QUANTIZATION OF LOCALLY SYMMETRIC KÄHLER MANIFOLDS

KENTARO HARA and AKIFUMI SAKO ${ }^{\dagger}$
Department of Mathematics and Science Education,Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
${ }^{\dagger}$ Department of Mathematics, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract

We introduce noncommutative deformations of locally symmetric Kähler manifolds. A Kähler manifold M is said to be a locally symmetric Kähler manifold if the covariant derivative of the curvature tensor is vanishing. An algebraic derivation process to construct a locally symmetric Kähler manifold is given. As examples, star products for noncommutative Riemann surfaces and noncommutative $\mathbb{C P}^{N}$ are constructed.

MSC: 53D55, 81R60
Keywords: Deformation quantization, locally symmetric Kähler manifolds, noncommutative geometry, noncommutative Riemann surfaces

1. Review of the Deformation Quantization with Separation of Variables

In this section, we review the deformation quantization with separation of variables to construct noncommutative Kähler manifolds.
An N-dimensional Kähler manifold M is described by using a Kähler potential. Let Φ be a Kähler potential and ω be a Kähler two-form

$$
\begin{equation*}
\omega:=\mathrm{i} g_{k \bar{l}} \mathrm{~d} z^{k} \wedge \mathrm{~d} \bar{z}^{l}, \quad g_{k \bar{l}}:=\frac{\partial^{2} \Phi}{\partial z^{k} \partial \bar{z}^{l}} \tag{1}
\end{equation*}
$$

where $z^{i}, \bar{z}^{i}(i=1,2, \ldots, N)$ are complex local coordinates.
In this article, we use the Einstein summation convention over repeated indices. The $g^{\bar{k} l}$ is the inverse of the Kähler metric tensor $g_{k \bar{l}}$. That means $g^{\bar{k} l} g_{l \bar{m}}=\delta_{\bar{k} \bar{m}}$.

In the following, we use

$$
\begin{equation*}
\partial_{k}=\frac{\partial}{\partial z^{k}}, \quad \partial_{\bar{k}}=\frac{\partial}{\partial \bar{z}^{k}} \tag{2}
\end{equation*}
$$

Deformation quantization is defined as follows.
Definition 1 (Deformation quantization). Deformation quantization of Poisson manifolds is defined as follows. \mathcal{F} is defined as a set of formal power series: $\mathcal{F}:=\left\{f \mid f=\sum_{k} f_{k} \hbar^{k} ; f_{k} \in C^{\infty}(M)\right\}$. A star product is defined as

$$
\begin{equation*}
f * g=\sum_{k} C_{k}(f, g) \hbar^{k} \tag{3}
\end{equation*}
$$

such that the product satisfies the following conditions

1. $(\mathcal{F},+, *)$ is a (noncommutative) algebra
2. $C_{k}(\cdot, \cdot)$ is a bidifferential operator.
3. C_{0} and C_{1} are defined as $C_{0}(f, g)=f g, C_{1}(f, g)-C_{1}(g, f)=\{f, g\}$ where $\{f, g\}$ is the Poisson bracket.
4. $f * 1=1 * f=f$.

Karabegov introduced a method to obtain a deformation quantization of a Kähler manifold in [6]. His deformation quantization is called deformation quantizations with separation of variables

Definition 2 (A star product with separation of variables). The operation $*$ is called a star product with separation of variables on a Kähler manifold when $a * f=a f$ for an arbitrary holomorphic function a and $f * b=f b$ for an arbitrary antiholomorphic function b.

We use

$$
D^{\bar{l}}=g^{\bar{l} k} \partial_{k}
$$

and introduce $\mathcal{S}:=\left\{A ; A=\sum_{\alpha} a_{\alpha} D^{\alpha}, a_{\alpha} \in C^{\infty}(M)\right\}$, where α is a multiindex $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.
In this article, we also use the Einstein summation convention over repeated multiindices and $a_{\alpha} D^{\alpha}:=\sum_{\alpha} a_{\alpha} D^{\alpha}$.
There are some useful formulae. $D^{\bar{l}}$ satisfies the following equations.

$$
\begin{equation*}
\left[D^{\bar{l}}, D^{\bar{m}}\right]=0, \quad\left[D^{\bar{l}}, \partial_{\bar{m}} \Phi\right]=\delta_{\bar{m}}^{\bar{l}}, \quad \text { for all } \quad l, m \tag{4}
\end{equation*}
$$

where $[A, B]=A B-B A$. Using them, one can construct a star product as a differential operator L_{f} such that $f * g=L_{f} g$.

