Nineteenth International Conference on Geometry, Integrability and Quantization June 02–07, 2017, Varna, Bulgaria Ivaïlo M. Mladenov and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2018, pp 115–121 doi: 10.7546/giq-19-2018-115-121

ON HOLOMORPHICALLY PROJECTIVE MAPPINGS OF EQUIDISTANT PARABOLIC KÄHLER SPACES

HANA CHUDÁ, JOSEF MIKEŠ[†], PATRIK PEŠKA[†] and MOHSEN SHIHA^{*}

Department of Mathematics, Thomas Bata University in Zlín, 760 05 Zlín Czech Republic

[†]Department of Algebra and Geometry, Palacky University, 77146 Olomouc Czech Republic

*Department of Mathematics, University of Homs, Homs, Syria

Abstract. In this paper we construct holomorphically projective mappings of equidistant parabolic Kähler spaces. We discus fundamental equations of these mappings as well.

MSC: 53B30, 53B99 *Keywords*: Equidistant spaces, holomorphically projective mappings, parabolic Kähler spaces, (pseudo-)Riemannian space

1. Introduction

First we note the general dependence of holomorphically-projective mappings of parabolic Kähler manifolds in dependence on the smoothness class of the metric. We present well known facts, which were proved by M. Shiha, J. Mikeš *et al*, see [2,3,9,14,15,19,21-23].

The similar problems have been studied for holomorphically-projective mappings of Kähler spaces cite [4–7, 9–11, 14, 16, 18, 27].

Finally, we construct holomorphically-projective mappings of equidistant parabolic Kähler spaces. For equidistant Kähler spaces were those spaces constructed in [12, 13].

2. Parabolic Kähler Manifolds

In the following definition we introduce generalizations of Kähler manifolds [8], see [9,10,14]. A basis on this definition see monography by V. Vishnevskii, A. Shirokov and V. Shurigin [26].

Definition 1. An *n*-dimensional (pseudo-)Riemannian manifold (M, g) is called an *m*-parabolic Kähler manifold $K_n^{o(m)}$, if beside the metric tensor g, a tensor field F of a rank $m \ge 2$ of type (1, 1) is given on the manifold M_n , called a *structure* F, such that the following conditions hold

$$F^2 = 0, \quad g(X, FX) = 0, \qquad \nabla F = 0$$
 (1)

where X is an arbitrary vector of TM_n , and ∇ denotes the covariant derivative in $K_n^{o(m)}$.

We remind, that Kähler spaces, were characterized by conditions $F^2 = -\text{Id}$, g(X, FX) = 0, $\nabla F = 0$, were first considered by Shirokov [25]. Independently they were studied by E. Kähler [8]. Hyperbolic Kähler space (also *para Kähler space*, see D. Alekseevsky [1]) characterized by $F^2 = \text{Id}$, g(X, FX) = 0, $\nabla F = 0$, were considered by P. Rashevskij [9].

3. Holomorphically Projective Mappings Theory Between Parabolic Kähler Spaces

Assume that we have two parabolic Kähler manifolds $K_n^{o(m)} = (M, g, F)$ and $\bar{K}_n^{o(\bar{m})} = (\bar{M}, \bar{g}, \bar{F})$ with metrics g and \bar{g} , structures F and \bar{F} , Levi-Civita connections ∇ and $\bar{\nabla}$, respectively. Here $\bar{K}_n, \bar{K}_n \in C^1$, i.e. $g, \bar{g} \in C^1$ which means that their components $g_{ij}, \bar{g}_{ij} \in C^1$. Likewise, as in [19,21] we introduce the following notations, this is an analogy by [16], see [10, p. 240].

