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Abstract. Computing Kauffman bracket grows exponentially with the num-
ber of crossings in the knot diagram. In this paper we illustrate how Kauff-
man bracket for rational tangles and rational knots can be computed so that it
involves a low number of terms. Kauffman bracket and Jones polynomial are
known to have connections with statistical mechanics, quantum theory and
quantum field theory.
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1. Introduction

A 2-tangle diagram is a region in a knot or link diagram surrounded by a rectangle
such that the knot or link diagram crosses the rectangle in four points. These four
points are usually thought of as fixed points occurring in the four corners NW, NE,
SW, SE. See the following figure.

A rational tangle is a special 2-tangle that results from a finite sequence of twists
of pairs of the four endpoints of two unknotted arcs. For the formal definition
of a rational tangle see Definition 2. Rational knots and links are obtained by
numerator closures of rational tangles; that is by connecting the two upper end
points and the two lower endpoints of a given rational tangle by two unknotted
and unlinked arcs. Rational knots and rational tangles are important in the study
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of DNA recombination (see [10]). Rational knots and links were considered early
in [2] and [11]. The notion of a rational knot was introduced by Conway [5] in
his work on classifying knots and links. Some other important references in the
study of rational tangles and rational knots and links are [1], [3], [4], [6–9], [12].
A rational tangle is associated with a unique reduced rational number or∞, called
the fraction of the tangle. The fraction of the tangle classifies rational tangles, and
it is also used in the classification of rational knots and links.
Kauffman bracket is a regular isotopy invariant of knots and links, which was
used in redefining the well-known ambient isotopy invariant; the Jones polyno-
mial. Computing Jones polynomial for a knot or link through Kauffman bracket
grows exponentially with the number of crossings in the diagram. In this paper,
we illustrate how Kauffman bracket for rational tangles and rational knots can be
computed so that it involves a low number of terms.. For example the rational
link N[5 6 7], in Example 3 at the end of this paper, has 18 crossings. Computing
Kauffman bracket for this link might involve 218 terms, which correspond to the
218 states resulting from smoothing each crossing in two possible ways. While, in
Example 3, it involves 8 terms, and each term consists of a product of three reduced
factors. While we just work on rational tangles, knots and links, the ideas can be
generalized to algebraic knots and links in general. In fact most of the ideas in this
paper might be known, but we illustrate them from our perspective.
This paper is organized as follows. In Section two we give the needed background
on rational tangles and Kauffman bracket. In section three we introduce operations
on the module consisting of the values of the bracket on rational tangles. We show
the existence of the structure of an algebra over a ring in this module. We also use
this structure to deduce some important formulas and results on the values of the
bracket of rational tangles. In Section four we give a main theorem that introduces
a sum formula for calculating the bracket of a rational tangle and hence the bracket
and the Jones polynomial of a rational knot.

2. Basic Concepts and Terminology

2.1. Rational Tangles

Most of the background in this section is based on Adams book [1]. Also we use
many graphics from this book in the paper.

Definition 1. Two 2-tangle diagrams are said to be isotopy equivalent if we can get
from one of them to the other by a sequence of the well-known three Reidemeister
moves inside the surrounding rectangle while the four points remain fixed.
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Let the [∞] tangle, the [0] tangle, the [1] tangle and the [−1] tangle be as in the
following figure

An integer tangle [n] is the result of winding two horizontal strands around each
other to get a tangle that involves |n| crossings. If the upper strand at each crossing
has positive slope, then n is positive. Otherwise, n would be negative. Note that

[−n] is the mirror image of [n] . The tangle denoted by
1

[n]
is the result of winding

two vertical strands around each other to get a tangle that involves |n| crossings

See the following figure for the tangle [3], the tangle [−3], and the tangle
1

[3]
·

Note that
1

[3]
is a vertical tangle with crossings having an upper strand of positive

slope again.

Consider the following two operations on general 2-tangles

where −T is the mirror image of T , which can be obtained by switching all the

crossings of T. In fact,
1

T
can be considered as the mirror image of T in the diag-

onal line connecting NW and SE of T .