Theorem 1. [Karabegov [6]]. For an arbitrary Kähler form ω, there exist a star product with separation of variables $*$ and it is constructed as follows. Let f be an element of \mathcal{F} and $A_{n} \in \mathcal{S}$ be a differential operator whose coefficients depend on f, i.e.,

$$
\begin{equation*}
A_{n}=a_{n, \alpha}(f) D^{\alpha}, \quad D^{\alpha}=\prod_{i=1}^{n}\left(D^{\bar{i}}\right)^{\alpha_{i}}, \quad\left(D^{\bar{i}}\right)=g^{\bar{i} l} \partial_{l} \tag{5}
\end{equation*}
$$

where α is an multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. Then

$$
\begin{equation*}
L_{f}=\sum_{n=0}^{\infty} \hbar^{n} A_{n} \tag{6}
\end{equation*}
$$

is uniquely determined such that it satisfies the following conditions.

1. For $R_{\partial_{\bar{l}} \Phi}=\partial_{\bar{l}} \Phi+\hbar \partial_{\bar{l}}$

$$
\begin{equation*}
\left[L_{f}, R_{\partial_{\bar{l}} \Phi}\right]=0 \tag{7}
\end{equation*}
$$

2.

$$
\begin{equation*}
L_{f} 1=f * 1=f \tag{8}
\end{equation*}
$$

Then the star products are given by

$$
\begin{equation*}
L_{f} g:=f * g \tag{9}
\end{equation*}
$$

and the star products satisfy the associativity

$$
\begin{equation*}
L_{h}\left(L_{g} f\right)=h *(g * f)=(h * g) * f=L_{L_{h} g} f \tag{10}
\end{equation*}
$$

Recall that each two of $D^{\bar{i}}$ commute each other, so if a multi index α is fixed then the A_{n} is uniquely determined. The equations (8)-(10) imply that $L_{f} g=f * g$ gives deformation quantization.

Definition 3. A map from differential operators to formal polynomials is defined as

$$
\sigma(A ; \xi):=\sum_{\alpha} a_{\alpha} \xi^{\alpha}
$$

where

$$
A=\sum_{\alpha} a_{\alpha} D^{\alpha}
$$

This map is called "twisted symbol". It becomes easier to calculate commutators by using the following theorem.

Proposition 2 (Karabegov [6]). Let $a(\xi)$ be a twisted symbol of an operator A. Then the twisted symbol of the operator $\left[A, \partial_{i} \Phi\right]$ is equal to $\partial a / \partial \xi^{\bar{i}}$

$$
\sigma\left(\left[A, \partial_{\bar{i}} \Phi\right]\right)=\frac{\partial}{\partial \xi^{\bar{i}}} \sigma(A) .
$$

This proposition follows from (4), i.e.,

$$
\sigma\left(\left[D^{\bar{l}}, \partial_{\bar{i}} \Phi\right]\right)=\delta_{\bar{i}}^{\bar{l}} .
$$

2. Deformation Quantization with Separation of Variables for a Locally Symmetric Kähler Manifold

In this section, explicit formulas to obtain star products on local symmetric Kähler manifolds are constructed. A method of Karabegov in Section 1 is used for the constructing.
Operators $D^{\overrightarrow{\alpha_{n}}}$ and $D^{\overrightarrow{\beta_{n}^{*}}}$ are defined by using $D^{k}=g^{k \bar{m}} \partial_{\bar{m}}$ and $D^{\bar{j}}=g^{\bar{j} l} \partial_{l}$ as

$$
D^{\overrightarrow{\alpha_{n}}}:=D^{\alpha_{1}^{n}} D^{\alpha_{2}^{n}} \cdots D^{\alpha_{N}^{n}}, \quad D^{\overrightarrow{\beta_{n}}}:=D^{\beta_{1}} D^{\beta_{2}} \cdots D^{\beta_{N}}
$$

where

$$
D^{\alpha_{k}}:=\left(D^{k}\right)^{\alpha_{k}}, \quad D^{\beta_{j}}:=\left(D^{\bar{j}}\right)^{\beta_{j}}
$$

