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On Poincaré sums for number fields
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Abstract: Let G be a finite group acting on a ring R. To know the twisted Tate cohomol-
ogy Ĥ0(G, R+)γ parametrized by γ = [c] ∈ H1(G, R×) is a basic theme inspired by Poincaré. We
shall consider this when G is the Galois group of a Galois extension K/k of number fields and R

is the ring of integers of K.
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1. Introduction. This is a continuation of
[1, 2]. We shall determine, for any finite Galois exten-
sion K/k of number fields, the index iγ(K/k) where
γ = [c] ∈ H1(Gal(K/k), O×

K). It is crucial to look at
the prime decomposition of principal ideal generated
by a special value of Poincaré sum related to the co-
cycle c. This clarifies a mysterious looking criterion
for parity of indices for real quadratic fields. (See
[3]) As for basic facts on number theory, see [4].

2. The map pc. Let R be a ring with unit
1R, G a finite group acting on R (as ring automor-
phisms) and R× the group of units of R. We denote
the action by x �→ sx, x ∈ R, s ∈ G. Since G acts
on R× (as group automorphisms) the 1-st cocycle set
Z1(G, R×) makes sense:

Z1(G, R×)(1)

= {c : G → R×, c(st) = c(s) sc(t), s, t ∈ G}.
We consider a map pc : R → R, for c ∈ Z1(G, R×):

(2) pc(x) =
∑
s∈G

c(s) sx, x ∈ R.

Clearly the map is additive. A basic observation is
the following criterion so that pc(α) ∈ R× for some
α ∈ R.

Theorem 1 (Hilbert). Assume that |G|1R ∈
R×. For a cocycle c ∈ Z1(G, R×), we have

c ∼ 1 (c is a coboundary)

⇔ pc(α) ∈ R× for some α ∈ R.
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When that is so, we have

c(s) = pc(α) spc(α)−1.

Proof. Suppose first that

(3) pc(α) =
∑

t

c(t) tα ∈ R×.

Apply s on both sides of (3) and then multiply c(s)
on the results. Then, in view of (1), we have

c(s) spc(α) =
∑

t

c(s) sc(t) stα =
∑

t

c(st) stα = pc(α).

As pc(α) ∈ R×, we obtain c ∼ 1. Conversely, assume
that c ∼ 1. So c(s) = α sα−1, α ∈ R×. Put x = α

in (2). Then we find

pc(α) =
∑

s

c(s) sα = α|G|1R ∈ R×.

Corollary 1 (Hilbert Theorem 90). If K/k

is a finite Galois extension of fields, then
H1(Gal(K/k), K×) = 1.

Proof. By the linear independence of charac-
ters, for any cocycle c ∈ Z1(Gal(K/k), K×), we have
pc(θ) =

∑
s∈Gal(K/k) c(s) sθ �= 0 for some θ ∈ K and

the assertion follows from Theorem 1.
3. The module Mc/Pc. Notation being as

in 1, for a cocycle c ∈ Z(G, R×), we set

Mc = {x ∈ R, c(s) sx = x, for all s ∈ G},(4)

Pc = {pc(x), for all x ∈ R}.(5)

(4), (5) imply the relation

(6) pc(a) = |G|a, when a ∈ Mc
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and we find

(7) |G|Mc ⊆ Pc ⊆ Mc.

The structure of the module Mc/Pc depends
only on the cohomology class γ = [c] in H1(G, R×).
As for details of idetification of the quotient module
Mc/Pc with the (modified) Tate group Ĥ0(G, R+)γ ,
see [1].

4. Galois extensions K/k. In what fol-
lows, we denote by k either a global or a local field
(of characteristic 0). As such, k is either a finite ex-
tension of Q or Qp. We denote by Ok the ring of
integers of k.

Let K/k be a finite Galois extension with the
Galois group G = Gal(K/k). Then G acts on the
ring OK of integers of K and hence on the group
O×

K . For a cocycle c ∈ Z1(G,O×
K) we shall look at

modules Mc, Pc defined by (4), (5) with R = OK .
First, viewing c as a cocycle in Z1(G, K×), we have,
by Corollary 1, c(s) = ξ−1 sξ where ξ may be chosen
from OK . Then we find that Mc = OK ∩ ξ−1Ok.