The definition of rational tangles can now be given as follows.
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Definition 2. A rational tangle is the isotopy class represented by the tangle dia-
gram denoted by [a1 a2 · · · am] and constructed as follows

T = [a1 a2 · · · am] = [am] +
1

[am−1] +
1

. . .
1

[a2] +
1

[a1]

where a2, . . . , am−1 ∈ Z−{0}, a1 ∈ Z and am ∈ Z∪{∞}. Such form of a tangle
will be called standard form.

See the tangles [3 2 − 4] = [−4] + 1

[2] +
1

[3]

, and [3 2] = [2] +
1

[3]
below.

Theorem 3. Every rational tangle is the isotopy class represented by the tangle
diagram [a1 a2 · · · am] with all the a,si positive or all negative.

2.2. Kauffman Bracket of Tangles

Consider the well-known Kauffman bracket in the following definition.

Definition 4. The Kauffman bracket polynomial is a function from unoriented link
diagrams in the oriented plane to Laurent polynomials with integer coefficients in
an indeterminate A. It maps a diagram D of a link L to 〈D〉 ∈ Z[A,A−1] and it
is characterized by the three rules

i)
〈 〉

= A

〈 〉
+A−1

〈 〉
ii)
〈
D ∪

〉
= (−A2 −A−2) 〈D〉

iii)
〈 〉

= 1.
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The bracket polynomial is known to be a regular isotopy invariant, that is an in-
variant under the second and the third R-moves.
In the case when we have an oriented link D and we want to calculate the bracket
polynomial for this link, we will denote by |D| the unoriented diagram that is
obtained from D by forgetting the orientations of all components. A crossing in an
oriented diagram D has a sign of +1 or −1 according to the right-hand rule. The
sum of signs of the crossings for a given diagram D is called the writhe of D and
is denoted by w(D).

Theorem 5. Let D be a an oriented link diagram. Then the X polynomial defined
by

X(D) = (−A3)−w(D) 〈|D|〉
is an invariant of the links.

Now given a diagram D with n crossings. A state S of D is a choice of how
to smooth all of the n crossings in the link diagram D. Each state is a set of
nonoverlapping circles, and we have 2n states. The following theorem provides us
with a formula for calculating 〈D〉 called a state sum formula.

Theorem 6. The bracket polynomial of the link diagram D is given by

〈D〉 =
∑
S

Aa(S)−b(S)(−A2 −A−2)|S|−1

where the sum runs over all possible states S, such that |S| is the total number

of circles in the state S, a(S) is the number of splits of type of the

crossing in the state S.

Let T be any 2-tangle and let 〈T 〉 be the formal expansion of the bracket on
this tangle. Then we will have a similar state sum formula except that a state S
consists of circles and the tangle 〈[0]〉 or the tangle 〈[∞]〉 . Moreover, if we de-
note the number of circles in this S by |S|, the contribution of S in 〈T 〉 will be
Aa(S)−b(S)(−A2−A−2)|S| 〈[0]〉, or Aa(S)−b(S)(−A2−A−2)|S| 〈[∞]〉 . Therefore,
we get

〈T 〉 =
∑
S

Aa(S)−b(S)(−A2 −A−2)|S|e(S)

where e(S) = 〈[0]〉, or 〈[∞]〉 . This implies the following lemma in [9].

Lemma 7. Let T be any 2-tangle and let 〈T 〉 be the formal expansion of the bracket
on this tangle. Then there exist elements a(A) and b(A) in Z[A,A−1], such that

〈T 〉 = a(A) 〈[∞]〉+ b(A) 〈[0]〉
and a(A) and b(A) are regular isotopy invariants of the tangle T .
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For simplicity, from now on, we write the last formula as

〈T 〉 = a 〈[∞]〉+ b 〈[0]〉 .

Note that 〈T 〉 is a linear combination of 〈[∞]〉 , 〈[0]〉 , with coefficients of Laurent
polynomials in A. In other words, 〈T 〉 takes values in the module

M = the free module overZ[A,A−1] with basis {〈[∞]〉 , 〈[0]〉} .

3. Operations in the Bracketology of Rational Tangles

We define the following type of multiplication on the module M defined above as
follows.

