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Abstract. In a new approach the graviton is defined as the field particle of
spacetime rather than the mediator of gravity. The unification equation is
derived and used to predict that for a freely falling body, the energy of in-
cident gravitons is 6.12 × 1018 GeV. Redshift and scattering of gravitons
should produce diffraction patterns, galactic halos and expansion of the Uni-
verse. The energy of incident gravitons remains constant as the Universe
evolves because of the Doppler shift as bodies fall towards redshifted gravi-
tons. Complex space is used to represent gravitons and explain Young’s two-
slit interference. The approach is corroborated by empirical data and extends
establish theory.
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1. Introduction

The theories of relativity and quantum physics have provided science with tremen-
dous depth and detail in the quest to understand the Universe, however these two
pillars of modern physics are unable to explain several well-known observations.
Difficulties are highlighted by the findings of pioneering cosmologists who re-
vealed that the motion of stellar bodies cannot be explained by traditional physics
alone [7, 12, 19]. Nowadays, in order to interpret the phenomena of galactic ha-
los and accelerated expansion of the Universe, the current cosmological model
includes the ad hoc inventions of dark matter and dark energy. The magnitude of
the difficulties with the cosmological model are confirmed by recent studies with
the Planck Instrument which enabled six key parameters to be determined with un-
precedented precision, and confirm that, according to established theory, 95 % of
the Universe is of unknown form [1]. In addition, physics has no mechanism for
explaining quantum phenomena, such as Young’s two-slit interference experiment
[4].
Such difficulties have led some scientists to conclude that despite the plethora of
new and precise data, general relativity and quantum theory are like two parallel
tubes, whereby gravity does not care about particle physics [6]. Other scientists
have concluded that both cosmology and particle theory need new physics [9].
Hence, the aim of this paper is to show that the current problems of modern physics
can be solved with a new approach. The work presented in this paper is based
on the proposition that there exists a quantum field particle which provides the
existence of spacetime itself.

2. A Mechanism for Spacetime

Quantum theory and general relativity both describe, in their own way, the motion
and actions of matter in a background of space and time (or spacetime), however
there is one feature which is lacking from these established theories. Both lack a
mechanism for producing spacetime. This gap can be filled by proposing that a
quantum field particle, the graviton, is responsible for providing the Universe with
space and time, and that curvature of spacetime is just one phenomenon that the
particle provides [13, 14, 15, 16, 17]. This proposition is explained in the following
way.
The graviton is generally referred to as the quantum field particle responsible for
mediating the gravitational force. This concept is suspect because if the graviton
behaves in a similar fashion to the photon, it would imply that every mass should
continuously lose energy as it curves spacetime, and this loss of energy is not
observed [5]. Also, even though all quantum particles are influenced by curved
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spacetime (i.e., gravity), the cosmological constant G is missing from the equa-
tions of quantum theory. As a result the graviton has become such an inscrutable
part of quantum theory that many texts simply ignore it, or argue that its energy
must be infinitesimal because gravity is the weakest of the four forces of nature.
Hence, particle physicists and cosmologists generally consider the graviton to be
an unsubstantiated minor part of their standard models [11].
This paper has a different point of view and redefines the graviton as the field
particle providing the Universe with space and time; that is to say, the graviton is
the spacetime-particle. Accordingly, the graviton has properties which enable it
to link points in space and time. All mass exists in a sea of gravitons and mass
is continuously encountering incident gravitons. In order to enable changes to
take place, gravitons are capable of carrying photons and other quantum particles.
So, if an excited particle emits a quantum of energy, such as a photon, a set of
incident gravitons carries the emitted quantum in the time dimension. Thereafter,
other gravitons can join the process of carrying the quantum of energy until it is
detected (or absorbed) by another particle. Thereafter the newly excited particle
may emit the quantum of energy and another set of gravitons shares in carrying the
quantum, and the process is repeated. In effect, a set of gravitons shares in carrying
a quantum of energy in the time dimension to another location in space. By this
process a quantum of energy is lost by one particle at a certain point in spacetime
and another particle gains the quantum of energy at another point in spacetime.
This description implies that gravitons have a dual mechanism which provides the
Universe with the dimensions of space and time, and enables changes to take place.
This basic description will be developed in the paper.
Logically, each incident graviton imparts space and time in equal measure, so it
follows from the ratio that all gravitons are at c. Hence the quantity commonly
known as the speed of light c is actually a characteristic of the graviton. Photons,
and other massless particles, are carried by sets of gravitons at c, and this quantity
is independent of the motion of the particle which emits the photons. Massive
particles are also carried by a set of gravitons, and the gravitons in the set are
constantly being replaced because the velocity of massive particles is less than
c. Accordingly, the sea of gravitons forms the spacetime continuum and no point
has a more special reference frame than any other point. Thus the graviton is the
mechanism which underpins the two postulates of special relativity [2] and the
actions of gravitons can be restated in terms of two propositions as follows.

Proposition 1. The dimensions of space and time are provided by the graviton,
the field particle of spacetime, which links points at c and carries the energy of
quantum particles in the time dimension.

This proposition implies that the all points in the Universe are teeming with gravi-
tons. The spacetime continuum (or cosmological fluid) began when gravitons were
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first formed and, since then, gravitons have provided spacetime on an ongoing ba-
sis. The energy of particles is carried by sets of gravitons that link points in space-
time.

