On Poincaré sums for number fields

By Takashi Ono

Department of Mathematics, The Johns Hopkins University Baltimore, Maryland 21218, U.S.A. (Communicated by Shokichi IYANAGA, M. J. A., April 12, 2005)

Abstract: Let G be a finite group acting on a ring R. To know the twisted Tate cohomology $\hat{H}^0(G, R^+)_{\gamma}$ parametrized by $\gamma = [c] \in H^1(G, R^{\times})$ is a basic theme inspired by Poincaré. We shall consider this when G is the Galois group of a Galois extension K/k of number fields and R is the ring of integers of K.

Key words: Number fields; local fields; cohomology groups; ambiguous ideals; differents; ramifications.

1. Introduction. This is a continuation of [1, 2]. We shall determine, for any finite Galois extension K/k of number fields, the index $i_{\gamma}(K/k)$ where $\gamma = [c] \in H^1(\text{Gal}(K/k), \mathcal{O}_K^{\times})$. It is crucial to look at the prime decomposition of principal ideal generated by a special value of Poincaré sum related to the cocycle c. This clarifies a mysterious looking criterion for parity of indices for real quadratic fields. (See [3]) As for basic facts on number theory, see [4].

2. The map p_c . Let R be a ring with unit 1_R , G a finite group acting on R (as ring automorphisms) and R^{\times} the group of units of R. We denote the action by $x \mapsto {}^sx$, $x \in R$, $s \in G$. Since G acts on R^{\times} (as group automorphisms) the 1-st cocycle set $Z^1(G, R^{\times})$ makes sense:

(1)
$$Z^1(G, R^{\times})$$

= { $c: G \to R^{\times}, c(st) = c(s) {}^{s}c(t), s, t \in G$ }.

We consider a map $p_c : R \to R$, for $c \in Z^1(G, R^{\times})$:

(2)
$$p_c(x) = \sum_{s \in G} c(s)^{-s} x, \quad x \in R.$$

Clearly the map is additive. A basic observation is the following criterion so that $p_c(\alpha) \in R^{\times}$ for some $\alpha \in R$.

Theorem 1 (Hilbert). Assume that $|G|1_R \in \mathbb{R}^{\times}$. For a cocycle $c \in \mathbb{Z}^1(G, \mathbb{R}^{\times})$, we have

$$c \sim 1 \ (c \ is \ a \ coboundary)$$

 $\Leftrightarrow p_c(\alpha) \in R^{\times} \ for \ some \ \alpha \in R.$

When that is so, we have

$$c(s) = p_c(\alpha) \, {}^s p_c(\alpha)^{-1}.$$

Proof. Suppose first that

(3)
$$p_c(\alpha) = \sum_t c(t) \ ^t \alpha \in R^{\times}.$$

Apply s on both sides of (3) and then multiply c(s) on the results. Then, in view of (1), we have

$$c(s) {}^{s}p_{c}(\alpha) = \sum_{t} c(s) {}^{s}c(t) {}^{st}\alpha = \sum_{t} c(st) {}^{st}\alpha = p_{c}(\alpha).$$

As $p_c(\alpha) \in R^{\times}$, we obtain $c \sim 1$. Conversely, assume that $c \sim 1$. So $c(s) = \alpha^{-s} \alpha^{-1}$, $\alpha \in R^{\times}$. Put $x = \alpha$ in (2). Then we find

$$p_c(\alpha) = \sum_s c(s) \, {}^s \alpha = \alpha |G| \mathbf{1}_R \in R^{\times}.$$

Corollary 1 (Hilbert Theorem 90). If K/kis a finite Galois extension of fields, then $H^1(\operatorname{Gal}(K/k), K^{\times}) = 1.$

Proof. By the linear independence of characters, for any cocycle $c \in Z^1(\operatorname{Gal}(K/k), K^{\times})$, we have $p_c(\theta) = \sum_{s \in \operatorname{Gal}(K/k)} c(s) \ ^s \theta \neq 0$ for some $\theta \in K$ and the assertion follows from Theorem 1.

3. The module M_c/P_c . Notation being as in 1, for a cocycle $c \in Z(G, R^{\times})$, we set

(4)
$$M_c = \{x \in R, c(s) \ {}^s x = x, \text{ for all } s \in G\},\$$

(5)
$$P_c = \{ p_c(x), \text{ for all } x \in R \}.$$

(4), (5) imply the relation

(6)
$$p_c(a) = |G|a$$
, when $a \in M_c$

²⁰⁰⁰ Mathematics Subject Classification. 11R34.