Definition 8. Let 〈T 〉 = a 〈[∞]〉+ b 〈[0]〉 , and 〈S〉 = c 〈[∞]〉+ d 〈[0]〉 . Let

〈T 〉 ⊕ 〈S〉 = (a 〈[∞]〉+ b 〈[0]〉) (c 〈[∞]〉+ d 〈[0]〉)
= ac 〈[∞]〉 ⊕ 〈[∞]〉+ ad 〈[∞]〉 ⊕ 〈[0]〉
+ bc 〈[0]〉 ⊕ 〈[∞]〉+ bd 〈[0]〉 ⊕ 〈[0]〉

subject to the relations

〈[∞]〉 ⊕ 〈[∞]〉 = δ 〈[∞]〉 , where δ = −A2 −A−2

〈[∞]〉 ⊕ 〈[0]〉 = 〈[∞]〉 , 〈[0]〉 ⊕ 〈[∞]〉 = 〈[∞]〉 , 〈[0]〉 ⊕ 〈[0]〉 = 〈[0]〉 .

Note that, by definition, we have

〈T 〉 ⊕ 〈S〉 = (acδ + ad+ bc) 〈[∞]〉+ bd 〈[0]〉 .

Lemma 9. The following four linearity identities hold

〈[∞] + [∞]〉 = 〈[∞]〉 ⊕ 〈[∞]〉 , 〈[∞] + [0]〉 = 〈[∞]〉 ⊕ 〈[0]〉
〈[0] + [∞]〉 = 〈[0]〉 ⊕ 〈[∞]〉 , 〈[0] + [0]〉 = 〈[0]〉 ⊕ 〈[0]〉 .

Proof: Note that

〈[∞] + [∞]〉 =
〈 〉

= δ 〈[∞]〉 = 〈[∞]〉 ⊕ 〈[∞]〉

〈[∞] + [0]〉 =
〈 〉

= 〈[∞]〉 = 〈[∞]〉 ⊕ 〈[0]〉

〈[0] + [∞]〉 =
〈 〉

= 〈[∞]〉 = 〈[0]〉 ⊕ 〈[∞]〉

〈[0] + [0]〉 =

〈 〉
= 〈[0]〉 = 〈[0]〉 ⊕ 〈[0]〉 .

�
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Theorem 10. Let T , and S be two rational tangles, then

〈T + S〉 = 〈T 〉 ⊕ 〈S〉 .

Proof: Let 〈T 〉 = a 〈[∞]〉+ b 〈[0]〉, and 〈S〉 = c 〈[∞]〉+ d 〈[0]〉, then

〈T + S〉 =
〈 〉

= a

〈 〉
+ b

〈 〉
= a

(
c

〈 〉
+ d

〈 〉)
+ b

(
c

〈 〉
+ d

〈 〉)
= acδ 〈[∞]〉+ ad 〈[∞]〉+ bc 〈[∞]〉+ bd 〈[0]〉
= ac 〈[∞]〉 ⊕ 〈[∞]〉+ ad 〈[∞]〉 ⊕ 〈[0]〉
+ bc 〈[0]〉 ⊕ 〈[∞]〉+ bd 〈[0]〉 ⊕ 〈[0]〉

= (a 〈[∞]〉+ b 〈[0]〉)⊕ (c 〈[∞]〉+ d 〈[0]〉) = 〈T 〉 ⊕ 〈S〉 .

�

Example 11.〈 〉
=

〈
+

〉
=
〈 〉

=
(
A 〈[∞]〉+A−1 〈[0]〉

)
⊕
(
A 〈[∞]〉+A−1 〈[0]〉

)
= A2δ 〈[∞]〉+ 〈[∞]〉+ 〈[∞]〉+A−2 〈[0]〉
=
(
A2δ + 2

)
〈[∞]〉+A−2 〈[0]〉 .

Next we describe the algebraic structure of (M,⊕) .

Lemma 12. (M,⊕) is a commutative monoid, that is if 〈T 〉, 〈S〉, 〈R〉 ∈M , then
1) 〈[0]〉 ⊕ 〈T 〉 = 〈T 〉 ⊕ 〈[0]〉 = 〈T 〉
2) (〈T 〉 ⊕ 〈S〉)⊕ 〈R〉 = 〈T 〉 ⊕ (〈S〉 ⊕ 〈R〉)
3) 〈T 〉 ⊕ 〈S〉 = 〈S〉 ⊕ 〈T 〉.