Proposition 2. Encounters between a set of incident gravitons and a mass pro-
duce a redshift and scattering of emitted gravitons. Because of these encounters,
gravitons transfer energy to mass and this energy is the energy-content of mass.

This proposition implies that the graviton is the mechanism which provides quan-
tum particles with their energy-content (i.e., the energy-content that was first pro-
posed by Einstein [3]). It also highlights the requirement to consider both redshift
and scattering of gravitons when calculating curvature of spacetime.
This paper will show how these two propositions provide a foundation for the
two pillars of modern physics. We will see that the path we are taking provides
simplicity instead of complexity, and that it leads to straightforward explanations
of the aforementioned problems of modern physics.

3. Deriving the Unification Equation

In this section propositions (1) and (2) are used to derive the equation of gravita-
tional redshift of general relativity and the equation which unifies established theo-
ries [13, 14]. Consider the number NX0 of incident gravitons on a region in space-
time and let the incident gravitons have frequency fX0 and the region have radius r
with surface area 4πr2. The region contains massM and, according to proposition
(2), the gravitons are redshifted and scattered by the mass. Hence the numberNXE

of emitted gravitons is less than NX0 and the frequency fXE of emitted gravitons
is less than fX0. The number of incident gravitons encountering a length l is re-

lated to the wavenumber kX0 of incident gravitons by: kX0 =
NX0

l
and similarly,

the wavenumber kXE of emitted gravitons is given by: kXE =
NXE

l
· The energy

EX lost by incident gravitons to M is given by

EX = (hfX0kX0l − hfXEkXEl),
EX
l

= (hfX0kX0 − hfXEkXE). (1)

The energy-content EM of M is within the surface and is given by:
EM
4πr2

, which
can be equated to the energy transferred from the gravitons, as follows

d(EX
l )

dr
=

EM
4πr2

· (2)

The change in energy of gravitons is obtained by treating this relation as a separable
equation and integrating r from radius R to ∞. This change becomes infinitesi-
mal for an infinitely large value of R and as a result, the transfer of energy from
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gravitons to M is given by

(hfX0kX0 − hfXEkXE) =
EM
4πR
· (3)

By proposition (1), photons are carried by gravitons, therefore gravitational red-
shift of photons is representative of the redshift of gravitons. It follows that fre-
quency and wavenumber of gravitons are related by: fX = ckX , and the equation
can be rearranged to give

fXE
fX0

=

√
1− EM

4πRhfX0kX0
· (4)

From special relativity: EM =Mc2 and, after substitution, the equation is now of
similar form to the gravitational redshift of general relativity. The two equations
become equivalent if the following holds true

Mc2

4πhRfX0kX0
=

2GM

c2R
· (5)

This relation simplifies to the equation which unifies the key constants of physics

G =
c4

8πhfX0kX0
· (6)

It follows therefore that the gravitational constant G is a function of the properties
of the spacetime particle. From now onwards, let equation (6) be called the uni-
fication equation. By substituting values of h and c into the unification equation,
we can calculate the frequency of incident gravitons: fX0 = 1.48 × 1042 s−1,
the wavenumber of incident gravitons: kX0 = 4.92 × 1033 m−1 and the force of
incident gravitons: hfX0kX0 = 4.85 × 1042 Jm−1. These values are of similar
magnitude to those of the Planck scale, but here the values have been derived by
using the mechanism of spacetime, while the Planck quantities have been obtained
by dimensional analysis alone. The next step is to determine the energy of the
graviton then test the correctness of our approach as well as explore the implica-
tions for established theories.

4. The Energy of Incident Gravitons

The energy of incident gravitons depends on whether a body has kinetic energy
or is being influenced by the effects of a mass, because these situations may af-
fect the measured frequency of incident gravitons. For example, a body which is
held stationary with respect to the surface of a ponderous mass, receives redshifted
gravitons (i.e., gravitationally redshifted gravitons) from that direction. However,
a free-falling body is following a geodesic and the frequency fX0 of incident gravi-
tons is not gravitationally redshifted. These concepts will be explained but first of
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all we are interested in the energy of incident gravitons from the perspective of
a freely falling body (and leave the other situations to later). This energy can be
obtained directly by substituting fX0 = 1.42× 1042 s−1 into EX = hfX0 to give:
EX0 = 9.41× 108 J or, in other units, EX0 = 6.12× 1018 GeV [13, 14].
Thus, the graviton is a very high-energy particle indeed. This claim contrasts with
current thinking and may seem wrong at first sight. We have already mentioned
that many consider the energy of the graviton is so small it will never be detected,
while others have said that if the graviton has mass, then its wavelength is likely
to span the solar system [18]. In spite of these divergent views, this paper will
show that the calculated value for the energy of the graviton is consistent with the
important roles that the spacetime-particle must play.
To begin, the recent detection of gravitational waves [8, 10] demonstrates that the
particle which conveys curvature of spacetime is at c, so the graviton must have
zero mass. Next, curvature of spacetime affects every quantum particle in precise
ways, so once we admit that the graviton is the field particle of spacetime, it follows
that the wavelength of the graviton must be smaller than the wavelength of the
smallest quantum particle.
This reasoning is logical because if the graviton is likened to a probe, it must have
a smaller wavelength than the object with which it can interact. For example, the
internal structures of bacteria and cellular organelles are generally much smaller
than 1× 10−6 m in diameter and the details of these structures cannot be resolved
by visible light with a wavelength of 0.4× 10−6 m. Instead, electron microscopes
are used as the probe for this type of work because electrons have a much smaller
wavelength than organelles and cellular material. Hence, for a spacetime-particle
to be able to accurately interact in a consistent manner with every quantum particle
in the Universe, its wavelength must be smaller than that of every other particle. It
follows that the energy of the graviton must be the highest of all quantum particles.
These considerations imply that general relativity should be reinterpreted in terms
of the high-energy graviton. In general relativity the spacetime constant is given
by: κ = 8πG