Dedicated to Professor S. Iyanaga, ${\mbox{\scriptsize M.J.A.}},$ on his 99th birthday.

and we find

(7)
$$|G|M_c \subseteq P_c \subseteq M_c.$$

The structure of the module M_c/P_c depends only on the cohomology class $\gamma = [c]$ in $H^1(G, R^{\times})$. As for details of idetification of the quotient module M_c/P_c with the (modified) Tate group $\hat{H}^0(G, R^+)_{\gamma}$, see [1].

4. Galois extensions K/k. In what follows, we denote by k either a global or a local field (of characteristic 0). As such, k is either a finite extension of \mathbf{Q} or \mathbf{Q}_p . We denote by \mathcal{O}_k the ring of integers of k.

Let K/k be a finite Galois extension with the Galois group G = Gal(K/k). Then G acts on the ring \mathcal{O}_K of integers of K and hence on the group \mathcal{O}_K^{\times} . For a cocycle $c \in Z^1(G, \mathcal{O}_K^{\times})$ we shall look at modules M_c , P_c defined by (4), (5) with $R = \mathcal{O}_K$. First, viewing c as a cocycle in $Z^1(G, K^{\times})$, we have, by Corollary 1, $c(s) = \xi^{-1} s \xi$ where ξ may be chosen from \mathcal{O}_K . Then we find that $M_c = \mathcal{O}_K \cap \xi^{-1} \mathcal{O}_k$.

In other words, we have

(8)
$$\xi M_c = \xi \mathcal{O}_K \cap \mathcal{O}_k = (\xi \mathcal{O}_K)^G, \quad \xi \in \mathcal{O}_K.$$

Second, as $p_c(x) = \xi^{-1} \sum_{s \in G} {}^s \xi {}^s x$, we have

(9)
$$\xi p_c(x) = T_{K/k}(\xi x).$$

From (8), (9) we obtain

(10)
$$M_c/P_c = (\xi \mathcal{O}_K)^G / T_{K/k}(\xi \mathcal{O}_K) = \hat{H}^0(G, R^+)_{\gamma},$$

 $c(s) = \xi^{-1 \ s} \xi.$

5. Ambiguous ideals. Notation being as in 3, an ideal \mathfrak{A} in \mathcal{O}_K will be called *ambiguous* if ${}^{s}\mathfrak{A} = \mathfrak{A}$, $s \in G$. Let \mathfrak{p} be a prime ideal in \mathcal{O}_k . The prime decomposition of \mathfrak{p} in K is of the form

(11)
$$\mathfrak{p} = \prod_{\mathfrak{P}|\mathfrak{p}} \mathfrak{P}^{e_{\mathfrak{P}}} = \left(\prod_{\mathfrak{P}|\mathfrak{p}} \mathfrak{P}\right)^{e_{\mathfrak{p}}}.$$

Let us put

$$\mathfrak{p}^{\#}=\prod_{\mathfrak{P}|\mathfrak{p}}\mathfrak{P}.$$

Note that (11) becomes

(12)
$$\mathfrak{p} = \mathfrak{p}^{\#e_{\mathfrak{p}}}$$

It is easy to see that

(13)
$$\mathfrak{A} \subset \mathcal{O}_K$$
 is ambiguous $\Leftrightarrow \mathfrak{A} = \prod_{\mathfrak{p}} \mathfrak{p}^{\# m_{\mathfrak{p}}}.$

For a real number x, put $\lceil x \rceil$ = the smallest integer

For a real number x, put $|x| = \text{the smallest integer} \ge x$. Hence when $x \notin \mathbf{Z}$, $\lceil x \rceil = [x] + 1$.

Proposition 1. Let $\mathfrak{A} = \prod_{\mathfrak{p}} \mathfrak{p}^{\#m_{\mathfrak{p}}}$ be an ambiguous ideal. Then we have

$$\mathfrak{A}^G = \mathfrak{A} \cap \mathcal{O}_k = \prod_{\mathfrak{p}} \mathfrak{p}^{\lceil \frac{m\mathfrak{p}}{e_{\mathfrak{p}}} \rceil}.$$

Proof. Let $m_{\mathfrak{p}} = qe_{\mathfrak{p}} + r, \ 0 \le r \le e_{\mathfrak{p}} - 1$. We have

$$\mathfrak{p}^{\#m_\mathfrak{p}} = \mathfrak{p}^{\#qe_\mathfrak{p}} \mathfrak{p}^{\#r} = \mathfrak{p}^q \mathfrak{p}^{\#r} = \mathfrak{p}^{\left\lfloor \frac{m\mathfrak{p}}{e\mathfrak{p}} \right\rfloor} \mathfrak{p}^{\#r}.$$