and $\overrightarrow{\alpha_{n}}$ and $\overrightarrow{\beta_{n}^{*}}$ are N-dimensional vectors whose summation of their all elements are set to be n

$$
\begin{aligned}
& \vec{\alpha}_{n} \in\left\{\left(\gamma_{1}^{n}, \gamma_{2}^{n}, \cdots, \gamma_{N}^{n}\right) \in \mathbb{Z}^{N} ; \sum_{k=1}^{N} \gamma_{k}^{n}=n\right\} \\
& \overrightarrow{\beta_{n}^{*}} \in\left\{\left(\gamma_{1}^{n}, \gamma_{2}^{n}, \cdots, \gamma_{N}^{n}\right)^{*} \in \mathbb{Z}^{N} ; \sum_{k=1}^{N} \gamma_{k}^{n}=n\right\}
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& \overrightarrow{\alpha_{n}}:=\left(\alpha_{1}^{n}, \alpha_{2}^{n}, \cdots, \alpha_{N}^{n}\right),\left|\vec{\alpha}_{n}\right|:=\sum_{k=1}^{N} \alpha_{k}^{n}=n \\
& \overrightarrow{\beta_{n}^{*}}:=\left(\beta_{1}^{n}, \beta_{2}^{n}, \cdots, \beta_{N}^{n}\right)^{*},\left|\overrightarrow{\beta_{n}^{*}}\right|:=\sum_{k=1}^{N} \beta_{k}^{n}=n .
\end{aligned}
$$

For $\overrightarrow{\alpha_{n}} \notin \mathbb{Z}_{\geq 0}^{N}$ we define $D^{\overrightarrow{\alpha_{n}}}:=0$.
For example, $D^{(1,2,3)}=D^{1}\left(D^{2}\right)^{2}\left(D^{3}\right)^{3}, D^{(2,4,0)^{*}}=\left(D^{\overline{1}}\right)^{2}\left(D^{\overline{2}}\right)^{4}$ and $D^{(5,-2,3)}$ $=0$ for a three-dimensional manifolds case with $n=6$.
$\overrightarrow{e_{i}}$ is used as a N-dimensional vector

$$
\begin{equation*}
\overrightarrow{e_{i}}=\left(\delta_{1 i}, \delta_{2 i}, \cdots, \delta_{N i}\right) . \tag{11}
\end{equation*}
$$

A Riemannian (Kähler) manifold (M, g) is called a locally symmetric Riemannian (Kähler) manifold when $\nabla_{m} R_{i j k}^{l}=0$ for all i, j, k, l, m. Only locally symmetric Kähler manifolds are disscussed.
We assume that a star product with separation of variables for smooth functions f and g on a locally symmetric Kähler manifold M has a form

$$
\begin{equation*}
L_{f} g=f * g=\sum_{n=0}^{\infty} \sum_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}} T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}^{n}\left(D^{\overrightarrow{\alpha_{n}}} f\right)\left(D^{\overrightarrow{\beta_{n}^{*}}} g\right) \tag{12}
\end{equation*}
$$

where $T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}^{n}$ are covariantly constants. If $\overrightarrow{\alpha_{n}} \notin \mathbb{Z}_{\geq 0}^{N}$ or $\overrightarrow{\beta_{n}} \notin \mathbb{Z}_{\geq 0}^{N}$ then we define $T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}^{n}:=0 . \sum_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}$ is defined by the summation over all $\overrightarrow{\alpha_{n}^{*}}$ and $\overrightarrow{\beta_{n}^{*}}$ satisfying $\left|\overrightarrow{\alpha_{n}^{*}}\right|=\left|\overrightarrow{\beta_{n}^{*}}\right|=n$. In brief

$$
n=\left|\overrightarrow{\alpha_{n}^{*}}\right|:=\sum_{i=1}^{N} \alpha_{i}^{n}, \quad n=\left|\overrightarrow{\beta_{n}^{*}}\right|:=\sum_{i=1}^{N} \beta_{i}^{n}, \quad \sum_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}:=\sum_{\left|\overrightarrow{\alpha_{n}}\right|=\left|\overrightarrow{\beta_{n}^{*}}\right|=n}
$$