c4
, however the unification equation (6) reveals that this constant should

be expressed in terms of the force of incident gravitons rather than G, as follows:
κ = 1

hfX0kX0
· Consequently, the Einstein equation of general relativity can be

expressed in terms of the mechanism of spacetime, as follows

Rαβ −
1

2
gαβR =

1

hfX0kX0
Tαβ· (7)

In this form the Einstein equation describes the effect of matter on the spacetime
provided by incident gravitons. Accordingly, curvature of spacetime is caused by
the effects of factors such as mass and motion on the frequency and wavenumber
of incident gravitons, as revealed by the derivation of gravitational redshift (1).
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In other words, mass and motion cause changes in gravitons which neighboring
bodies experience as curved spacetime.
Based on this new way of interpreting the Einstein equation it is possible to con-
sider the concept of spacetime in the void of empty space. In this type of region
there is no mass, which means that the energy density εX0 of a free point in the
void is given by: εX0 = hfX0kX0

3 = 1.17 × 10110 Jm−3. By a similar calcu-
lation, it can be shown that the magnitude of the cosmological pressure pX0 for a
free point is the same as εX0.
Furthermore, the existence of a cosmological fluid of high-energy gravitons does
not, by itself, produce curvature of spacetime or cause a vacuum catastrophe. That
idea is a misunderstanding of the mechanism by which the graviton provides space-
time. The next section will show that the value which has been calculated for the
energy density for a free-falling body, has important consequence for the cosmo-
logical model.

5. The Expanding Universe

The derivation of the unification equation (6) was based on changes to gravitons
which occur during encounters with mass and, at first glance, it would seem that
as the Universe evolves, these ongoing encounters should cause a decrease in the
frequency and wavenumber of gravitons in much the same way as cosmic back-
ground radiation is redshifted. However, according to the derivation of the unifi-
cation equation and the section above, the frequency and wavenumber of incident
gravitons are constants for freely falling bodies. In this section this apparent para-
dox will be clarified and, in the process, the mechanism driving the expansion of
the Universe will be revealed.
As described in the previous section and in proposition (2), encounters between
gravitons and a mass cause the emitted gravitons to be redshifted and scattered. As
a result, a body which is at a fixed distance from a ponderous mass, experiences
curvature of spacetime due to the reduced intensity of redshifted gravitons from the
direction of the mass [13, 14, 17]. However, if a body is released and falls freely
towards the ponderous mass, the incident gravitons are not redshifted. Instead, in-
cident gravitons are Doppler shifted by an extent which balances the effect of grav-
itational redshift. For example, a body held at the surface of the Sun receives gravi-
tons (and photons) from the Sun which are redshifted by: fXE

fX0
= 0.999997879,

according to gravitational redshift of equation (1). However, a freely falling body
does not experience the effect of this redshift because, based on the mechanism
which is being proposed, the gravitational redshift of incident gravitons from the
direction of the ponderous mass is countered by the Doppler blueshift of the falling
body.
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Also, it appears from proposition (2) that the redshift of gravitons should result in
steady decreases in the cosmological pressure pX0 and cosmological energy den-
sity εX0 as the Universe evolves. However for a freely falling body, gravitational
redshift of incident gravitons is negated by Doppler shift, so pX0 and εX0 remain
constants for free bodies. Furthermore, given that the Universe consists of an im-
measurable number of stellar masses which are causing an ongoing redshift and
scattering of gravitons, it follows that these effects are causing the observed ex-
pansion of the Universe. In this expansion, bodies free-fall towards the incident
redshifted gravitons such that the Doppler blueshift precisely counters the gravita-
tional redshift. Consequently, the frequency fX0 and wavenumber kX0 of incident
gravitons, as well as the cosmological values of εX0 and pX0 remain constant for
freely falling bodies during the evolution of the Universe.
This explanation is consistent with the observed Hubble recession velocity, whereby
freely falling bodies receive cosmic background radiation which is Doppler red-
shifted. According to our explanation, at any period in the Universe’s history,
bodies are falling towards incident gravitons, which means that these bodies are
expanding away from the photons emitted in the past. Measurements reveal that
the Hubble recession velocity has been increasing in recent epochs [8, 10] and this
acceleration can be explained by the mechanism proposed here.
In the evolving Universe the density of stellar bodies (i.e., stars, galaxies and larger
structures) has been increasing. Accordingly, these changes in density and motion
of stellar bodies should produce increased scattering and gravitational redshift of
gravitons, which produce the increased rate of expansion. The mechanism which
underpins the process is summarized by the unification equation (6) which suc-
cinctly describes the enduring relationship between the properties of the graviton
and the impact that this relationship has on the structure of the Universe [13, 14,
17].