Definition 2. A curve ℓ in K_n which is given by the equation $\ell = \ell(t)$, $\lambda = d\ell/dt \ (\neq 0), t \in I$, where t is a parameter is called *analytical planar*, if under the parallel translation along the curve, the tangent vector λ belongs to the two-dimensional distribution $D = \text{Span} \{\lambda, F\lambda\}$ generated by λ and its conjugate $F\lambda$, that is, it satisfies

$$\nabla_t \lambda = a(t)\lambda + b(\lambda)F\lambda$$

where a(t) and b(t) are some functions of the parameter t. Particularly, in the case b(t) = 0, an analytical planar curve is a geodesic.

On an analytical planar curve, it is possible to locally find parameter t, for which $a(t) \equiv 0$. It is clear to see too, that vector λ and $F\lambda$ are orthogonal in $K_n^{o(m)}$.

Definition 3. A diffeomorphism $f: K_n^{o(m)} \to \bar{K}_n^{o(\bar{m})}$ is called a *holomorphically-projective mapping* of $K_n^{o(m)}$ onto $\bar{K}_n^{o(\bar{m})}$ if f maps any analytical planar curve in $K_n^{o(m)}$ onto an analytical planar curve in $\bar{K}_n^{o(\bar{m})}$.

Assume that we have a holomorphically-projective mapping $f: K_n^{o(m)} \to \bar{K}_n^{o(\bar{m})}$. Since f is a diffeomorphism, we can suppose local coordinate charts on M or \bar{M} , respectively, such that locally, $f: K_n^{o(m)} \to \bar{K}_n^{o(\bar{m})}$ maps points onto points with the same coordinates, and $\bar{M} = M$. A manifold $K_n^{o(m)}$ admits a holomorphically-projective mapping onto $\bar{K}_n^{o(\bar{m})}$ if and only if the following equations [19,21]

$$\bar{\nabla}_X Y = \nabla_X Y + \psi(X)Y + \psi(Y)X + \varphi(X)FY + \varphi(Y)FX$$
(2)

hold for any tangent fields X, Y and where ψ is a gradient-like form and $\psi(X) = \varphi(FX)$. If $\varphi \equiv 0$ than f is *affine* or *trivially holomorphically-projective*. Moreover, structures F and \overline{F} are preserved, i.e. $\overline{F} = F$, and $\overline{m} = m$. This fact implies from the theory of F-planar mappings, see [10, pp. 219-220]. In local form

$$\bar{\Gamma}^{h}_{ij} = \Gamma^{h}_{ij} + \psi_i \delta^{h}_j + \psi_j \delta^{h}_i + \varphi_i F^{h}_j + \varphi_j F^{h}_i, \qquad \psi_i = \varphi_j F^{j}_i$$

where Γ_{ij}^h and $\bar{\Gamma}_{ij}^h$ are the Christoffel symbols of K_n and \bar{K}_n , ψ_i , F_i^h are components of ψ , F and δ_i^h is the Kronecker delta

$$\psi_i = \frac{\partial \Psi}{\partial x^i}, \qquad \Psi = \frac{1}{2(n+2)} \ln \left| \frac{\det \bar{g}}{\det g} \right|$$

Here and in the following we will use the conjugation operation of indices in the way

$$A_{\cdots \,\overline{i}\,\cdots} = A_{\cdots \,k} \dots F_i^k.$$

Equations (2) are equivalent to the following equations

$$\nabla_{Z}\bar{g}(X,Y) = 2\psi(Z)\bar{g}(X,Y) + \psi(X)\bar{g}(Y,Z) + \psi(Y)\bar{g}(X,Z) -\varphi(F)\bar{g}(Y,FZ) - \varphi(F)\bar{g}(FX,Z).$$
(3)

In local form

$$\bar{g}_{ij,k} = 2\psi_k \bar{g}_{ij} + \psi_i \bar{g}_{jk} + \psi \bar{g}_{ik} - \varphi_i \bar{g}_{\bar{j}k} - \varphi_j \bar{g}_{\bar{i}k}$$

where "," denotes the covariant derivative on $K_n^{o(m)}$. In the local coordinate system $\psi_i \equiv \varphi_{\overline{i}}$ holds.

