[Vol. 80(A),

On the solution of $x^2 + dy^2 = m$

By Julius Magalona BASILLA^{*)}

Department of Mathematics, Sophia University 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Communicated by Shokichi Iyanaga, M. J. A., May 12, 2004)

Abstract: A simple proof of the validity of Cornacchia's algorithm for solving the diophantine equation $x^2 + dy^2 = m$ is presented. Furthermore, the special case d = 1 is solved completely.

Key words: Cornacchia's algorithm; quadratic forms; diophantine equations.

In 1908, G. Cornacchia gave an algorithm for solving the diophantine equation $x^2 + dy^2 = 4p$, for p prime (cf. [1]). The same algorithm can be used to solve the diophantine equation

$$(1) x^2 + dy^2 = m$$

where $1 \leq d < m$, m may not be prime. The algorithm is briefly described as follows:

- 1. Put $r_0 = m$ and $r_1^2 \equiv -d \pmod{m}$, where $0 \leq r_1 \leq (m/2)$.
- 2. Using Euclidean algorithm, compute $r_{i+2} \equiv r_i \pmod{r_{i+1}}$ recursively until we arrive at $r_k^2 < m$.
- 3. If $(m r_k^2/d)$ is a square integer, say s^2 , we get the solution (r_k, s) .

A proof of the validity of this algorithm relying on Diophantine Approximation was given by F. Morain and J.-L. Nicolas (cf. [2]). In this paper, we give a simpler proof. Moreover, we claim that if $r_0 = m, r_1^2 \equiv -1 \pmod{m}, \ 1 \leq r_1 < (m/2)$, then $m = r_k^2 + r_{k+1}^2$, when $r_{k-1}^2 > m > r_k^2$.

1. A simple proof. Let d and m be integers such that $1 \le d < m$.

Lemma 1. If (x_0, y_0) is a primitive solution of (1), then there exists an integer $t, 0 < t < m, t^2 \equiv$ $-d \pmod{m}$ such that $(x_0, y_0) \in \langle (m, 0), (t, 1) \rangle_{\mathbf{Z}}$.

Proof. Clearly, $gcd(y_0, m) = 1$. Choose t, 0 < t < m such that $y_0t \equiv x_0 \pmod{m}$. We have $0 \equiv x_0^2 + dy_0^2 \equiv y_0^2(t^2 + d) \pmod{m}$. Thus, $t^2 \equiv -d \pmod{m}$. Also, for some integer l, $(x_0, y_0) = l(m, 0) + y_0(t, 1) \in \langle (m, 0), (t, 1) \rangle_{\mathbf{Z}}$.

Define $L_t := \langle (m,0), (t,1) \rangle_{\mathbf{Z}}$. Clearly, if the solutions (x_0, y_0) and $(-x_0, -y_0)$ are in L_t , the solutions $(-x_0, y_0)$ and $(x_0, -y_0)$ are in L_{m-t} . This suggests that, to find all the primitive solutions of (1), it is enough to consider all square roots t of -d modulo m, where $1 \le t \le (m/2)$ and compute for all the vectors (x, y) in L_t with $x^2 + dy^2 = m$. We will discuss how to find these vectors.

Lemma 2. Let $\vec{u} = \langle u_1, u_2 \rangle$, $\vec{v} = \langle v_1, v_2 \rangle$ be generators of a lattice such that $0 \leq u_2, 0 \leq v_2,$ $|v_1| < |u_1|, u_1v_1 < 0$. Then the vector $\vec{w} = \langle w_1, w_2 \rangle$ with the least w_2 such that $0 < w_2, |w_1| < |v_1|$ is given by $\vec{w} = \vec{u} + q\vec{v}$, where $q = \lfloor -(u_1/v_1) \rfloor$. Moreover, $\langle \vec{u}, \vec{v} \rangle_{\mathbf{Z}} = \langle \vec{v}, \vec{u} + q\vec{v} \rangle_{\mathbf{Z}}$.

For the proof (cf. [3]).