Proof: Parts (1), and (3) follow directly from the definition of the operation ⊕.
For associativity, one needs to check the following

(〈[0]〉 ⊕ 〈[0]〉)⊕ 〈[0]〉 = 〈[0]〉 = 〈[0]〉 ⊕ (〈[0]〉 ⊕ 〈[0]〉)
(〈[∞]〉 ⊕ 〈[0]〉)⊕ 〈[0]〉 = 〈[∞]〉 = 〈[∞]〉 ⊕ (〈[0]〉 ⊕ 〈[0]〉)
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(〈[0]〉 ⊕ 〈[∞]〉)⊕ 〈[0]〉 = 〈[∞]〉 = 〈[0]〉 ⊕ (〈[∞]〉 ⊕ 〈[0]〉)
(〈[0]〉 ⊕ 〈[0]〉)⊕ 〈[∞]〉 = 〈[∞]〉 = 〈[0]〉 ⊕ (〈[0]〉 ⊕ 〈[∞]〉)

(〈[0]〉 ⊕ 〈[∞]〉)⊕ 〈[∞]〉 = δ 〈[∞]〉 = 〈[0]〉 ⊕ (〈[∞]〉 ⊕ 〈[∞]〉)
(〈[∞]〉 ⊕ 〈[0]〉)⊕ 〈[∞]〉 = δ 〈[∞]〉 = 〈[∞]〉 ⊕ (〈[0]〉 ⊕ 〈[∞]〉)
(〈[∞]〉 ⊕ 〈[∞]〉)⊕ 〈[0]〉 = δ 〈[∞]〉 = 〈[∞]〉 ⊕ (〈[∞]〉 ⊕ 〈[0]〉)

(〈[∞]〉 ⊕ 〈[∞]〉)⊕ 〈[∞]〉 = δ2 〈[∞]〉 = 〈[∞]〉 ⊕ (〈[∞]〉 ⊕ 〈[∞]〉) .

�

An example of a non-invertible element in this monoid is 〈[∞]〉 . Therefore (M,⊕)
is not a group. However we have the following result.

Theorem 13. (M,⊕) is an associative commutative algebra over the ring Z[A,A−1],
that is if 〈T 〉, 〈S〉, 〈R〉 ∈M and p, q ∈ Z[A,A−1], then

1) 〈T 〉 ⊕ (〈S〉+ 〈R〉) = (〈T 〉 ⊕ 〈S〉) + (〈T 〉 ⊕ 〈R〉)
2) (p 〈T 〉)⊕ (q 〈S〉) = pq (〈T 〉 ⊕ 〈S〉) .

Proof: Let 〈T 〉 = a 〈[∞]〉 + b 〈[0]〉, 〈S〉 = c 〈[∞]〉 + d 〈[0]〉, 〈R〉 = e 〈[∞]〉 +
f 〈[0]〉 , then

〈T 〉 ⊕ (〈S〉+ 〈R〉) = [a (c+ e) δ + a (d+f)+b (c+ e)] 〈[∞]〉+ [b (d+f)] 〈[0]〉
= [acδ + ad+ bc] 〈[∞]〉+ bd 〈[0]〉
+ [aeδ + af + be] 〈[∞]〉+ bf 〈[0]〉

= (〈T 〉 ⊕ 〈S〉) + (〈T 〉 ⊕ 〈R〉) .

On the other hand

(p 〈T 〉)⊕ (q 〈S〉) = (pa 〈[∞]〉+ pb 〈[0]〉)⊕ (qc 〈[∞]〉+ qd 〈[0]〉)
= (paqcδ + paqd+ pbqc) 〈[∞]〉+ (pbqd) 〈[0]〉
= pq (acδ + ad+ bc) 〈[∞]〉+ pq (bd) 〈[0]〉
= pq (〈T 〉 ⊕ 〈S〉) .

�

After proving the properties of our operation ⊕, we can now get use of these prop-
erties in computation. We start with the following lemma.