6. Diffraction Patterns of Gravitons

In order to prove that the graviton is the quantum field particle of spacetime, ideally
the energy of the graviton should be measured in a suitable laboratory. However the
energy of the graviton, as calculated above, is more than 107 times greater than the
energy of the most powerful cosmic rays, and beyond the detection of instruments
of today. Hence, direct measurement of the graviton is not possible. Instead, the
existence of the graviton must be demonstrated by an indirect approach, whereby
predictions are made and tested. This section reports on two predictions and the
results of empirical measurements which support the proposition that the graviton
is the spacetime-particle. The work reveals how scattering produces diffraction
patterns of gravitons and explains cosmological effects which have been attributed
to dark matter.
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Suppose a set of incident gravitons encounters a mass M and, as a result, the
emitted gravitons are redshifted and scattered. The Compton equation can be used
to give the scattering angle φ of gravitons and the change in wavelength δλX of
gravitons, as follows

δλX = λXE − λX0 =
h

Mc
(1− cosφ). (8)

This equation can be simplified by applying the power series to cosφ (and assum-
ing for weak fields that the angle for high-energy particles is small enough that
magnitudes of fourth order or more can be ignored) to give

δλX =
hφ2

2Mc
· (9)

Also, the change in wavelength of gravitons δλX can be determined from the grav-
itational redshift as follows

(hfX0kX0 − hfXEkXE) =
Mc2

4πR
· (10)

This equation can be modified by using the relationship: fX = ckX , and rearrang-
ing to give

(
λX0

λXE
)2 = (1− Mc2

4πRhfX0kX0
). (11)

By using:
λX0

λXE
= (1 − λX

δλXE
) and the binomial theorem for weak fields, the

change in wavelength of gravitons is given by

δλX ≈
λXEMc2

8πRhfX0kX0
· (12)

The scattering angle can now be obtained by equating (9) and (12), and simplifying
to give

φ =

√
M2c3

4πRh2fX0kX0kXE
· (13)

This equation reveals that hydrogen nuclei should scatter gravitons by φ = 1.8 ×
10−29 radian and hydrogen atoms should scatter gravitons by φ = 8.5 × 10−32

radian [14, 17]. This result can be tested and, furthermore, used to explain the
effects of scattering on the dynamics of galaxies and larger structures.
One effect of scattering of gravitons should be the propagation of diffraction pat-
terns of gravitons. This quantum phenomenon, which is not included in general
relativity, can explain observations which have previously been attributed to dark
matter [13, 14, 17].
To start with, consider a set of gravitons which encounters a free mass (or body).
The emitted gravitons are scattered and arrive simultaneously at the surface of a
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sphere of radius R centered on the mass. Now consider gravitons encountering
two similar masses. In this case the emitted gravitons are not spread evenly on
the surface of a sphere centered on the midpoint between the masses. Instead,
the gravitons emitted by one mass along the direct line between the masses, are
scattered away from the line by the other mass. As a result these emitted gravitons
do not arrive at two circular regions (of radius R sinφ) centered on the line joining
the two masses. These gravitons are scattered to the circular rings of radiusR sinφ.
If the number of masses along a straight line is increased, the pattern of emitted
gravitons on the surface of the sphere, is reinforced.
Next, let the number of masses (or particles) increase to form a three dimensional
structure, much like a model star. Now the gravitons are scattered by planes of
masses within the star and, as a result, gravitons are emitted which form a diffrac-
tion pattern that radiates from the star at c. Thus, scattering of gravitons produces
regions of high density and regions of low density that emanate from the star to
the surface of a sphere of radius R centered on the stellar body. The situation is
analogous to Bragg’s equation for the scattering of X-rays by crystals. However,
here we are predicting that scattering of gravitons produces diffraction patterns of
gravitons which have the unique effect of altering the spacetime of distant bodies.
Based on knowledge of diffraction patterns in general, it is logical to predict that
a diffraction pattern of gravitons emanating from a star should have fringes with
sharp diffraction maxima and broad diffraction minima. From trigonometry we
can predict that each fringe of maxima and minima spans a regions of R sinφ. So,
at a critical distance of dc, an atom of radius ra should be able to just fit within a
diffraction minimum, as given by

dc =
ra

sinφ
· (14)

This equation can be used to predict the distance at which diffraction patterns of
gravitons radiating from one stellar body, influence the spacetime of masses (i.e.,
atoms) in another stellar body. For example, stars consisting of hydrogen should
emanate diffraction patterns due to scattering of gravitons by hydrogen nuclei, with
a scattering angle of φ = 1.8 × 10−29 radian as calculated above from equation
(13). So for atoms of radius ra = 0.5 × 10−10 m in a stellar body, equation (14)
gives a critical distance of dc = 2.8 × 1018 m (or 0.090 kpc). This result implies
that when stellar bodies are separated by this distance, their atoms are capable of
just fitting within the diffraction minima of gravitons emanating from these bodies.
For stellar bodies that are closer than the critical distance, each atom within the
body should receive multiple fringes of maxima and minima, and so the diffraction
pattern of gravitons should have no net effect on these bodies. For example in our
solar system the planets and Sun are many orders of magnitude closer than the
critical distance, which means that the diffraction patterns of gravitons emanating
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from the Sun do not affect the motion of the planets. Thus the planets of the solar
system orbit the Sun according to Einstein equation of general relativity alone.