Then our assertion follows since

$$\mathfrak{p}^{\#r} \cap \mathcal{O}_k = \begin{cases} 1 & \text{when } r = 0, \\ \mathfrak{p} & \text{when } r > 0. \end{cases}$$

6. Differents. For a Galois extension K/k of number fields or local fields, denote by $\mathcal{D}_{K/k}$ the different of the extension. It is an ambiguous integral ideal in K. So it can be expressed as

(14)
$$\mathcal{D}_{K/k} = \prod_{\mathfrak{p}} \mathfrak{p}^{\# t_{\mathfrak{p}}}.$$

Proposition 2. Let $\mathfrak{A} = \prod_{\mathfrak{p}} \mathfrak{p}^{\#m_{\mathfrak{p}}}$ be an integral ambiguous ideal in K. Then $T_{K/k}\mathfrak{A} = \prod_{\mathfrak{p}} \mathfrak{p}^{\left[\frac{m_{\mathfrak{p}}+t_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right]}$.

Proof. Let \mathfrak{p} be a prime ideal in k and h be an integer ≥ 0 . By the definition of $\mathcal{D}_{K/k}$, we get the following chains of logical equivalences:

$$\mathfrak{p}^{h} \mid T_{K/k} \mathfrak{A} \Leftrightarrow \mathfrak{p}^{h} \mid \mathfrak{A} \mathcal{D}_{K/k} \Leftrightarrow (\mathfrak{p}^{\#})^{e_{\mathfrak{p}}h} \mid \mathfrak{A} \mathcal{D}_{K/k}$$

$$\Leftrightarrow (\mathfrak{p}^{\#})^{e_{\mathfrak{p}}h} \mid (\mathfrak{p}^{\#})^{m_{\mathfrak{p}}+t_{\mathfrak{p}}}$$

$$\Leftrightarrow e_{\mathfrak{p}}h \leq m_{\mathfrak{p}} + t_{\mathfrak{p}} \Leftrightarrow h \leq \left[\frac{m_{\mathfrak{p}} + t_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right].$$

Back to the situation in **3**, since $\xi \in \mathcal{O}_K$ and $c(s) \in \mathcal{O}_K^{\times}$, $\mathfrak{A} = \xi \mathcal{O}_K$ is an integral ambiguous ideal, and hence we obtain, from (10), Proposition 1, Proposition 2, the following

Proposition 3.

$$(M_c: P_c) = \prod_{\mathfrak{p}} N \mathfrak{p}^{\left[\frac{m_{\mathfrak{p}} + t_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right] - \left\lceil \frac{m_{\mathfrak{p}}}{e_{\mathfrak{p}}} \right\rceil}$$

where $N \mathfrak{p} = (\mathcal{O}_k: \mathfrak{p}).$

7. Localization. From now on, let K/k be a Galois extension of number fields and G =Gal(K/k). Let \mathfrak{P} , \mathfrak{p} be prime ideals of K, k, respectively such that $\mathfrak{P} \mid \mathfrak{p}$. Denote by $K_{\mathfrak{P}}, k_{\mathfrak{p}}$ the completions of K, k, respectively. Then $K_{\mathfrak{P}}/k_{\mathfrak{p}}$ is also a Galois extension whose Galois group $G_{\mathfrak{P}}$ may be identified as the decomposition group at \mathfrak{P} in G. Clearly, \mathcal{O}_K , \mathcal{O}_k are embedded in $\mathcal{O}_{K\mathfrak{P}}$, $\mathcal{O}_{k\mathfrak{P}}$, respectively and similarly for groups of units. Therefore, any cocycle $c \in Z^1(G, \mathcal{O}_K^{\times})$ induces naturally a cocycle $c_{\mathfrak{P}} \in Z^1(G_{\mathfrak{P}}, \mathcal{O}_{K\mathfrak{P}}^{\times})$. Thus, we are ready to use Proposition 3 to find $(M_c : P_c), (M_{c\mathfrak{P}} : P_{c\mathfrak{P}})$. If ξ is a solution to the cocycle $c_{\mathfrak{P}}$ for G (see (10)), then ξ is one to the cocycle $c_{\mathfrak{P}}$ for $G_{\mathfrak{P}}$. Put