Theorem 3. When the star product with separation of variables for smooth functions f and g on a local symmetric Kähler manifold is given as

$$
f * g=\sum_{n=0}^{\infty} \sum_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}} T_{\overrightarrow{\alpha_{n}}}^{n} \overrightarrow{\beta_{n}^{*}}\left(D^{\overrightarrow{\alpha_{n}}} f\right)\left(D^{\overrightarrow{\beta_{n}^{*}}} g\right)
$$

these smooth functions $T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}^{n}$, which are covariantly constants, are determined by the following recurrence relations for all i

$$
\begin{aligned}
& \sum_{d=1}^{N} \hbar g_{\overline{i d}} T_{\overrightarrow{\alpha_{n}}-\overrightarrow{e_{d}} \overrightarrow{\beta_{n}^{*}}-\overrightarrow{e_{i}}}^{n-1} \\
& =\beta_{i} T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}^{n}+\sum_{k=1}^{N} \sum_{p=1}^{N} \frac{\hbar\left(\beta_{k}^{n}-\delta_{k p}-\delta_{i k}+1\right)\left(\beta_{k}^{n}-\delta_{k p}-\delta_{i k}+2\right)}{2} \\
& \quad \times R_{\bar{p}}^{\bar{k} \bar{k}}{ }_{\bar{i}} T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}-\overrightarrow{e_{p}}+2 \overrightarrow{e_{k}}-\overrightarrow{e_{i}}}^{n}+\sum_{k=1}^{N-1} \sum_{l=1}^{N-k} \sum_{p=1}^{N} \hbar\left(\beta_{k}^{n}-\delta_{k p}-\delta_{i k}+1\right) \\
& \quad \times\left(\beta_{k+l}^{n}-\delta_{(k+l), p}-\delta_{i,(k+l)}+1\right) R_{\bar{p}} \overline{k+l} \bar{k} \bar{i} T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}-\overrightarrow{e_{p}}+\overrightarrow{e_{k}}+\overrightarrow{e_{k+l}}-\overrightarrow{e_{i}}}^{n} .
\end{aligned}
$$

Outline of Proof. Let f and g be smooth functions on a Kähler manifold Mand L_{f} be a left star product by f given as (12). Then

$$
\begin{aligned}
\sigma\left(\left[L_{f}, \partial_{i} \Phi\right]\right) & =\frac{\partial \sigma\left(L_{f}\right)}{\partial \overline{\xi^{\bar{i}}}} \\
& =\sum_{n=0}^{\infty} \sum_{\overrightarrow{\alpha_{n} \overrightarrow{\beta_{n}^{*}}}} \beta_{i}^{n} T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}^{n}\left(D^{\overrightarrow{\alpha_{n}}} f\right)\left(\xi^{\overline{1}^{\beta_{1}^{n}}} \cdots \xi^{\bar{\beta}_{i}^{n}-1} \cdots \xi^{\bar{N}^{\beta_{N}}}\right)
\end{aligned}
$$

or equivalently,

$$
\begin{equation*}
\left[L_{f}, \partial_{i} \Phi\right] g=\sum_{n=0}^{\infty} \sum_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}} \beta_{i}^{n} T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}^{n}\left(D^{\overrightarrow{\alpha_{n}}} f\right)\left(D^{\overrightarrow{\beta_{n}^{*}}-\overrightarrow{e_{i}}} g\right) . \tag{13}
\end{equation*}
$$

The following formulas are given in [10]. For smooth functions f and g on a locally symmetric Kähler manifold, the following formulas are given.

$$
\begin{aligned}
\nabla_{\bar{j}_{1}} \cdots \nabla_{\bar{j}_{n}} f & =g_{l_{1} \bar{j}_{1}} \cdots g_{l_{n} \bar{j}_{n}} D^{l_{1}} \cdots D^{l_{n}} f \\
\nabla_{k_{1}} \cdots \nabla_{k_{n}} g & =g_{\bar{m}_{1} k_{1}} \cdots g_{\bar{m}_{n} k_{n}} D^{\bar{m}_{1}} \cdots D^{\bar{m}_{n}} g \\
D^{l_{1}} \cdots D^{l_{n}} f & =g^{l_{1} \bar{j}_{1}} \cdots g^{l_{\bar{j}}^{n}} \nabla_{\bar{j}_{1}} \cdots \nabla_{\bar{j}_{n}} f \\
D^{\bar{m}_{1}} \cdots D^{\bar{m}_{n}} g & =g^{\bar{m}_{1} k_{1}} \cdots g^{\bar{m}_{n} k_{n}} \nabla_{k_{1}} \cdots \nabla_{k_{n}} g
\end{aligned}
$$