Lemma 14. For n ∈ N ∪ {0}, we have

〈[n]〉 = δ−1
[(
−A3

)n − (A−n)] 〈[∞]〉+
[
A−n

]
〈[0]〉 , and

〈[−n]〉 = δ−1
[(
−A−3

)n − (An)
]
〈[∞]〉+ [An] 〈[0]〉 .
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Proof: The equation clearly holds for n = 0. Let n ∈ N. Note that

〈[n]〉 =
〈

+ + · · ·+
〉

=
〈 〉

⊕
〈 〉

⊕ · · · ⊕
〈 〉

=
(
A 〈[∞]〉+A−1 〈[0]〉

)
⊕ · · · ⊕

(
A 〈[∞]〉+A−1 〈[0]〉

)
which, by the nice properties of the operation ⊕, can be written as

n∑
i=0

(
n

i

)
(A 〈[∞]〉)i ⊕

(
A−1 〈[0]〉

)n−i
=

n∑
i=0

(
n

i

)
A2i−n 〈[∞]〉i ⊕ 〈[0]〉n−i

and by splitting the term when i = 0, reduces to

A−n 〈[0]〉+
n∑

i=1

(
n

i

)
A2i−nδi−1 〈[∞]〉 ⊕ 〈[0]〉

=

[
n∑

i=1

(
n

i

)
A2i−nδi−1

]
〈[∞]〉+

[
A−n

]
〈[0]〉 .

Now we simplify the term involving the sum as follows

〈[n]〉 = δ−1

[
n∑

i=1

(
n

i

)
Ai−nAiδi

]
〈[∞]〉+

[
A−n

]
〈[0]〉

= δ−1

[
n∑

i=1

(
n

i

)(
A−1

)n−i
(Aδ)i

]
〈[∞]〉+

[
A−n

]
〈[0]〉

= δ−1

[(
n∑

i=0

(
n

i

)(
A−1

)n−i
(Aδ)i

)
−
(
A−n

)]
〈[∞]〉+

[
A−n

]
〈[0]〉 .

Therefore

〈[n]〉 = δ−1
[(
A−1 +Aδ

)n − (A−n)] 〈[∞]〉+
[
A−n

]
〈[0]〉

= δ−1
[(
−A3

)n − (A−n)] 〈[∞]〉+
[
A−n

]
〈[0]〉 .

On the other hand

〈[−n]〉 =
〈

+ + · · ·+
〉

=
〈 〉

⊕
〈 〉

⊕ · · · ⊕
〈 〉

=
(
A−1 〈[∞]〉+A 〈[0]〉

)
⊕ · · · ⊕

(
A−1 〈[∞]〉+A 〈[0]〉

)
.
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Note that this last product is the same as the one above in this proof with A replac-
ing A−1. Note also that δ stays the same when A replaces A−1. Therefore

〈[−n]〉 = δ−1
[(
−A−3

)n − (An)
]
〈[∞]〉+ [An] 〈[0]〉 .

�

Definition 15. Let α ∈ Z[A,A−1] then α∗ is the result of replacing eachA in α by
A−1. Also if 〈T 〉 = α 〈[∞]〉+β 〈[0]〉 , then we define 〈T 〉∗ = α∗ 〈[∞]〉+β∗ 〈[0]〉 .

The following corollary follows from the last lemma.

Corollary 16. For n ∈ N, we have

〈[−n]〉 = 〈[n]〉∗ .

In fact, this can be generalized to any rational tangle as in the following lemma.

Lemma 17. For any rational tangle T, we have

〈−T 〉 = 〈T 〉∗ .

Proof: Recall that

〈T 〉 =
∑
S

Aa(S)−b(S)(−A2 −A−2)|S|e(S)

where e(S) = 〈[0]〉, or 〈[∞]〉 . Note that every state S contributing in 〈−T 〉
involves a similar structure of the corresponding state in 〈T 〉 , except that each
split of a crossing in 〈−T 〉 replaces A by A−1 and viceversa. This means that
the factor Aa(S)−b(S) in 〈T 〉 will be replaced by Ab(S)−a(S) in 〈−T 〉. The factor
(−A2 − A−2)|S| in 〈T 〉 stays the same in 〈−T 〉 as it only depends on the num-
ber of circles in S. Also e(S) in 〈T 〉 stays the same in 〈−T 〉 as [−0] = [0] , and
[−∞] = [∞] . Therefore

〈−T 〉 =
∑
S

Ab(S)−a(S)(−A2 −A−2)|S|e(S) = 〈T 〉∗ .

�

Definition 18. If 〈T 〉 = α 〈[∞]〉 + β 〈[0]〉, then we define the reciprocal of 〈T 〉
denoted by

1

〈T 〉
or 〈T 〉 to be

〈T 〉 = α∗ 〈[0]〉+ β∗ 〈[∞]〉 .