In contrast, for two stars at the critical distance of approximately 0.090 kpc (as
calculated above), the atoms within these bodies may start to be influenced by the
diffraction pattern of gravitons. If the separation of the stars is a few orders of
magnitude greater than the critical distance, the influence of diffraction minima
dominates the geodesic of atoms in the bodies. As a result, the atoms in diffrac-
tion minima free-fall at a rate which is greater than that due to general relativity,
and each star’s orbital speed is greater than predicted by established theory. For
separating distances which are considerably larger than the critical distance, the
spacetime of orbiting stellar bodies should depend on the effects of the diffraction
patterns of gravitons rather than the Einstein equation of general relativity [13, 14,
16, 17].

An examination of 62 galactic rotation curves reveals that the deviation from New-
tonian mechanics occurs at an orbital distance of 0.1 kpc to 1 kpc [13, 14]. This
range of empirical values concurs with the value for the critical distance of 0.090
kpc predicted above for model stars. That is to say, the predicted and calculated
values for the critical distance are of similar magnitude. We have predicted that
as the distance between stellar bodies increases well beyond the critical distance,
the effect of diffraction minima should become the main driver of orbital speed.
This prediction is consistent with the observation of flat rotation curves. Also, the
spherical nature of diffraction patterns in general is consistent with the spherical
galactic halos that surround galactic disks. Furthermore, the propagation of the
Milky Way’s diffraction patterns beyond the galactic disk can explain the observed
gravitational interactions between galaxies within the local group of galaxies, and
this concept has profound implications for the large-scale structure of the Universe.
The next step is to demonstrate that scattering of gravitons can predict the orbital
speeds of bodies in galactic halos.

Traditionally the orbital speed of stellar bodies is calculated by using either New-
ton’s laws or the Einstein equation of general relativity. Accordingly, at the critical
distance of about 0.1 kpc to 1.0 kpc, a body should orbit a Sun-like star with a
speed of 6.7 ms−1 to 2.1 ms−1. Also, traditional theory predicts that as the radius
of the orbit increases beyond the critical distance, the speed will decrease by 1

R .
However an examination of rotation curves of 62 galaxies reveals that at distances
beyond the galactic disk, the orbital speed averages 1.4 × 105 ms−1 with a range
of 0.1 × 105 ms−1 to 5.0 × 105 ms−1 [13, 14]. These impressive speeds can be
explained by determining the effect of diffraction patterns of gravitons on orbiting
bodies, as follows.

The energy density in a diffraction minimum is calculated by taking into account
the reduction in energy density brought about by the lack of redshifted gravitons
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coming from the direction of a ponderous mass [14]. Importantly, the energy of
gravitons is immense, and ponderous masses such as the Sun cause a redshift which
fractionally reduces this energy (as shown above). Therefore the absence of gravi-
tons (in a diffraction minimum) causes a much greater effect on energy density
than the redshift of gravitons. As a result, the equation for the change in energy
density due to a diffraction minimum, is dominated by terms for the energy of
the missing gravitons. The energy of the missing redshifted gravitons depends on:
M
RM

, where RM is the radius of the ponderous mass M . Also, for a body to be in
a stationary orbit, the change in energy density due to a diffraction minimum must
be twice the change in energy density due to the Doppler effect of orbital motion.
These factors mean that for distances greater than the critical distance, the speed v
of bodies orbiting non-relativistic masses is given by

v2 =
Mc2

8πRMhfX0kX0
=
GM

RM
· (15)

This equation highlights a remarkable consequence of diffraction patterns of gravi-
tons. It predicts that a body which is much more than 1019 m (i.e., 1 kpc) from a
stellar mass M , will orbit at a speed that is many orders of magnitude greater than
predicted by general relativity.
This effect of diffraction patterns of gravitons can be tested by considering the
orbital speed of bodies in orbit around four model stars with the same mass as the
Sun. Bodies further than the critical distance (i.e.,� dc), should orbit a red giant
at 3.6×104 ms−1, the Sun at 4.5×105 ms−1, a white dwarf at 4.5×106 ms−1 and
a neutron star at more than 3.7× 106 ms−1 [14]. This range of predicted speeds is
comparable to the aforementioned empirical data for the orbital speeds of galactic
rotation curves [14].
The work shows that diffraction patterns of gravitons produce microscopic changes
in the spacetime, thus giving bodies which are beyond the critical distance, orbital
speeds much greater than predicted by general relativity. The evidence supports
the predicted effects of diffraction patterns of gravitons. Thus, scattering of the
spacetime-particle is the mechanism which can explain galactic halos, flat rotation
curves and the intergalactic structure of the Universe. As a result the ad hoc in-
vention of dark matter is unnecessary. At this point we leave the analysis of the
cosmological effects of gravitons to now consider a mathematical approach to the
graviton.

