On Poincaré sums for number fields

By Takashi Ono
Department of Mathematics, The Johns Hopkins University Baltimore, Maryland 21218, U.S.A.
(Communicated by Shokichi Iyanaga, m. J. A., April 12, 2005)

Abstract

Let G be a finite group acting on a ring R. To know the twisted Tate cohomology $\hat{H}^{0}\left(G, R^{+}\right)_{\gamma}$ parametrized by $\gamma=[c] \in H^{1}\left(G, R^{\times}\right)$is a basic theme inspired by Poincaré. We shall consider this when G is the Galois group of a Galois extension K / k of number fields and R is the ring of integers of K.

Key words: Number fields; local fields; cohomology groups; ambiguous ideals; differents; ramifications.

1. Introduction. This is a continuation of [1, 2]. We shall determine, for any finite Galois extension K / k of number fields, the index $i_{\gamma}(K / k)$ where $\gamma=[c] \in H^{1}\left(\operatorname{Gal}(K / k), \mathcal{O}_{K}^{\times}\right)$. It is crucial to look at the prime decomposition of principal ideal generated by a special value of Poincaré sum related to the cocycle c. This clarifies a mysterious looking criterion for parity of indices for real quadratic fields. (See [3]) As for basic facts on number theory, see [4].
2. The $\operatorname{map} \boldsymbol{p}_{\boldsymbol{c}}$. Let R be a ring with unit $1_{R}, G$ a finite group acting on R (as ring automorphisms) and R^{\times}the group of units of R. We denote the action by $x \mapsto{ }^{s} x, x \in R, s \in G$. Since G acts on R^{\times}(as group automorphisms) the 1-st cocycle set $Z^{1}\left(G, R^{\times}\right)$makes sense:
(1) $Z^{1}\left(G, R^{\times}\right)$

$$
=\left\{c: G \rightarrow R^{\times}, c(s t)=c(s)^{s} c(t), s, t \in G\right\} .
$$

We consider a map $p_{c}: R \rightarrow R$, for $c \in Z^{1}\left(G, R^{\times}\right)$:

$$
\begin{equation*}
p_{c}(x)=\sum_{s \in G} c(s)^{s} x, \quad x \in R \tag{2}
\end{equation*}
$$

Clearly the map is additive. A basic observation is the following criterion so that $p_{c}(\alpha) \in R^{\times}$for some $\alpha \in R$.

Theorem 1 (Hilbert). Assume that $|G| 1_{R} \in$ R^{\times}. For a cocycle $c \in Z^{1}\left(G, R^{\times}\right)$, we have

$$
\begin{aligned}
& c \sim 1(c \text { is a coboundary }) \\
& \quad \Leftrightarrow p_{c}(\alpha) \in R^{\times} \text {for some } \alpha \in R .
\end{aligned}
$$

[^0]When that is so, we have

$$
c(s)=p_{c}(\alpha)^{s} p_{c}(\alpha)^{-1}
$$

Proof. Suppose first that

$$
\begin{equation*}
p_{c}(\alpha)=\sum_{t} c(t)^{t} \alpha \in R^{\times} . \tag{3}
\end{equation*}
$$

Apply s on both sides of (3) and then multiply $c(s)$ on the results. Then, in view of (1), we have
$c(s)^{s} p_{c}(\alpha)=\sum_{t} c(s)^{s} c(t)^{s t} \alpha=\sum_{t} c(s t)^{s t} \alpha=p_{c}(\alpha)$.
As $p_{c}(\alpha) \in R^{\times}$, we obtain $c \sim 1$. Conversely, assume that $c \sim 1$. So $c(s)=\alpha^{s} \alpha^{-1}, \alpha \in R^{\times}$. Put $x=\alpha$ in (2). Then we find

$$
p_{c}(\alpha)=\sum_{s} c(s)^{s} \alpha=\alpha|G| 1_{R} \in R^{\times}
$$

Corollary 1 (Hilbert Theorem 90). If K / k is a finite Galois extension of fields, then $H^{1}\left(\operatorname{Gal}(K / k), K^{\times}\right)=1$.