M. Shiha [19,21] proved that equations (2) and (3) are equivalent to

$$\nabla_Z a(X,Y) = \lambda(X)g(Y,Z) + \lambda(Y)g(X,Z) + \theta(X)g(Y,FZ) + \theta(Y)g(X,FZ).$$
(4)

In local form

$$a_{ij,k} = \lambda_i g_{jk} + \lambda_j g_{ik} - \theta_i g_{\bar{j}k} - \theta_j g_{\bar{i}k}$$

where

$$a_{ij} = e^{2\Psi} \bar{g}^{\alpha\beta} g_{\alpha i} g_{\beta j}, \quad \lambda_i = -e^{2\Psi} \bar{g}^{\alpha\beta} g_{\beta i} \psi_{\alpha}, \quad \theta_i = -e^{2\Psi} \bar{g}^{\alpha\beta} g_{\beta i} \varphi_{\alpha}.$$
(5)

From (4) follows that λ_i is gradient-like vector and it holds

$$\lambda_i = \partial_i \Lambda, \qquad \Lambda = 1/4 a_{\alpha\beta} g^{\alpha\beta}. \tag{6}$$

Moreover, from the condition $\psi_i \equiv \varphi_{\overline{i}}$ follows, that

$$\lambda_i = \theta_{\overline{i}}$$

On the other hand [10]

$$\bar{g}_{ij} = e^{2\Psi} \tilde{g}_{ij}, \qquad \Psi = \frac{1}{2} \ln \left| \frac{\det \tilde{g}}{\det g} \right|, \qquad \|\tilde{g}_{ij}\| = \|g^{i\alpha} g^{j\beta} a_{\alpha\beta}\|^{-1}.$$
(7)

The above formulas (4) with a regular tensor a are the criterion for holomorphicallyprojective mappings $K_n^{o(m)} \to \overline{K}_n^{o(m)}$, globally as well as locally.

M. Shiha [19,21] proved the following theorem

Theorem 4. A diffeomorphism $f: K_n^{o(m)} \to \overline{K}_n^{o(\overline{m})}$ is a holomorphically-projective mapping if and only if there exist a solution of the following linear Cauchy-like system

a)
$$a_{ij,k} = \lambda_i g_{jk} + \lambda_j g_{ik} + \theta_i g_{j\bar{k}} + \theta_j g_{i\bar{k}}$$

b) $\theta_{i,j} = \tau g_{i\bar{j}} + a_{\alpha\beta} M_{1|ij}^{\alpha\beta}$
c) $\tau_{,i} = \theta_{\alpha} M_{2|i}^{\alpha} + a_{\alpha\beta} M_{3|i}^{\alpha\beta}$
(8)

for the unknown tensor a_{ij} $(a_{ij} = a_{ji}, a_{\bar{i}j} + a_{i\bar{j}} = 0, \det a_{ij} \neq 0)$, a vector λ_i , and a function τ . Here $M_{1|ij}^{\alpha\beta}, M_{2|i}^{\alpha}, M_{3|i}^{\alpha\beta}$ are tensors determined from the metric and the structure tensors g_{ij} and F_i^h of the space $K_n^{o(m)}$.

Remark 5. This theorem was proved with assuming that $K_n^{o(m)}$ and $\bar{K}_n^{o(m)}$ belong to C^3 class. Assuming that $K_n^{o(m)}$ and $\bar{K}_n^{o(\bar{m})}$ belong to C^2 class, formula (8a) and (8b) hold.

Remark 6. We will prove in [17], that the Theorem 4 valides too if $K_n^{o(m)} \in C^r$, $r \geq 3$, and $\bar{K}_n^{o(\bar{m})} \in C^2$. Then it is true that also $\bar{K}_n^{o(\bar{m})} \in C^r$.