Lemma 3. Let r_0 , r_1 be positive integers. Construct the finite sequences $\{r_i\}$, $\{q_i\}$, $\{P_i\}$, and $\{Q_i\}$ as follows:

$$\begin{aligned} r_i &= q_i r_{i+1} + r_{i+2}, \quad q_i = \left\lfloor \frac{r_i}{r_{i+1}} \right\rfloor \\ P_{-1} &= 0; P_0 = 1; \quad P_{i+1} = q_i P_i + P_{i-1} \\ Q_{-1} &= 1; Q_0 = 0; \quad Q_{i+1} = q_i Q_i + Q_{i-1} \end{aligned}$$

for $0 \le i \le n-1$, where $r_n = \gcd(r_0, r_1)$ and $r_{n+1} = 0$. Then, for $0 \le i \le n$,

(2)
$$r_0 = P_i r_i + P_{i-1} r_{i+1},$$

(3)
$$r_{i+1} = (-1)^i (P_i r_1 - Q_i r_0).$$

The proof is by induction on i.

Putting $r_0 = m$ and $r_1^2 \equiv -d \pmod{m}$, from (3) we get,

(4)
$$r_i^2 + dP_{i-1}^2 \equiv 0 \pmod{m}$$

for $0 \leq i \leq n+1$.

Proposition 4. Let $r_0 = m$ and $r_1 = t$ where $t^2 \equiv -d \pmod{m}$. Construct the sequence $\{r_i\}$,

²⁰⁰⁰ Mathematics Subject Classification. Primary 11Y16; Secondary 11D09.

^{*)}On study leave from the Department of Mathematics, University of the Philippines, Diliman, Quezon City Philippines.

 $\{P_i\}$ as in Lemma 3. The diophantine equation (1) has a solution in L_t if and only if $dP_{k-1}^2 < m$, when $r_{k-1}^2 > m > r_k^2$.

Proof. (\Rightarrow) Let (x_0, y_0) be a solution of (1) in L_t . Without loss of generality, we can change the sign of x_0 and assume $y_0 > 0$. If $r_{k-1}^2 > m > r_k^2$, we have $|x_0|^2 < x_0^2 + dy_0^2 = m < r_{k-1}^2$. That is $|x_0| < m$ $|r_{k-1}|.$

Put $\overrightarrow{u_0} = (-m, 0)$ and $\overrightarrow{u_1} = (t, 1)$. By Lemma 2, the vector $\overrightarrow{u_2} = (-r_2, q)$ is the vector $\overrightarrow{w} = (w_1, w_2)$ with the least $w_2 > 0$ such that $|w_1| < |t|$. Note that the pair $\overrightarrow{u_1}$, $\overrightarrow{u_2}$ satisfies the premises of Lemma 2. Thus we can apply the Lemma repeatedly. Inductively, we can show that the vector $\vec{w} = (w_1, w_2)$ with the least $w_2 > 0$ such that $|w_1| < r_{i-1}$ is $\overrightarrow{u_i} =$ $((-1)^{i-1}r_i, P_{i-1}).$

In particular, the vector $\vec{w} = (w_1, w_2)$ with the least w_2 such that $|w_1| < |(-1)^{k-2}r_{k-1}|$ is $((-1)^{k-1}r_k, P_{k-1})$. Since $|x_0| < r_{k-1}$, it follows that

 $\begin{array}{l} ((1) & (1)$

We now consider the special case d = 1.

Proposition 5. Let $t^2 \equiv -1 \pmod{m}, 0 <$ t < (m/2). Set $r_0 = m$ and $r_1 = t$ and construct the finite sequence $\{r_i\}, r_i = q_i r_{i+1} + r_{i+2}, \text{ for } 0 \leq i \leq i$ n-1, where $r_0 > r_1 > \cdots > r_n = 1 > r_{n+1} = 0$. If $r_{k-1}^2 > m > r_k^2$ then $m = r_k^2 + r_{k+1}^2$.