7. Mathematically Representing Gravitons

Everyday experiences suggest that space and time are somewhat different, however
the theory of special relativity reveals that there is a connection between these two
quantities, which is highlighted by the term spacetime. This paper supports the
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concept of spacetime and extends relativity by proposing that the graviton gives
space and time in equal measure. Accordingly, the ratio of space to time is a
constant c and this property is fundamental to representing points in spacetime.
Based on these considerations, we are led to proposing that the graviton performs
two different mathematical operations (i.e., a dual mechanism) for constructing the
dimensions of three-dimensional space and one-dimensional time. It also follows
that the orthogonality of vector space is a property of gravitons. This dual mecha-
nism of gravitons, which may be expected for a spin–2 boson, can be represented
as an ordered pair or, more conveniently, as a complex number. For example, an
incident graviton at a point can be represented by (x, ct) or (x + ict), where x is
a length of distance with direction along the x axis, while ct is a length of time.
These considerations reveal how the graviton provides a foundation which will be
used in the remainder of this paper to develop a mathematical structure for repre-
senting the actions of gravitons.
Each point in the Universe encounters sets of incident gravitons and, due to the dual
mechanism, a point is represented by complex vector space with three complex
numbers. Gravitons link points in complex vector space, though links are more
than vectors. Links, for want of a better word, actually provide the connections in
spacetime while vectors exist in the structure that is provided by the links. So let

one point define the origin, ~0 =

0
0
0

 and let a graviton link it to another point.

This link in spacetime is given by: ~0Q =

x+ ictx
y + icty
z + ictz

. The squared length (i.e.,

norm or magnitude) of this link is obtained by the inner product as follows

| ~0Q|2 = 〈 ~0Q| ~0Q〉 = (x2 + y2 + z2) + c2(t2x + t2y + t2z). (16)

Gravitons provide space and time in equal measure, hence the magnitude of the
length in space l equals the magnitude of the length in time ct. Accordingly, the
inner product and the length of the link are obtained as follows

| ~0Q|2 = l2 + (ct)2 = 2(ct)2, | ~0Q| =
√
2ct. (17)

Next project the link onto two orthogonal subspaces, with equal length of |ct|. For
example, in subspaces L and L⊥, which contain the x and y axes respectively,
the projected links have squared lengths of | ~0QL|2 = (ct)2 and | ~0QL⊥ |2 = (ct)2.
Hence, in C2 space the coordinates of points contained within the orthogonal sub-

spaces are represented by: ~0QL =

(
x+ ictx

0

)
and ~0QL⊥ =

(
0

y + icty

)
. These

coordinates can be normalized by dividing by the norm (i.e., by dividing by |ct|).
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With this introduction it is becoming clear that the mathematical structure which is
being constructed for representing gravitons, is adopting mathematics from quan-
tum mechanics. This foundation will be explored later but, before that, the next
section will demonstrate the usefulness of this mathematics for obtaining some of
the key equations of special relativity.

8. Special Relativity with Gravitons

Consider a particle (or a theoretical point) with kinetic energy moving uniformly
at u within a subspace in a direction which is labeled the x axis (i.e., y = 0). In
this process the particle encounters gravitons which carry it and provide it with
spacetime. In C2 space the inner product of the link from the origin to the particle
is equal to (ct)2 and given by

| ~0QL|2 =
(
x− ictx

0

)(
x+ ictx

0

)
= x2 + (ctx)

2 = (ct)2. (18)

The particle moves at u along the x axis, so |x| = |ut|. This value can be substi-
tuted into equation (18) to obtain the length of time tx of the moving particle at x
relative to the length of time t at rest (i.e., at~0). The equation can be rearranged and
simplified by including Einstein’s relativity factor: γ = 1

1−u2

c2

, to give the equation

of time dilation of special relativity, as follows

t2(1− u2

c2
) = tx

2, t = γtx. (19)

Similarly, length contraction can be obtained by first determining the squared
length of time t2 = xc

c2−u2
2 for the particle to move a distance along the x axis,

then inserting the length of time into the inner product [16].

Next, the Lorentz boosts of special relativity can be obtained by considering two
subspaces containing the x axis. Let a point which is at rest on the x axis of one
subspace (i.e., ~0QLk) move at +u along the x axis in the other subspace (i.e.,
~0QLj). From the perspective of the latter subspace, the x coordinates are related

by: xj = xk + utj or xk = xj − utj , and from the perspective of ~0QLk the x axis
is at rest, so txk = tk. Now dividing xk by c and rearranging gives the following

txk =
xk
c

=
xj − utj

c
, txk = xj −

uxj
c2
· (20)
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The length of time given by equation (20) can be substituted into the inner product
to obtain the following

〈 ~0QLk| ~0QLk〉 = x2k + (ctxk)
2 = (ctk)

2

(ctk)
2 = (−utk)2 + c2(tj −

uxj
c2

)
2

tk
2 = γ2(tj −

uxj
c2

)
2
⇒ tk = γ(tj −

uxj
c2

).

(21)

This equation is the Lorentz coordinate transformation equation (i.e., the Lorentz
boost) of the time of a point on a moving x axis. By a similar process, all Lorentz
coordinate transformation equations can be obtained.