The system (8) has at most one solution for the initial values in a point x_0 : $a_{ij}(x_0)$, $\lambda_i(x_0)$ and $\tau(x_0)$. Hence, the general solution of this system depends on no more than (n+2)(n+1)/2 - m(n-m+1) essential parameters.

The integrability of conditions (8) and their differential prolongations are linear algebraic equations on the components of the unknown tensors a_{ij} , λ_{ij} and τ with coefficients from $K_n^{o(m)}$.

4. Homomorphically-Projective Mapping of Equidistant Parabolic Kähler Spaces

It is well-known, see [20], that the (pseudo-)Riemannian space is called *equidistant* if there exists a vector field ξ^h , for which

$$\xi^h_{,i} = \rho \, \delta^h_i \tag{9}$$

where ρ is a function.

K. Yano called such vector field concircular [28].

The equidistant parabolic Kählerian spaces were studied by Shiha and Mikeš [24]. In their work, the metrics of those spaces were found if $\rho \neq 0$. Moreover, it has been proven that ρ is a constant.

We have to mention that in 1956 Sinyukov [20] proved that equidistant spaces with $\rho \neq 0$ admit geodesic mappings. From this elementary follows that the above mentioned equidistant parabolic Kähler spaces admit geodesic mappings onto (pseudo-) Riemannian spaces \bar{V}_n . In the general case those spaces \bar{V}_n are not Kähler.

We proved, that the following theorem holds.

Theorem 7. The equidistant parabolic Kähler spaces for which $\rho \neq 0$ admit nontrivial holomorphically-projective mapping.

Proof: Let the $K_n^{o(m)}$ be an equidistant parabolic Kähler space for which there exists the equidistant vector field ξ^h defined by formula (9) for which $\rho \neq 0$. By the following formula, we construct regular symmetric tensor field a_{ij}

$$a_{ij} = c_1 \cdot g_{ij} + c_2 \cdot \xi_{\bar{i}} \xi_{\bar{j}} \tag{10}$$

where c_1 and c_2 are constant for which $det ||a_{ij}|| \neq 0$.

We will convince that for this tensor fields a_{ij} the following formula

$$a_{\bar{i}j} + a_{i\bar{j}} = 0$$

holds and for fundamental equations (4) of holomorphically-projective mapping of parabolic Kähler spaces as well.

Indeed, deriving the equation (10) along x^k and using formula (9), we have

$$a_{ij,k} = c_1 \,\rho \,\xi_{\bar{i}} \,g_{\bar{j}k} + c_2 \,\rho \,\xi_{\bar{j}} \,g_{\bar{i}k}. \tag{11}$$

Putting $\varphi_i = -c_2 \rho \xi_{\overline{i}} \neq 0$ then we have $\lambda_i \equiv \varphi_{\overline{i}} = 0$. Thus the equation (11) have the form of fundamental equations (4) and the theorem is proved.

Acknowledgements

The paper was supported by the project IGA PrF 2017012 Palacky University Olomouc.