In other words, we have

(8) ξMc = ξOK ∩ Ok = (ξOK)G, ξ ∈ OK .

Second, as pc(x) = ξ−1
∑

s∈G
sξ sx, we have

(9) ξpc(x) = TK/k(ξx).

From (8), (9) we obtain

Mc/Pc = (ξOK)G/TK/k(ξOK) = Ĥ0(G, R+)γ ,(10)

c(s) = ξ−1 sξ.

5. Ambiguous ideals. Notation being as in
3, an ideal A in OK will be called ambiguous if sA =
A, s ∈ G. Let p be a prime ideal in Ok. The prime
decomposition of p in K is of the form

(11) p =
∏
P|p

PeP =
( ∏

P|p
P

)ep

.

Let us put

p# =
∏
P|p

P.

Note that (11) becomes

(12) p = p#ep .

It is easy to see that

(13) A ⊂ OK is ambiguous ⇔ A =
∏
p

p#mp .

For a real number x, put 
x� = the smallest integer
≥ x. Hence when x /∈ Z, 
x� = [x] + 1.

Proposition 1. Let A =
∏

p p#mp be an am-
biguous ideal. Then we have

AG = A ∩ Ok =
∏
p

p
�mp

ep
�
.

Proof. Let mp = qep + r, 0 ≤ r ≤ ep − 1. We
have

p#mp = p#qepp#r = pqp#r = p

[
mp
ep

]
p#r.

Then our assertion follows since

p#r ∩ Ok =

{
1 when r = 0,

p when r > 0.

6. Differents. For a Galois extension K/k

of number fields or local fields, denote by DK/k the
different of the extension. It is an ambiguous integral
ideal in K. So it can be expressed as

(14) DK/k =
∏
p

p#tp .

Proposition 2. Let A =
∏

p p#mp be an
integral ambiguous ideal in K. Then TK/kA =∏

p p

[
mp+tp

ep

]
.

Proof. Let p be a prime ideal in k and h be an
integer ≥ 0. By the definition of DK/k, we get the
following chains of logical equivalences:

ph | TK/kA ⇔ ph | ADK/k ⇔ (p#)eph | ADK/k

⇔ (p#)eph | (p#)mp+tp

⇔ eph ≤ mp + tp ⇔ h ≤
[
mp + tp

ep

]
.

Back to the situation in 3, since ξ ∈ OK and
c(s) ∈ O×

K , A = ξOK is an integral ambiguous
ideal, and hence we obtain, from (10), Proposition 1,
Proposition 2, the following

Proposition 3.

(Mc : Pc) =
∏

p Np

[
mp+tp

ep

]
−�mp

ep
�
,

where Np = (Ok : p).
7. Localization. From now on, let K/k be

a Galois extension of number fields and G =
Gal(K/k). Let P, p be prime ideals of K, k, re-
spectively such that P | p. Denote by KP, kp the
completions of K, k, respectively. Then KP/kp is
also a Galois extension whose Galois group GP may
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be identified as the decomposition group at P in G.
Clearly, OK , Ok are embedded in OKP

, Okp , respec-
tively and similarly for groups of units. Therefore,
any cocycle c ∈ Z1(G,O×

K) induces naturally a co-
cycle cP ∈ Z1(GP,O×

KP
). Thus, we are ready to use

Proposition 3 to find (Mc : Pc), (McP
: PcP

). If ξ is
a solution to the cocycle c for G (see (10)), then ξ is
one to the cocycle cP for GP. Put

(15) A = ξOK =
∏
p

p#mp

and define

(16) AP = ξOKP
.

Since

mp = νP(A) = νP(AP)

the exponent mp for AP is consistent with double
purposes, global and local. Next, since, by (14), we
have

DK/k =
∏
p

p#tp =
∏
P

PtP =
∏
P

DKP/kp
.

Now, applying Proposition 3 to a local field k, we
have

Proposition 4.

(McP
: PcP

) = Np

[
mp+tp

ep

]
−�mp

ep
�.

Note also that as ep = 1, tp = 0 for almost all
p, the indices (McP

: PcP
) = 1 for almost all P.