Furthermore, the inner product of the projected subspace containing the x axis, can
be used to obtain Minkowski’s spacetime-interval. Consider a subspace ( ~0QLj),
in C2 space contains the x axis. The squared length of the inner product is given
by

〈 ~0QLj | ~0QLj〉 = x2j + (ctxj)
2 = (ctj)

2, (ctxj)
2 = (ctj)

2 − xj2. (22)

The left side of this equation represents the squared length of time of the moving
particle (or moving point) at x, and this quantity is independent of the speed of
the particle. The right side of the equation represents the difference in the squared
lengths of time and space of points at rest in the projected subspace, and the relative
magnitude of these quantities does depend on the speed of the particle. Equation
(22) can be generalized by considering changes in lengths in C3 space and rotations
to obtain Minkowski’s spacetime interval

(ds)2 = (ct)2 − (dx2 + dy2 + dz2). (23)

Thus by the derivations in this section, we see that the graviton provides the mech-
anism which underpins the concept of Minkowski spacetime. In obtaining these
equations of special relativity, complex vector space has been used to represent
points in spacetime, and the squared length between points is a real number which
is obtained via the inner product. In contrast, the mathematics of special relativity
does not use complex numbers to represent points in spacetime, instead it uses real
numbers for coordinates to obtain the spacetime-interval. Similarly, the mathemat-
ics of general relativity does not use complex vector space, but instead relies on
real coordinates and squared metrics to give squared lengths in spacetime. Thus
relativity is able to overlook the quantum nature of spacetime. Next we continue
to use the mathematical structure of complex vector space to explain some key
aspects of quantum theory.
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9. Euler’s Formula

According to equation (18) a point on the x axis in C2 space can be represented

by the projected subspace containing the x axis, as given by: ~0QL =

(
x+ ictx

0

)
,

and the length of the link is obtained from the inner product: (ct)2 = x2 + (ctx)
2,

where x is the length of space from the origin and ctx is the length of time at x
(and y = 0). Alternatively, the point can be represented by considering the ratio of
lengths of space and time in the subspace [16]. A point moving along the x axis
(y = 0) in the projected subspace ~0QL is located at x at the time given by a circle
of radius ctx. In other words, a right angle triangle can be constructed which has
hypotenuse of ct, base of x and height of ctx, and this triangle rotates about the x
axis. This construction occurs because the gravitons which radiate from the origin
form a set, and a subset of that set provides the projected subspace which includes
the point at x.
Firstly, the ratio for length of space x to length of the subspace ct provides the
cosine ratio as follows: cosφ = x

ct , and reorganizing gives: x = ct cosφ. Next,
the ratio of the length of time ctx of the point at x to length of subspace ct provides
the ratio: sinφ = ctx

ct , and rearranging gives: ctx = ct sinφ. These trigonometric
ratios can be substituted into the coordinates of the projected subspace and the
inner product to obtain the squared length of the link, as follows

~0QL =

(
x+ ictx

0

)
=

(
ct cosφ+ ict sinφ

0

)
〈 ~0QL| ~0QL〉 = (ct cosφ)2 + (ct sinφ)2 = (ct)2.

(24)

Equation (24) demonstrates the two equivalent ways of representing points in space-
time. The top row of each matrix describing the complex number z as follows

z = (x+ ictx) = ct(cosφ+ i sinφ). (25)

This relationship can be generalize to give Euler’s formula

z = x+ iy = R(cosφ+ i sinφ) = R exp (iφ). (26)

Remarkably, this procedure for obtaining Euler’s formula reveals that it is accurate
for all velocities of the point in the projected subspace containing the x axis. That
is, the equation holds good for relativistic velocities along the x axis. Furthermore,
this representation of points in spacetime can be normalized by dividing by the
length of the subspace ct.
In conclusion, the mathematical structure used in these sections provides a means
of deriving several key physical equations. This aspect is consistent with the notion
that the graviton is a fundamental particle which, by its mechanism, provides the
spacetime for physics. The derivations are characteristically simple because the
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spacetime-particle is the foundation of physics and mathematics. We see that in
order to represent the actions of the graviton, we require knowledge of quantity
(complex space, numbers and algebra), structure (sets and group theory), space
(geometry and trigonometry), and change (functions and calculus). Hence, from
one perspective mathematics describes the actions of the graviton while, from the
other perspective, the graviton provides the relationships which are the foundations
of mathematics. To demonstrate the fundamental nature of the graviton, the next
section will use the mathematics to explain one of the most puzzling phenomena
of quantum physics.

10. Young’s Two-Slit Interference

Young’s two-slit experiment, which demonstrates the effect of interference on the
probability of an event, has been described as representing the last remaining mys-
tery of quantum physics because “no one has found any machinery behind the
law” [4]. However, by admitting the graviton as the spacetime-particle, there is
an explanation of this phenomenon [13, 16]. The explanation relies on the dual
mechanism of gravitons, whereby gravitons are added as vectors to provide a body
(or quantum) with space, and simultaneously added as norms (i.e., magnitudes)
to provide it with time. These two operations collectively provide the body with
spacetime. First the role of gravitons in the two-slit experiment will be described,
then the actions of the graviton will be analyzed.

According to proposition (1) when a quantum is emitted with kinetic energy, a set
of gravitons shares in carrying the quantum in the dimension of time. Thereafter,
other gravitons may join or replace gravitons in the set. For instance, when carrier-
gravitons encounter the barrier the quantum may be absorbed and the number in the
set becomes zero. At the edges of the slits gravitons cross paths and may add to the
set of carriers. Also, because massive particles cannot be at c, carrier-gravitons are
continually being replaced by other gravitons. So the number of carrier-gravitons
in the set plotted against spacetime would show changes in number depending on
such factors.