(15)
$$\mathfrak{A} = \xi \mathcal{O}_K = \prod_{\mathfrak{p}} \mathfrak{p}^{\#m_{\mathfrak{p}}}$$

and define

(16)
$$\mathfrak{A}_{\mathfrak{P}} = \xi \mathcal{O}_{K_{\mathfrak{P}}}.$$

Since

$$m_{\mathfrak{p}} = \nu_{\mathfrak{P}}(\mathfrak{A}) = \nu_{\mathfrak{P}}(\mathfrak{A}_{\mathfrak{P}})$$

the exponent $m_{\mathfrak{p}}$ for $\mathfrak{A}_{\mathfrak{P}}$ is consistent with double purposes, global and local. Next, since, by (14), we have

$$\mathcal{D}_{K/k} = \prod_{\mathfrak{p}} \mathfrak{p}^{\#t_{\mathfrak{p}}} = \prod_{\mathfrak{P}} \mathfrak{P}^{t_{\mathfrak{P}}} = \prod_{\mathfrak{P}} \mathcal{D}_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}.$$

Now, applying Proposition 3 to a local field k, we have

Proposition 4.

$$(M_{c_{\mathfrak{P}}}:P_{c_{\mathfrak{P}}})=N\mathfrak{p}^{\left[\frac{m_{\mathfrak{p}}+t_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right]-\left\lceil\frac{m_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right]}$$

Note also that as $e_{\mathfrak{p}} = 1$, $t_{\mathfrak{p}} = 0$ for almost all \mathfrak{p} , the indices $(M_{c_{\mathfrak{P}}}: P_{c_{\mathfrak{P}}}) = 1$ for almost all \mathfrak{P} .

Summarizing all these, we obtain

Theorem 2. Let K/k be a finite Galois extension of number fields and $G = \operatorname{Gal}(K/k)$. For a cocycle $c \in Z^1(G, \mathcal{O}_K^{\times})$ denote by $c_{\mathfrak{P}}$ the cocycle induced from c by localization at \mathfrak{P} . Then we have the product relation $(M_c : P_c) = \prod_{\mathfrak{p}} (M_{c_{\mathfrak{P}}} : P_{c_{\mathfrak{P}}})$ where for each \mathfrak{p} we choose one \mathfrak{P} dividing \mathfrak{p} .

From the ramification theory of Galois extensions we have

$$t_{\mathfrak{p}} \ge e_{\mathfrak{p}} - 1$$
, for all \mathfrak{p}

$$t_{\mathfrak{p}} \ge 1 \Leftrightarrow e_{\mathfrak{p}} \ge 2$$
 (Dedekind).

Needless to say, if $e_{\mathfrak{p}} = 1$ then \mathfrak{p} is unramified, if $t_{\mathfrak{p}} = e_{\mathfrak{p}} - 1 \ge 1$ then \mathfrak{p} is said to be tamely ramified. Furthermore, if \mathfrak{p} is such that $t_{\mathfrak{p}} \ge e_{\mathfrak{p}} \ge 2$ then \mathfrak{p} is wildly ramified. (Note that \mathfrak{p} is wildly ramified $\Leftrightarrow p \mid e_{\mathfrak{p}}$, where p means the characteristic of the finite field $\mathcal{O}_k/\mathfrak{p}$.)

We will use these terms for extensions in an obvious way. Proposition 4 implies immediately the following

Theorem 3. Let K/k be a finite Galois extension of number fields. If K/k is unramified or tamely ramified, then $M_c = P_c$ for all cocycle $c \in Z^1(\text{Gal}(K/k), \mathcal{O}_K^{\times})$.

8. Canonical class for local fields. Let K/k be a Galois extension of number fields or local fields. In view of the remark at the end of **3**, we have a right to write

(17)
$$i_{\gamma}(K/k) = (M_c : P_c), \quad \gamma \in H^1(G, \mathcal{O}_K^{\times}).$$

Then we can express Theorem 2 as

Theorem 4. For a finite Galois extension K/k of number fields, we have $i_{\gamma}(K/k) = \prod_{\mathfrak{p}} i_{\gamma_{\mathfrak{P}}}(K_{\mathfrak{P}}/k_{\mathfrak{p}}).$

Now passing to localization, choose a prime element $\Pi \in K_{\mathfrak{P}}$. Then the relation

$${}^{s}\Pi = \Pi z_{s}, \ s \in G_{\mathfrak{P}}, \ z_{s} \in \mathcal{O}_{K_{\mathfrak{P}}}^{\times},$$

defines the cohomology class

(18)
$$\gamma_{K_{\mathfrak{P}}/k_{\mathfrak{p}}} = [z] \in H^1(G, \mathcal{O}_{K_{\mathfrak{P}}}^{\times}).$$