References

- Alekseevsky D., *Pseudo-Kähler and Para-Kähler Symmetric Spaces*, In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry, EMS, Zürich 2010, pp 703– 729.
- [2] Chudá H., Chodorová M. and Shiha M., On Composition of Conformal and Holomorphically Projective Mappings Between Conformally Kählerian Spaces, J. Appl. Math. Bratislava 5 (2012) 91–96.
- [3] Chudá H. and Shiha M., Conformal Holomorphically Projective Mappings Satisfying a Certain Initial Condition, Miskolc Math. Notes 14 (2013) 569–574.
- [4] Domashev V. and Mikeš J., *Theory of Holomorphically Projective Mappings of Kählerian Spaces*, Math. Notes **23** (1978) 160–163.
- [5] Hinterleitner I., On Holomorphically Projective Mappings of e-Kähler Manifolds, Arch. Math. Brno **48** (2012) 333–338.
- [6] Hinterleitner I. and Mikeš J., *Geodesic Mappings of (Pseudo-)Riemannian Manifolds Preserve Class of Differentiability*, Miskolc Math. Notes **14** (2013) 575–582.
- [7] Hinterleitner I. and Mikeš J., *Geodesic Mappings and Einstein Spaces*, In: Geometric Methods in Physics, Birkhäuser, Basel 2013, pp. 331–335.
- [8] Kähler E., Über Eine Bemerkenswerte Hermitesche Metrik, Sem. Hamburg. Univ. 9 (1933) 173–786.
- [9] Mikeš J. et al, Special Mappings in Differential Geometry, Palacky Univ. Press, Olomouc 2015.
- [10] Mikeš J., Vanžurová A. and Hinterleitner I., *Geodesic Mappings and Some Generalizations*, Palacky Univ. Press, Olomouc 2009.
- [11] Mikeš J., On Holomorphically Projective Mappings of Kählerian Spaces, Ukr. Geom. Sb. 23 (1980) 90–98.
- [12] Mikeš J. Equidistant Kähler Spaces, Math. Notes 38 (1985) 855-858.
- [13] Mikeš J. On Sasaki Spaces and Equidistant Kähler Spaces, Sov. Math. Dokl. 34 (1987) 428–431.
- [14] Mikeš J., Holomorphically Projective Mappings and Their Generalizations, J. Math. Sci. (New York) 89 (1998) 1334–1353.
- [15] Mikeš J., Shiha M. and Vanžurová A., Invariant Objects by Holomorhpically Projective Mappings of Parabolically Kähler Spaces, J. Appl. Math. 2 (2009) 135–141.
- [16] Otsuki T. and Tashiro Y., On Curves in Kaehlerian Spaces, Math. J. Okayama Univ. 4 (1954) 57–78.
- [17] Peška P., Mikeš J., Chudá H. and Shiha M., On Holomorphically Projective Mappings of Parabolic Kahler Manifolds, Miskolc Math. Notes 17 (2016) 1011–1019.
- [18] Prvanović M., Holomorphically Projective Transformations in a Locally Product Space, Math. Balk. 1 (1971) 195–213.
- [19] Shiha M., *Geodesic and Holomorphically Projective Mappings of Parabolically Kählerian Spaces*, PhD Thesis, Moscow Ped. Inst., Moskow 1992.
- [20] Sinyukov, S., On Equidistant Spaces, Vestn. Odessk. Univ. (1957) 133-135.

On Holomorphically Projective Mappings of Equidistant Parabolic Kähler Spaces 121

- [21] Shiha, M., On the Theory of Holomorphically-Projective Mappings of Parabolically-Kählerian Spaces, Math. Publ. Silesian Univ. Opava 1 (1993) 157–160.
- [22] Shiha M., Juklová L. and Mikeš J., Holomorphically Projective Mappings Onto Riemannian Tangent-Product Spaces, J. Appl. Math. Bratislava 5 (2012) 259–266.
- [23] Shiha M. and Mikeš J., On Holomorphically Projective Flat Parabolically-Kählerian Spaces, In: Proc. Conf. Contemp. Geom. and Related Topics, Univ. Belgrade, Faculty of Mathematics, Belgrade 2006, pp. 467–474.
- [24] Shiha M. and Mikeš J., On Equidistant Parabolically Kählerian Spaces, Tr. Geom. Semin. 22 (1994) 97–107.
- [25] Shirokov P., Selected Investigations on Geometry, Kazan' Univ. Press, Kazan 1966.
- [26] Vishnevskij V., Shirokov A. and Shurygin V., Spaces Over Algebras, Izd. Kazansk. Univ., Kazan 1985.
- [27] Yano K., Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford 1965.
- [28] Yano K., Concircular Geometry, Proc. Imp. Acad. Tokyo, 16 (1940) 195–200, 354– 360, 442–448, 505–511.