If M is a locally symmetric Kähler manifold, these formulas derive

$$
\begin{aligned}
& {\left[L_{f}, \hbar \partial_{\bar{i}}\right] g} \\
& =\hbar \sum_{n=0}^{\infty} \sum_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}} \sum_{k=1}^{N} \sum_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}} \frac{\beta_{k}^{n}\left(\beta_{k}^{n}-1\right)}{2} R_{\bar{\rho}}^{\bar{k} \bar{k}} \bar{i} T_{\overrightarrow{\alpha_{n}}}^{n} \overrightarrow{\beta_{n}^{*}}\left(D^{\overrightarrow{\alpha_{n}}} f\right)\left(D^{\overrightarrow{\beta_{n}^{*}}+\overrightarrow{e_{\rho}}-\overrightarrow{e_{k}}} g\right) \\
& +\hbar \sum_{n=0}^{\infty} \sum_{k=1}^{N-1} \sum_{l=1}^{N-k} \sum_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}} \beta_{k}^{n} \beta_{k+l}^{n} R_{\bar{\rho}}^{\overrightarrow{k+l} \bar{k}} \vec{i} T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}^{n}\left(D^{\overrightarrow{\alpha_{n}}} f\right)\left(D^{\overrightarrow{\beta_{n}^{*}}+\overrightarrow{e_{\rho}}-\overrightarrow{e_{k}}} g\right) \\
& -\hbar \sum_{n=1}^{\infty} \sum_{\alpha_{n-1} \beta_{n-1}^{*}} \sum_{d=1}^{N} g_{\overline{i d}} T_{\alpha_{n-1} \beta_{n-1}^{*}}^{n-1}\left(D^{\alpha_{n-1}+\overrightarrow{e_{d}}} f\right)\left(D^{\beta_{n-1}^{*}} g\right) .
\end{aligned}
$$

Details of this proof are given in [5].

3. $*-$ Products for Riemann Surfaces

*-products for Riemann surfaces are studied in this section for arbitrary Riemann surfaces regarded as locally symmetric Kähler manifold. Applying Theorem 3
for complex 1 dimensional case, $*-$ products for Riemann surfaces are obtained concretely. A formal discussions are given in [11], and star products are studied in [9].
The Scalar curvature R is defined as

$$
R=g^{i \bar{j}} R_{i \bar{j}}=R_{\bar{l}}^{\bar{j} \bar{j}_{\bar{j}} .}
$$

Theorem 4. Let M be a one-dimensional locally symmetric Kähler manifold $(N=1)$ and f and g be smooth functions on M. The star product with separation of variables for f and g can be described as ${ }^{1}$

$$
f * g=\sum_{n=0}^{\infty}\left[\left(g^{1 \overline{1}}\right)^{n}\left\{\prod_{k=1}^{n} \frac{2 \hbar}{2 k+\hbar k(k-1) R}\right\}\left\{\left(g^{1 \overline{1}} \frac{\partial}{\partial z}\right)^{n} f\right\}\left\{\left(g^{1 \overline{1}} \frac{\partial}{\partial \bar{z}}\right)^{n} g\right\}\right] .
$$

Example 1. Let (\mathbb{C}, g) be a complex plane as a one-dimensional locally symmetric Kähler manifold. The star product with separation of variables for f and g can be described as

$$
f * g=\sum_{n=0}^{\infty}\left[\frac{\hbar^{n}}{n!}\left\{\left(\frac{\partial}{\partial z}\right)^{n} f\right\}\left\{\left(\frac{\partial}{\partial \bar{z}}\right)^{n} g\right\}\right] .
$$