Proof. By the linear independence of characters, for any cocycle $c \in Z^{1}\left(\operatorname{Gal}(K / k), K^{\times}\right)$, we have $p_{c}(\theta)=\sum_{s \in \operatorname{Gal}(K / k)} c(s)^{s} \theta \neq 0$ for some $\theta \in K$ and the assertion follows from Theorem 1.
3. The module $\boldsymbol{M}_{\boldsymbol{c}} / \boldsymbol{P}_{\boldsymbol{c}}$. Notation being as in 1, for a cocycle $c \in Z\left(G, R^{\times}\right)$, we set

$$
\begin{gather*}
M_{c}=\left\{x \in R, c(s)^{s} x=x, \text { for all } s \in G\right\}, \tag{4}\\
P_{c}=\left\{p_{c}(x), \text { for all } x \in R\right\} \tag{5}
\end{gather*}
$$

(4), (5) imply the relation

$$
\begin{equation*}
p_{c}(a)=|G| a, \quad \text { when } a \in M_{c} \tag{6}
\end{equation*}
$$

and we find

$$
\begin{equation*}
|G| M_{c} \subseteq P_{c} \subseteq M_{c} \tag{7}
\end{equation*}
$$

The structure of the module M_{c} / P_{c} depends only on the cohomology class $\gamma=[c]$ in $H^{1}\left(G, R^{\times}\right)$. As for details of idetification of the quotient module M_{c} / P_{c} with the (modified) Tate group $\hat{H}^{0}\left(G, R^{+}\right)_{\gamma}$, see [1].
4. Galois extensions K / k. In what follows, we denote by k either a global or a local field (of characteristic 0). As such, k is either a finite extension of \mathbf{Q} or \mathbf{Q}_{p}. We denote by \mathcal{O}_{k} the ring of integers of k.

Let K / k be a finite Galois extension with the Galois group $G=\operatorname{Gal}(K / k)$. Then G acts on the ring \mathcal{O}_{K} of integers of K and hence on the group \mathcal{O}_{K}^{\times}. For a cocycle $c \in Z^{1}\left(G, \mathcal{O}_{K}^{\times}\right)$we shall look at modules M_{c}, P_{c} defined by (4), (5) with $R=\mathcal{O}_{K}$. First, viewing c as a cocycle in $Z^{1}\left(G, K^{\times}\right)$, we have, by Corollary $1, c(s)=\xi^{-1}{ }^{s} \xi$ where ξ may be chosen from \mathcal{O}_{K}. Then we find that $M_{c}=\mathcal{O}_{K} \cap \xi^{-1} \mathcal{O}_{k}$.

In other words, we have

$$
\begin{equation*}
\xi M_{c}=\xi \mathcal{O}_{K} \cap \mathcal{O}_{k}=\left(\xi \mathcal{O}_{K}\right)^{G}, \quad \xi \in \mathcal{O}_{K} \tag{8}
\end{equation*}
$$

Second, as $p_{c}(x)=\xi^{-1} \sum_{s \in G}{ }^{s} \xi^{s} x$, we have

$$
\begin{equation*}
\xi p_{c}(x)=T_{K / k}(\xi x) \tag{9}
\end{equation*}
$$

From (8), (9) we obtain

$$
\begin{gather*}
M_{c} / P_{c}=\left(\xi \mathcal{O}_{K}\right)^{G} / T_{K / k}\left(\xi \mathcal{O}_{K}\right)=\hat{H}^{0}\left(G, R^{+}\right)_{\gamma} \tag{10}\\
c(s)=\xi^{-1 s} \xi
\end{gather*}
$$

5. Ambiguous ideals. Notation being as in $\mathbf{3}$, an ideal \mathfrak{A} in \mathcal{O}_{K} will be called ambiguous if $s \mathfrak{A}=$ $\mathfrak{A}, s \in G$. Let \mathfrak{p} be a prime ideal in \mathcal{O}_{k}. The prime decomposition of \mathfrak{p} in K is of the form

$$
\begin{equation*}
\mathfrak{p}=\prod_{\mathfrak{P} \mid \mathfrak{p}} \mathfrak{P}^{e_{\mathfrak{F}}}=\left(\prod_{\mathfrak{P} \mid \mathfrak{p}} \mathfrak{P}\right)^{e_{\mathfrak{p}}} . \tag{11}
\end{equation*}
$$

