradiction.
Proposition 7. Let $d>1$ and $t^{2} \equiv-d$ $(\bmod m)$. If $(x, y), y>0$ is a solution of (1) such that $(x, y) \in L_{t}$, then $(x, y)=\left((-1)^{k-1} r_{k}, P_{k-1}\right)$.

Proof. Since $x^{2}+d y^{2}=m$ it follows that $|x|^{2}<$ m and $d y^{2}<m$. Thus, $|x|<r_{k-1}$. If $|x|<r_{k}<$ r_{k-1}, then $y \geq P_{k}$, by minimality of P_{k}. Thus $d y^{2} \geq$ $d P_{k}^{2} \geq m$.

If $|x|>r_{k}$, since $|x|<r_{k-1}$, then $y \geq P_{k-1}$ by minimality of P_{k-1}. Then $x^{2}+d y^{2}>r_{k}^{2}+d P_{k-1}^{2}=$ m.

Proposition 8. Let $t^{2} \equiv-1(\bmod m)$. If $(x, y), y>0$ is a solution of $x^{2}+y^{2}=m$ such that $(x, y) \in L_{t}$, then $(x, y)=\left((-1)^{k-1} r_{k}, r_{k+1}\right)$ or $(x, y)=\left((-1)^{k} r_{k+1}, r_{k}\right)$.

The proof is similar to that of Proposition 7.
This proves that using Cornacchia's algorithm on all the square-root t modulo m of $-d$, we can find all the primitive solutions of (1).

References

[1] Cohen, H.: A Course in Computational Number Theory. Grad. Texts in Math., 138. SpringerVerlag, New York, pp. 34-36 (1993).
[2] Morain, F., and Nicolas, J.-L.: On Cornacchia's Algorithm for Solving the Diophantine Equation $u^{2}+d v^{2}=m$. Courbes elliptiques et tests de primalite These, Universite de Lyon I, 20 September (1990).
[3] Wada, H.: A note on the Pell equation. Tokyo J. Math., 2, 133-136 (1979).