Example 2. Wellknown flat torus embedding $X: S^{1} \times S^{1} \rightarrow \mathbb{R}^{4}$

$$
\begin{aligned}
X(u, v) & =(\cos u, \sin u, \cos v, \sin v), u=\operatorname{Re}(z), v=\operatorname{Im}(z) \\
\Longrightarrow R & =\frac{-1}{\sqrt{E G}}\left\{\frac{\partial}{\partial u}\left(\frac{1}{\sqrt{E}} \frac{\partial \sqrt{G}}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{1}{\sqrt{G}} \frac{\partial \sqrt{E}}{\partial v}\right)\right\}=0
\end{aligned}
$$

where first fundamental forms are

$$
E=\frac{\partial X}{\partial u} \cdot \frac{\partial X}{\partial u}=1, \quad F=\frac{\partial X}{\partial u} \cdot \frac{\partial X}{\partial v}=0, \quad G=\frac{\partial X}{\partial v} \cdot \frac{\partial X}{\partial v}=1
$$

hence u, v are isothermal coordinates on a torus and the pullback metric is defined as

$$
\tilde{g}_{1 \overline{1}}=E=G=1
$$

If $(M, g)=\left(S^{1} \times S^{1}, \tilde{g}\right)$ then $R=R_{\overline{1}}{ }^{\overline{1}} \overline{\overline{1}} \overline{\overline{1}}=0$. Hence the star product with separation of variables for f and g can be described as also

$$
f * g=\sum_{n=0}^{\infty}\left[\frac{\hbar^{n}}{n!}\left\{\left(\frac{\partial}{\partial z}\right)^{n} f\right\}\left\{\left(\frac{\partial}{\partial \bar{z}}\right)^{n} g\right\}\right] .
$$

[^0]
4. Projective Space Cases

In this section, we calculate star products of $\mathbb{C P}^{N}$. These star products are also equal to the ones given in $[1,4,10]$. A projective space is a special Grassmann manifold and a Grassmann manifold is a special flag manifold. Deformation quantization of flag manifolds and Grassmann manifolds were studied in [2, 3, 7, 8]. At first, a function similar to the determinant is defined on the matrix space.

Definition 4 (permanent). Let $C=\left(C_{k, l}\right)_{1 \leq k \leq n, 1 \leq l \leq n}$ be a $n \times n$ matrix. We define $|\cdot|^{+}$as a \mathbb{C}-valued function on $M(n, n ; \mathbb{C})$ such that

$$
|C|^{+}:=\sum_{\sigma_{n} \in S_{n}} \prod_{k=1}^{n} C_{k, \sigma_{n}(k)} .
$$

This is called "permanent".
Definition 5. A matrix $G^{\overrightarrow{\alpha_{n}}, \overrightarrow{\beta_{n}^{*}}}$ is defined by using the Hermitian metrics on M. Its elements are metrics on M and are located as follows. $\overrightarrow{\alpha_{n}}$ and $\overrightarrow{\beta_{n}}$ are elements of \mathbb{Z}^{N}

$$
G^{\overrightarrow{\alpha_{n}}, \overrightarrow{\beta_{n}^{*}}}=\left(\begin{array}{ccc}
\tilde{G}_{11} & \cdots & \tilde{G}_{1 n} \\
\vdots & \ddots & \vdots \\
\tilde{G}_{n 1} & \cdots & \tilde{G}_{n n}
\end{array}\right)
$$

where

$$
\tilde{G}_{p q}=: g_{p \bar{q}}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right) \in M\left(\alpha_{p}^{n}, \beta_{q}^{n} ; \mathbb{C}\right) .
$$

Theorem 5. Let f and g be smooth functions on a projective space $\mathbb{C P}^{N}$. A star product with separation of variables on a projective space $\mathbb{C P}^{N}$ is given as
$f * g=f \cdot g+\sum_{n=1}^{\infty} \sum_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}\left|G^{\overrightarrow{\alpha_{n}}, \overrightarrow{\beta_{n}^{*}}}\right|^{+}\left(\prod_{l=1}^{N} \frac{1}{\alpha_{l}^{n}!\beta_{l}^{n}!}\right) \prod_{k=1}^{n} \frac{\hbar}{(1+\hbar-\hbar k)}\left(D^{\overrightarrow{\alpha_{n}}} f\right)\left(D^{\overrightarrow{\beta_{n}^{*}}} g\right)$.