Let us put

$$
\mathfrak{p}^{\#}=\prod_{\mathfrak{P} \mid \mathfrak{p}} \mathfrak{P} .
$$

Note that (11) becomes

$$
\begin{equation*}
\mathfrak{p}=\mathfrak{p}^{\# e_{\mathfrak{p}}} \tag{12}
\end{equation*}
$$

It is easy to see that
(13) $\mathfrak{A} \subset \mathcal{O}_{K}$ is ambiguous $\Leftrightarrow \mathfrak{A}=\prod_{\mathfrak{p}} \mathfrak{p}^{\# m_{\mathfrak{p}}}$.

For a real number x, put $\lceil x\rceil=$ the smallest integer $\geq x$. Hence when $x \notin \mathbf{Z},\lceil x\rceil=[x]+1$.

Proposition 1. Let $\mathfrak{A}=\prod_{\mathfrak{p}} \mathfrak{p}^{\# m_{\mathfrak{p}}}$ be an ambiguous ideal. Then we have

$$
\mathfrak{A}^{G}=\mathfrak{A} \cap \mathcal{O}_{k}=\prod_{\mathfrak{p}} \mathfrak{p}^{\left\lceil\frac{m_{\mathfrak{p}}}{\left.e_{\mathfrak{p}}\right\rceil}\right.} .
$$

Proof. Let $m_{\mathfrak{p}}=q e_{\mathfrak{p}}+r, 0 \leq r \leq e_{\mathfrak{p}}-1$. We have

$$
\mathfrak{p}^{\# m_{\mathfrak{p}}}=\mathfrak{p}^{\# q e_{\mathfrak{p}}} \mathfrak{p}^{\# r}=\mathfrak{p}^{q} \mathfrak{p}^{\# r}=\mathfrak{p}^{\left[\frac{m_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right]} \mathfrak{p}^{\# r}
$$

Then our assertion follows since

$$
\mathfrak{p}^{\# r} \cap \mathcal{O}_{k}= \begin{cases}1 & \text { when } r=0 \\ \mathfrak{p} & \text { when } r>0\end{cases}
$$

6. Differents. For a Galois extension K / k of number fields or local fields, denote by $\mathcal{D}_{K / k}$ the different of the extension. It is an ambiguous integral ideal in K. So it can be expressed as

$$
\begin{equation*}
\mathcal{D}_{K / k}=\prod_{\mathfrak{p}} \mathfrak{p}^{\# t_{\mathfrak{p}}} \tag{14}
\end{equation*}
$$

Proposition 2. Let $\mathfrak{A}=\prod_{\mathfrak{p}} \mathfrak{p}^{\# m_{\mathfrak{p}}}$ be an integral ambiguous ideal in K. Then $T_{K / k} \mathfrak{A}=$ $\prod_{\mathfrak{p}} \mathfrak{p}^{\left[\frac{m_{\mathfrak{p}}+t_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right]}$.

Proof. Let \mathfrak{p} be a prime ideal in k and h be an integer ≥ 0. By the definition of $\mathcal{D}_{K / k}$, we get the following chains of logical equivalences:

$$
\begin{aligned}
\mathfrak{p}^{h} \mid T_{K / k} \mathfrak{A} & \Leftrightarrow \mathfrak{p}^{h}\left|\mathfrak{A} \mathcal{D}_{K / k} \Leftrightarrow\left(\mathfrak{p}^{\#}\right)^{e_{\mathfrak{p}} h}\right| \mathfrak{A} \mathcal{D}_{K / k} \\
& \Leftrightarrow\left(\mathfrak{p}^{\#}\right)^{e_{\mathfrak{p}} h} \mid\left(\mathfrak{p}^{\#}\right)^{m_{\mathfrak{p}}+t_{\mathfrak{p}}} \\
& \Leftrightarrow e_{\mathfrak{p}} h \leq m_{\mathfrak{p}}+t_{\mathfrak{p}} \Leftrightarrow h \leq\left[\frac{m_{\mathfrak{p}}+t_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right] .
\end{aligned}
$$