Proof. Construct the sequence $\{P_i\}$ as in Lemma 3. We get the following relations.

$$m = r_0 = P_n r_n + P_{n-1} r_{n+1} = P_n$$

$$r_{n-1} = q_{n-1} r_n + r_{n+1} = q_{n-1} \ge 2$$

$$m = P_n = q_{n-1} P_{n-1} + P_{n-2} > 2P_{n-1},$$

since $n \ge 2$ and $P_{n-2} \ne 0$. Also

$$1 = r_n = (-1)^{n-1} (P_{n-1}r_1 - Q_{n-1}r_0)$$

$$\equiv (-1)^{n-1} P_{n-1}t \pmod{m}$$

$$t \equiv (-1)^n P_{n-1} \pmod{m}.$$

It follows that n must be even say n = 2k, and t = P_{n-1} . Inductively, we can show $P_{n-i} = r_i$ for $0 \leq 1$ $i \leq n+1$. From Lemma 3, we have $m = r_0 =$ $P_k r_k + P_{k-1} r_{k+1} = r_k^2 + r_{k+1}^2$. Observe that $r_{k-1}^2 = (q_{k-1} r_k + r_{k+1})^2 > r_k^2 + r_{k+1}^2 = m > r_k^2$. This proves the proposition.

2. A proof of uniqueness. We now show that for a particular square root t modulo m of -d, the only primitive solution of (1) belonging to the lattice $\langle (m,0), (t,1) \rangle_{\mathbf{Z}}$ is (r_k, P_{k-1}) . In the case d =1, because of symmetry we have two: (r_k, r_{k+1}) and $(r_{k+1}, r_k).$

Assume that (r_k, P_{k-1}) is the solution of (1) obtained by applying Cornacchia's algorithm. When d = 1, it is clear that $dP_{k+1}^2 \ge m$.

Lemma 6. If d > 1, then $dP_k^2 \ge m$.

Proof. Suppose that $dP_k^2 < m$. As in the proof of Proposition 4, we get $r_{k+1}^2 + dP_k^2 = m$. From (2), we have

$$m = r_0 = P_k r_k + P_{k-1} r_{k+1}$$

$$\leq \frac{r_k^2 + P_k^2}{2} + \frac{r_{k+1}^2 + P_{k-1}^2}{2}$$

$$< \frac{r_k^2 + dP_{k-1}^2 + r_{k+1}^2 + dP_k^2}{2} = m$$

We have a contradiction. Proposition 7. Let d > 1 and $t^2 \equiv -d$ $(\mod m)$. If (x, y), y > 0 is a solution of (1) such that $(x, y) \in L_t$, then $(x, y) = ((-1)^{k-1}r_k, P_{k-1}).$

Proof. Since $x^2 + dy^2 = m$ it follows that $|x|^2 < m$ m and $dy^2 < m$. Thus, $|x| < r_{k-1}$. If $|x| < r_k < r_k$ r_{k-1} , then $y \ge P_k$, by minimality of P_k . Thus $dy^2 \ge$ $dP_k^2 \ge m.$

If $|x| > r_k$, since $|x| < r_{k-1}$, then $y \ge P_{k-1}$ by minimality of P_{k-1} . Then $x^2 + dy^2 > r_k^2 + dP_{k-1}^2 =$

Proposition 8. Let $t^2 \equiv -1 \pmod{m}$. If (x,y), y > 0 is a solution of $x^2 + y^2 = m$ such that $(x, y) \in L_t$, then $(x, y) = ((-1)^{k-1}r_k, r_{k+1})$ or $(x, y) = ((-1)^k r_{k+1}, r_k).$

The proof is similar to that of Proposition 7.

This proves that using Cornacchia's algorithm on all the square-root t modulo m of -d, we can find all the primitive solutions of (1).

References

- [1] Cohen, H.: A Course in Computational Number Theory. Grad. Texts in Math., 138. Springer-Verlag, New York, pp. 34-36 (1993).
- Morain, F., and Nicolas, J.-L.: On Cornacchia's [2] Algorithm for Solving the Diophantine Equation $u^2 + dv^2 = m$. Courbes elliptiques et tests de primalite These, Universite de Lyon I, 20 September (1990).
- [3] Wada, H.: A note on the Pell equation. Tokyo J. Math., 2, 133–136 (1979).

No. 5]