Summarizing all these, we obtain
Theorem 2. Let K/k be a finite Galois ex-

tension of number fields and G = Gal(K/k). For a
cocycle c ∈ Z1(G,O×

K) denote by cP the cocycle in-
duced from c by localization at P. Then we have the
product relation (Mc : Pc) =

∏
p(McP

: PcP
) where

for each p we choose one P dividing p.
From the ramification theory of Galois exten-

sions we have

tp ≥ ep − 1, for all p

tp ≥ 1 ⇔ ep ≥ 2 (Dedekind).

Needless to say, if ep = 1 then p is unramified, if
tp = ep − 1 ≥ 1 then p is said to be tamely ramified.
Furthermore, if p is such that tp ≥ ep ≥ 2 then p is
wildly ramified. (Note that p is wildly ramified ⇔
p | ep, where p means the characteristic of the finite
field Ok/p.)

We will use these terms for extensions in an ob-
vious way. Proposition 4 implies immediately the

following
Theorem 3. Let K/k be a finite Galois ex-

tension of number fields. If K/k is unramified or
tamely ramified, then Mc = Pc for all cocycle c ∈
Z1(Gal(K/k),O×

K).
8. Canonical class for local fields. Let

K/k be a Galois extension of number fields or lo-
cal fields. In view of the remark at the end of 3, we
have a right to write

(17) iγ(K/k) = (Mc : Pc), γ ∈ H1(G,O×
K).

Then we can express Theorem 2 as
Theorem 4. For a finite Galois exten-

sion K/k of number fields, we have iγ(K/k)
=

∏
p iγP

(KP/kp).
Now passing to localization, choose a prime ele-

ment Π ∈ KP. Then the relation
sΠ = Πzs, s ∈ GP, zs ∈ O×

KP
,

defines the cohomology class

(18) γKP/kp
= [z] ∈ H1(G,O×

KP
).

We know that the group H1(G,O×
KP

) is cyclic of
order ep generated by γKP/kp

. (See [2]) Therefore
for any class γ = [c] ∈ H1(G,O×

KP
), a unique integer

m mod ep is determined so that

(19) γ = (γKP/kp
)m.

In otherwords,

(20) c ∼ zm.

Now, let ξ be a solution in K to the cocycle c in (10).
Then (20) means that

sξ

ξ
= u−1

sΠm

Πm
su, u ∈ O×

KP

or

uΠm = ξvπr

where v ∈ O×
kp

and π being a prime element in kp.
In view of (15), we find

m = mp + rep

and so

(21) m ≡ mp mod ep.

9. Quadratic fields. Now that we have a
product relation (Theorem 4), our problem of indices
for global fields is entirely reduced to local computa-
tions. As the easiest example, let us look at our old
works again. (See [1, 3])
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Let K = Q(
√

d ) where d is a square free in-
teger. Let p, P be primes of Q, K, respectively,
such that P | p. When extensions KP/Qp is un-
ramified or tamely ramified, then by Proposition 4,
iγP

(KP/Qp) = 1. Therefore only wildly ramified
case must be taken care of. This is precisely the case
where

p = 2 ≡ 2, 3 mod 4.

(i) p = 2, d ≡ 2 mod 4. In this case,
DKP/Q2 = P3 and so t2 = 3. Since the order of the
cohomology group H1(G,O×

KP
) = 〈γP(KP/Q2)〉 is

e2 = 2, we find that the number m, in (19), is eather
0 or 1. As we are allowed to replace m2 by m mod e2,
we get, using Proposition 4,

i1(KP/Q2) = 2
[

t2
e2

]
= 2[ 3

2 ] = 2

and, for γ �= 1,

iγ(KP/Q2) = 2
[

t2+m2
e2

]
−

⌈
m2

e2

⌉

= 2[ 3+1
2 ] −

⌈
1
2

⌉
= 2.

So the index iγ = 2 always.
(ii) p = 2, d ≡ 3 mod 4. In this case we have

t2 = 2. The similar calculation as above shows this
time that

iγ =

{
2 when γ = 1, i.e. when m2 is even,

1 when γ �= 1, i.e. when m2 is odd.
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