Back to the situation in $\mathbf{3}$, since $\xi \in \mathcal{O}_{K}$ and $c(s) \in \mathcal{O}_{K}^{\times}, \mathfrak{A}=\xi \mathcal{O}_{K}$ is an integral ambiguous ideal, and hence we obtain, from (10), Proposition 1, Proposition 2, the following

Proposition 3.

$$
\begin{aligned}
& \left(M_{c}: P_{c}\right)=\prod_{\mathfrak{p}} N \mathfrak{p}\left[\frac{m_{\mathfrak{p}}+t_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right]-\left\lceil\frac{m_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right\rceil \\
& \text { where } N \mathfrak{p}=\left(\mathcal{O}_{k}: \mathfrak{p}\right) .
\end{aligned}
$$

7. Localization. From now on, let K / k be a Galois extension of number fields and $G=$ $\operatorname{Gal}(K / k)$. Let $\mathfrak{P}, \mathfrak{p}$ be prime ideals of K, k, respectively such that $\mathfrak{P} \mid \mathfrak{p}$. Denote by $K_{\mathfrak{P}}, k_{\mathfrak{p}}$ the completions of K, k, respectively. Then $K_{\mathfrak{P}} / k_{\mathfrak{p}}$ is also a Galois extension whose Galois group $G_{\mathfrak{F}}$ may
be identified as the decomposition group at \mathfrak{P} in G. Clearly, $\mathcal{O}_{K}, \mathcal{O}_{k}$ are embedded in $\mathcal{O}_{K_{\mathfrak{F}}}, \mathcal{O}_{k_{\mathfrak{p}}}$, respectively and similarly for groups of units. Therefore, any cocycle $c \in Z^{1}\left(G, \mathcal{O}_{K}^{\times}\right)$induces naturally a cocycle $c_{\mathfrak{P}} \in Z^{1}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}^{\times}\right)$. Thus, we are ready to use Proposition 3 to find $\left(M_{c}: P_{c}\right),\left(M_{c_{\mathfrak{P}}}: P_{c_{\mathfrak{P}}}\right)$. If ξ is a solution to the cocycle c for G (see (10)), then ξ is one to the cocycle $c_{\mathfrak{P}}$ for $G_{\mathfrak{P}}$. Put

$$
\begin{equation*}
\mathfrak{A}=\xi \mathcal{O}_{K}=\prod_{\mathfrak{p}} \mathfrak{p}^{\# m_{\mathfrak{p}}} \tag{15}
\end{equation*}
$$

and define

$$
\begin{equation*}
\mathfrak{A}_{\mathfrak{P}}=\xi \mathcal{O}_{K_{\mathfrak{P}}} . \tag{16}
\end{equation*}
$$

Since

$$
m_{\mathfrak{p}}=\nu_{\mathfrak{P}}(\mathfrak{A})=\nu_{\mathfrak{P}}\left(\mathfrak{A}_{\mathfrak{P}}\right)
$$

the exponent $m_{\mathfrak{p}}$ for $\mathfrak{A}_{\mathfrak{P}}$ is consistent with double purposes, global and local. Next, since, by (14), we have

$$
\mathcal{D}_{K / k}=\prod_{\mathfrak{p}} \mathfrak{p}^{\# t_{\mathfrak{p}}}=\prod_{\mathfrak{P}} \mathfrak{P}^{t_{\mathfrak{P}}}=\prod_{\mathfrak{P}} \mathcal{D}_{K_{\mathfrak{P}} / k_{\mathfrak{p}}} .
$$

Now, applying Proposition 3 to a local field k, we have

Proposition 4.

$\left(M_{C_{\mathfrak{F}}}: P_{C_{\mathfrak{F}}}\right)=N \mathfrak{p}^{\left[\frac{m_{\mathfrak{p}}+t_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right]-\left\lceil\frac{m_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right\rceil}$.
Note also that as $e_{\mathfrak{p}}=1, t_{\mathfrak{p}}=0$ for almost all \mathfrak{p}, the indices $\left(M_{c_{\mathfrak{P}}}: P_{c_{\mathfrak{P}}}\right)=1$ for almost all \mathfrak{P}.