Here, we correct the typos in (5.4) in [5].
Proof. We show that

$$
T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}^{n}=\left|G^{\overrightarrow{\alpha_{n}}, \overrightarrow{\beta_{n}^{*}}}\right|^{+}\left(\prod_{l=1}^{N} \frac{1}{\alpha_{l}^{n}!\beta_{l}^{n}!}\right) \prod_{k=1}^{n} \frac{\hbar}{(1+\hbar-\hbar k)}
$$

satisfies (3)

$$
\begin{aligned}
& \sum_{d=1}^{N} \frac{\hbar g_{i d}}{(1+\hbar-\hbar n) \beta_{i}^{n}} T_{\overrightarrow{\alpha_{n}}-\overrightarrow{e_{d}} \overrightarrow{\beta_{n}^{*}}-\overrightarrow{e_{i}}}^{n-1} \\
& =\sum_{d=1}^{N} g_{\overline{i d}} \alpha_{d}^{n}\left|G^{\overrightarrow{\alpha_{n}}-\overrightarrow{e_{d}}, \overrightarrow{\beta_{n}^{*}}-\overrightarrow{e_{i}}}\right|^{+} \frac{\hbar}{(1+\hbar-\hbar n)}\left(\prod_{l=1}^{N} \frac{1}{\alpha_{l}^{n}!\beta_{l}^{n}!}\right) \prod_{k=1}^{n} \frac{\hbar}{(1+\hbar-\hbar k)}
\end{aligned}
$$

Using cofactor expansion of permanent, the R.H.S. of the above is rewritten as

$$
\left|G^{\overrightarrow{\alpha_{n}}, \overrightarrow{\beta_{n}}}\right|^{+}\left(\prod_{l=1}^{N} \frac{1}{\alpha_{l}^{n}!\beta_{l}^{n!}}\right) \prod_{k=1}^{n} \frac{\hbar}{(1+\hbar-\hbar k)}
$$

This shows the given $T_{\overrightarrow{\alpha_{n}} \overrightarrow{\beta_{n}^{*}}}^{n}$ satisfies the recurrence relation (3).

Acknowledgments

A.S. was supported in part by JSPS KAKENHI Grant Number 16K05138.

References

[1] Bordemann M., Brischle M., Emmrich C. and Waldmann S., Phase Space Reduction for Star-Products: An Explicit Construction for $\mathbb{C} P^{n}$, Lett. Math. Phys. 36 (1996) 357-371, [arXiv:q-alg/9503004].
[2] Halima M. and Tilmann W., Fuzzy Complex Grassmannians and Quantization of Line Bundles, Semin. Univ. Hambg. 80 (2010) 59-70.
[3] Halima M., Construction of Certain Fuzzy Flag Manifolds, Rev. Math. Phys. 22 (2010) 533-548.
[4] Hayasaka K., Nakayama R. and Takaya Y., A New Noncommutative Product on the Fuzzy Two Sphere Corresponding to the Unitary Representation of $\operatorname{SU}(2)$ and the Seiberg-Witten Map, Phys. Lett. B 553 (2003) 109-118, [arXiv:hep-th/0209240].
[5] Hara K. and Sako A., Noncommutative Deformations of Locally Symmetric Kähler Manifolds, J. Geom. Phys. 114 (2017) 554-569 doi:10.1016/j.geomphys.2017.01.009, [arXiv:math-ph/1608.08146].
[6] Karabegov A., Deformation Quantizations with Separation of Variables on a Kähler Manifold, Commun. Math. Phys. 180 (1996) 745-755 [arXiv:hep-th/9508013].
[7] Karabegov A., Pseudo-Kähler Quantization on Flag Manifolds, [arXiv:dgga/9709015].
[8] Murray S. and Saemann C., Quantization of Flag Manifolds and Their Supersymmetric Extensions, Adv. Theor. Math. Phys. 12 (2008) 641-710 doi:10.4310/ATMP.2008.v12.n3.a5, [arXiv:hep-th/0611328].
[9] Ohsaku T., Algebra of Noncommutative Riemann Surfaces, [arXiv:mathph/0606057].
[10] Sako A., Suzuki T. and Umetsu H., Noncommutative $\mathbb{C} P^{N}$ and $\mathbb{C} H^{N}$ and Their Physics, J. Phys. Conf. Ser. 442012052 (2013) 305-320.
[11] Schlichenmaier M., Some Naturally Defined Star Products for Kähler Manifold, Trav. Math. 20 (2012) 187-204.

[^0]: ${ }^{1}$ Here we correct the typos in page 562 in [5]. $\prod_{k=1}^{n-1}$ in [5] should be $\prod_{k=1}^{n}$.