In a typical Young’s two-slit interference experiment, an emitter releases a quan-
tum which is propagated by an initial set of incident gravitons. Thereafter the
location in space of the quantum is not defined because at any instant a set of
gravitons shares in carrying the quantum. Most of the carrier-gravitons encounter
the barrier, so on most occasions the energy of the quantum is transferred to the
barrier (and possibly re-emitted). However on some occasions, depending on the
properties of the quantum and dimensions of the slit, a subset of carrier-gravitons
carries the quantum in the time dimension beyond the slits.
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If there are two slits, the quantum is shared by two subsets of carrier-gravitons.
Also, at the slits other gravitons which encounter the edges of the slits join the
two subsets of carrier-gravitons. These subsets contain gravitons which are from
the direction of the emitter as well as gravitons which are from an angle to that
direction (having joined in at the edges of the slits). At any instant the quantum
has different times, depending on the total length of the links (i.e., pathlengths) of
the carrier-gravitons. As a result of the different pathlengths of the two subsets
of carrier-gravitons, the chance that the quantum is detected at a given point on a
screen is determined by the difference in the two phases of the quantum.

To analyze this description in C2 space, let the x axis be the direct line from the slits
to the perpendicular screen where the detectors are located along the y axis. The
carrier-gravitons from slits 1 and 2 provide the links in spacetime for the quantum
to arrive at the screen, and the sum of the links is given by ~0Q = ~0Q1 + ~0Q2. This
equation can be expressed as follows

~0Q =

(
ct1 exp iφ1 + ct2 exp iφ2

ct1 exp i(
π
2 − φ1) + ct2 exp i(

π
2 − φ2)

)
. (27)

The inner product of ~0Q gives the squared length of the links provided by the
subsets of carrier-gravitons which, after calculation, is as follows

〈 ~0Q| ~0Q〉 = 2(ct1)
2 + 2(ct2)

2 + 4c2t1t2 cos(φ2 − φ1). (28)

This equation is well-known in quantum mechanics because the last term reveals
the interference effect [4]. It can be simplified by substituting: δ = (φ2 − φ1),
where δ represents the difference in phase of the quantum when carrier-gravitons
arrive at the point of detection via two pathways. A maximum value for the squared
length of spacetime occurs when the two subsets of carrier-gravitons arrive with
the quantum’s oscillations in phase (i.e., δ = 0, 2π, 4π...), and this condition is
known as constructive interference. Destructive interference occurs when the two
subsets of carrier-gravitons arrive at the detector with the quantum’s oscillations
completely out of phase (i.e., δ = π, 3π...), and the squared length of spacetime is
a minimum. This analysis reveals that the probability of detection depends on the
sum of the squared length of spacetime of the quantum, which is determined by
the pathlengths of the two subsets of carrier-gravitons.

Here we have based the explanation of interference and the derivation of equa-
tion (28), on the dual mechanism of the graviton. Importantly, this explanation of
Young’s two-slit interference experiment follows logically from propositions (1, 2)
which were introduced at the start in order to define the graviton as the spacetime-
particle.
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11. Conclusion

The new approach to the graviton is logical because the cumulative work of Lorentz,
Poincaré, Einstein, Minkowski and others, clearly demonstrates that we should
think in terms of spacetime rather than gravitational interactions. This new defi-
nition provides the mechanism for spacetime which is missing from the theories
of relativity and quantum mechanics. It leads to a new perspective that improves
understanding of physical phenomena and does not require ad hoc inventions, as
has occurred recently in modern physics.

The unification equation (6) has been derived and used to extend the established
theories of general relativity and quantum theory. This equation has profound im-
plications. Firstly, it reveals that the gravitational constant G is based on the quan-
tum properties of the graviton. Also, it has been used to calculate that a freely
falling body finds incident gravitons have frequency fX0 = 1.48 × 1042 s−1,
wavenumber kX0 = 4.92 × 1033 m−1 and energy of 6.12 × 1018 GeV. At first
glance the magnitude of the graviton’s energy may appear incredible, however it
has been argued that this energy determines the cosmological structure of the Uni-
verse, and accounts for observations which are driven by 95 % of the Universe’s
total energy.

Furthermore, gravitational redshift should result in an expansion of the Universe
and it has been argued that bodies freely fall towards redshifted incident gravitons,
such that fX0, kX0, cosmological energy density and cosmological pressure are
maintained as constants for freely falling bodies (or particles or points) during the
evolution of the Universe. Scattering should produce diffraction patterns of gravi-
tons and in this paper equations have been derived which have been used to predict
scattering angles as well as the orbital speeds of distant bodies. Cosmological ob-
servations support these predictions and it is concluded that diffraction patterns of
gravitons account for flat rotation curves, spherical galactic halos and intergalactic
interactions.

This paper has highlighted the need to use a mathematical structure based on com-
plex vector space in order to represent and understand the actions of gravitons. This
approach has been used to obtain some key equations, such as Einstein’s time dila-
tion, Lorentz boosts, Minkowski’s spacetime interval, and Euler’s formula. Also,
Young’s two-slit interference has been explained with gravitons. So by defining the
graviton as the quantum field particle of spacetime, the work reveals that the gravi-
ton is the mechanism which provides the foundation for the beautiful relationships
that exist between physics and mathematics.
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