Summarizing all these, we obtain
Theorem 2. Let K / k be a finite Galois extension of number fields and $G=\operatorname{Gal}(K / k)$. For a cocycle $c \in Z^{1}\left(G, \mathcal{O}_{K}^{\times}\right)$denote by $c_{\mathfrak{P}}$ the cocycle induced from c by localization at \mathfrak{P}. Then we have the product relation $\left(M_{c}: P_{c}\right)=\prod_{\mathfrak{p}}\left(M_{c_{\mathfrak{P}}}: P_{C_{\mathfrak{P}}}\right)$ where for each \mathfrak{p} we choose one \mathfrak{P} dividing \mathfrak{p}.

From the ramification theory of Galois extensions we have

$$
\begin{gathered}
t_{\mathfrak{p}} \geq e_{\mathfrak{p}}-1, \quad \text { for all } \mathfrak{p} \\
t_{\mathfrak{p}} \geq 1 \Leftrightarrow e_{\mathfrak{p}} \geq 2 \quad \text { (Dedekind) } .
\end{gathered}
$$

Needless to say, if $e_{\mathfrak{p}}=1$ then \mathfrak{p} is unramified, if $t_{\mathfrak{p}}=e_{\mathfrak{p}}-1 \geq 1$ then \mathfrak{p} is said to be tamely ramified. Furthermore, if \mathfrak{p} is such that $t_{\mathfrak{p}} \geq e_{\mathfrak{p}} \geq 2$ then \mathfrak{p} is wildly ramified. (Note that \mathfrak{p} is wildly ramified \Leftrightarrow $p \mid e_{\mathfrak{p}}$, where p means the characteristic of the finite field $\mathcal{O}_{k} / \mathfrak{p}$.)

We will use these terms for extensions in an obvious way. Proposition 4 implies immediately the
following
Theorem 3. Let K / k be a finite Galois extension of number fields. If K / k is unramified or tamely ramified, then $M_{c}=P_{c}$ for all cocycle $c \in$ $Z^{1}\left(\operatorname{Gal}(K / k), \mathcal{O}_{K}^{\times}\right)$.
8. Canonical class for local fields. Let K / k be a Galois extension of number fields or local fields. In view of the remark at the end of $\mathbf{3}$, we have a right to write

$$
\begin{equation*}
i_{\gamma}(K / k)=\left(M_{c}: P_{c}\right), \quad \gamma \in H^{1}\left(G, \mathcal{O}_{K}^{\times}\right) \tag{17}
\end{equation*}
$$

Then we can express Theorem 2 as
Theorem 4. For a finite Galois extension K / k of number fields, we have $i_{\gamma}(K / k)$ $=\prod_{\mathfrak{p}} i_{\gamma_{\mathfrak{F}}}\left(K_{\mathfrak{P}} / k_{\mathfrak{p}}\right)$.

Now passing to localization, choose a prime element $\Pi \in K_{\mathfrak{P}}$. Then the relation

$$
{ }^{s} \Pi=\Pi z_{s}, \quad s \in G_{\mathfrak{P}}, \quad z_{s} \in \mathcal{O}_{K_{\mathfrak{F}}}^{\times},
$$

defines the cohomology class

$$
\begin{equation*}
\gamma_{K_{\mathfrak{P}} / k_{\mathfrak{p}}}=[z] \in H^{1}\left(G, \mathcal{O}_{K_{\mathfrak{P}}}^{\times}\right) . \tag{18}
\end{equation*}
$$

We know that the group $H^{1}\left(G, \mathcal{O}_{K_{\mathfrak{P}}}^{\times}\right)$is cyclic of order $e_{\mathfrak{p}}$ generated by $\gamma_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}$. (See [2]) Therefore for any class $\gamma=[c] \in H^{1}\left(G, \mathcal{O}_{K_{\mathfrak{P}}}^{\times}\right)$, a unique integer $m \bmod e_{\mathfrak{p}}$ is determined so that

$$
\begin{equation*}
\gamma=\left(\gamma_{K_{\mathfrak{P}} / k_{\mathfrak{p}}}\right)^{m} . \tag{19}
\end{equation*}
$$