We know that the group $H^1(G, \mathcal{O}_{K_{\mathfrak{P}}}^{\times})$ is cyclic of order $e_{\mathfrak{p}}$ generated by $\gamma_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}$. (See [2]) Therefore for any class $\gamma = [c] \in H^1(G, \mathcal{O}_{K_{\mathfrak{P}}}^{\times})$, a unique integer $m \mod e_{\mathfrak{p}}$ is determined so that

(19)
$$\gamma = (\gamma_{K_{\mathfrak{P}}/k_{\mathfrak{p}}})^m.$$

In otherwords,

$$20) c \sim z^m.$$

Now, let ξ be a solution in K to the cocycle c in (10). Then (20) means that

$$\frac{{}^{s}\xi}{\xi} = u^{-1} \frac{{}^{s}\Pi^{m}}{\Pi^{m}} {}^{s}u, \quad u \in \mathcal{O}_{K_{\mathfrak{P}}}^{\times}$$

 $u\Pi^m = \xi v\pi^r$

where $v \in \mathcal{O}_{k_{\mathfrak{p}}}^{\times}$ and π being a prime element in $k_{\mathfrak{p}}$. In view of (15), we find

$$m = m_{\mathfrak{p}} + re_{\mathfrak{p}}$$

and so

(2)

1)
$$m \equiv m_{\mathfrak{p}} \mod e_{\mathfrak{p}}.$$

9. Quadratic fields. Now that we have a product relation (Theorem 4), our problem of indices for global fields is entirely reduced to local computations. As the easiest example, let us look at our old works again. (See [1, 3])

No. 4]

or

T. Ono

Let $K = \mathbf{Q}(\sqrt{d})$ where d is a square free integer. Let p, \mathfrak{P} be primes of \mathbf{Q} , K, respectively, such that $\mathfrak{P} \mid p$. When extensions $K_{\mathfrak{P}}/\mathbf{Q}_p$ is unramified or tamely ramified, then by Proposition 4, $i_{\gamma\mathfrak{P}}(K_{\mathfrak{P}}/\mathbf{Q}_p) = 1$. Therefore only wildly ramified case must be taken care of. This is precisely the case where

$$p = 2 \equiv 2, 3 \mod 4.$$

(i) $p = 2, d \equiv 2 \mod 4$. In this case, $\mathcal{D}_{K_{\mathfrak{P}}/\mathbf{Q}_2} = \mathfrak{P}^3$ and so $t_2 = 3$. Since the order of the cohomology group $H^1(G, \mathcal{O}_{K_{\mathfrak{P}}}^{\times}) = \langle \gamma_{\mathfrak{P}}(K_{\mathfrak{P}}/\mathbf{Q}_2) \rangle$ is $e_2 = 2$, we find that the number m, in (19), is eather 0 or 1. As we are allowed to replace m_2 by $m \mod e_2$, we get, using Proposition 4,

$$i_1(K_{\mathfrak{P}}/\mathbf{Q}_2) = 2^{\left\lfloor \frac{t_2}{e_2} \right\rfloor} = 2^{\left\lfloor \frac{3}{2} \right\rfloor} = 2$$

and, for $\gamma \neq 1$,

$$i_{\gamma}(K_{\mathfrak{P}}/\mathbf{Q}_2) = 2^{\left[\frac{t_2+m_2}{e_2}\right]} - \left[\frac{m_2}{e_2}\right]$$
$$= 2^{\left[\frac{3+1}{2}\right]} - \left[\frac{1}{2}\right] = 2.$$

So the index $i_{\gamma} = 2$ always.

(ii) $p = 2, d \equiv 3 \mod 4$. In this case we have $t_2 = 2$. The similar calculation as above shows this time that

$$i_{\gamma} = \begin{cases} 2 & \text{when } \gamma = 1, \text{ i.e. when } m_2 \text{ is even,} \\ 1 & \text{when } \gamma \neq 1, \text{ i.e. when } m_2 \text{ is odd.} \end{cases}$$

References

- T. Ono, A note on Poincaré sums for finite groups, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 4, 95–97.
- [2] T. Ono, On Poincaré sums for local fields, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 7, 115–118.
- [3] S.-M. Lee and T. Ono, On a certain invariant for real quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. **79** (2003), no. 8, 119–122.
- [4] J. W.S. Cassels and A. Fröhlich (eds.), Algebraic Number Theory, Proc. Instructional Conf., (Brighton, 1965), Academic Press, London-New York (1986).