In otherwords,

$$
\begin{equation*}
c \sim z^{m} \tag{20}
\end{equation*}
$$

Now, let ξ be a solution in K to the cocycle c in (10). Then (20) means that

$$
\frac{{ }^{s} \xi}{\xi}=u^{-1}{\frac{\Pi^{m}}{\Pi^{m}}{ }^{s} u, \quad u \in \mathcal{O}_{K_{\mathfrak{F}}}^{\times} .}
$$

or

$$
u \Pi^{m}=\xi v \pi^{r}
$$

where $v \in \mathcal{O}_{k_{\mathfrak{p}}}^{\times}$and π being a prime element in $k_{\mathfrak{p}}$. In view of (15), we find

$$
m=m_{\mathfrak{p}}+r e_{\mathfrak{p}}
$$

and so

$$
\begin{equation*}
m \equiv m_{\mathfrak{p}} \bmod e_{\mathfrak{p}} \tag{21}
\end{equation*}
$$

9. Quadratic fields. Now that we have a product relation (Theorem 4), our problem of indices for global fields is entirely reduced to local computations. As the easiest example, let us look at our old works again. (See [1, 3])

Let $K=\mathbf{Q}(\sqrt{d})$ where d is a square free integer. Let p, \mathfrak{P} be primes of \mathbf{Q}, K, respectively, such that $\mathfrak{P} \mid p$. When extensions $K_{\mathfrak{P}} / \mathbf{Q}_{p}$ is unramified or tamely ramified, then by Proposition 4, $i_{\gamma_{\mathfrak{P}}}\left(K_{\mathfrak{P}} / \mathbf{Q}_{p}\right)=1$. Therefore only wildly ramified case must be taken care of. This is precisely the case where

$$
p=2 \equiv 2,3 \bmod 4
$$

(i) $p=2, d \equiv 2 \bmod 4$. In this case, $\mathcal{D}_{K_{\mathfrak{F}} / \mathbf{Q}_{2}}=\mathfrak{P}^{3}$ and so $t_{2}=3$. Since the order of the cohomology group $H^{1}\left(G, \mathcal{O}_{K_{\mathfrak{B}}}^{\times}\right)=\left\langle\gamma_{\mathfrak{P}}\left(K_{\mathfrak{P}} / \mathbf{Q}_{2}\right)\right\rangle$ is $e_{2}=2$, we find that the number m, in (19), is eather 0 or 1 . As we are allowed to replace m_{2} by $m \bmod e_{2}$, we get, using Proposition 4,

$$
i_{1}\left(K_{\mathfrak{P}} / \mathbf{Q}_{2}\right)=2^{\left[\frac{t_{2}}{e_{2}}\right]}=2^{\left[\frac{3}{2}\right]}=2
$$

and, for $\gamma \neq 1$,

$$
\begin{aligned}
i_{\gamma}\left(K_{\mathfrak{P}} / \mathbf{Q}_{2}\right) & =2^{\left[\frac{t_{2}+m_{2}}{e_{2}}\right]}-\left\lceil\frac{m_{2}}{e_{2}}\right\rceil \\
& =2^{\left[\frac{3+1}{2}\right]}-\left\lceil\frac{1}{2}\right\rceil=2 .
\end{aligned}
$$

So the index $i_{\gamma}=2$ always.
(ii) $p=2, d \equiv 3 \bmod 4$. In this case we have $t_{2}=2$. The similar calculation as above shows this time that
$i_{\gamma}= \begin{cases}2 & \text { when } \gamma=1, \\ 1 & \text { i.e. when } m_{2} \text { is even, } \\ \gamma \neq 1, & \text { i.e. when } m_{2} \text { is odd. }\end{cases}$

References

[1] T. Ono, A note on Poincaré sums for finite groups, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 4, 95-97.
[2] T. Ono, On Poincaré sums for local fields, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 7, 115-118.
[3] S.-M. Lee and T. Ono, On a certain invariant for real quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 8, 119-122.
[4] J.W.S. Cassels and A. Fröhlich (eds.), Algebraic Number Theory, Proc. Instructional Conf., (Brighton, 1965), Academic Press, London-New York (1986).

[^0]: 2000 Mathematics Subject Classification. 11R34.
 Dedicated to Professor S. Iyanaga, M. J. A., on his 99th birthday.