In particular 〈[∞]〉 = 〈[0]〉, and 〈[0]〉 = 〈[∞]〉 .
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Lemma 19. If T is a rational tangle with 〈T 〉 = α 〈[∞]〉+ β 〈[0]〉 , then we have
the following reciprocal formula〈

1

T

〉
=

1

〈T 〉
≡ 〈T 〉.

Proof: Note that〈
1

T

〉
=

〈 〉
=

〈 〉∗
=(α 〈[0]〉+ β 〈[∞]〉)∗=α∗ 〈[0]〉+ β∗ 〈[∞]〉=〈T 〉.

�

As a corollary, we have the following.

Corollary 20. For n ∈ Z, we have〈
1

[n]

〉
= [An] 〈[∞]〉+ δ−1

[(
−A−3

)n − (An)
]
〈[0]〉 ≡ 〈[n]〉.

Most importantly, now the bracket of a rational tangle T = [a1 . . . am] can be
written and computed as a continued fraction as in the following proposition.

Proposition 21. For a rational tangle T = [a1 . . . am], we have

〈T 〉 = 〈[am]〉 ⊕ 1

〈[am−1]〉 ⊕
1

. . .
1

〈[a2]〉 ⊕
1

〈[a1]〉

·

Proof: This is clearly true by induction on m with the additivity of ⊕, and the
reciprocal formula. �

4. A Sum Formula for the Bracket of a Rational Tangle

Let a1, . . . , am−1 ∈ Z− {0} , and am ∈ Z. Let [ai] = αi 〈[∞]〉+ βi 〈[0]〉 . Let xi
be a variable that takes the values αi or βi. Let P be the product given by

P =

{
xmx

∗
m−1 · · ·x2x∗1, if m is even

xmx
∗
m−1 · · ·x∗2x1, if m is odd.

Note that for a fixed m, we will have 2m products as each xi varies over αi and βi.
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Moreover, let h (αi) = 〈[∞]〉 , and h(βi) = 〈[0]〉 for i = 1, . . . ,m. For each P,
define

←−
P , also denoted by←−−−−−−−−−−−xmxm−1 · · ·x2x1 (without any ∗), by

←−
P = h(xm)⊕ h(xm−1) · · ·

···

h(x3)⊕ h(x2)⊕ h(x1).

Example 22. Let T = [a1 a2 a3], and let

〈[a1]〉 = α1 〈[∞]〉+ β1 〈[0]〉 , 〈[a2]〉 = α2 〈[∞]〉+ β2 〈[0]〉
〈[a3]〉 = α3 〈[∞]〉+ β3 〈[0]〉

then we will have the following 8 products as values of P

α3α
∗
2α1, α3α

∗
2β1, α3β

∗
2α1, α3β

∗
2β1

β3β
∗
2β1, β3α

∗
2β1, β3β

∗
2α1, β3α

∗
2α1

and we will have the following 8 values of
←−
P , respectively. For simplicity, from

now on, we will write these products without the operation sign ⊕

〈[∞]〉 〈[∞]〉 〈[∞]〉, 〈[∞]〉 〈[∞]〉 〈[0]〉, 〈[∞]〉 〈[0]〉 〈[∞]〉, 〈[∞]〉 〈[0]〉 〈[0]〉

〈[0]〉 〈[0]〉 〈[0]〉, 〈[0]〉 〈[∞]〉 〈[0]〉, 〈[0]〉 〈[0]〉 〈[∞]〉, 〈[0]〉 〈[∞]〉 〈[∞]〉.

Theorem 23. Let T = [a1 . . . am] , where a1, . . . , am−1 ∈ Z−{0} , and am ∈ Z,
then

〈T 〉 =
∑
P

P
←−
P .

Proof: Let T = [a1 . . . am] , where a1, . . . , am−1 ∈ Z − {0} , and am ∈ Z be
written in the continued fraction form, then

〈T 〉 =

〈 [am] +
1

[am−1] +
1

. . .

+
1

[a2] +
1

[a1]

〉

= 〈[am]〉 ⊕

〈 1

[am−1] +
1

. . .

+
1

[a2] +
1

[a1]

〉
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= 〈[am]〉 ⊕

〈 [am−1] +
1

. . .

+
1

[a2] +
1

[a1]

〉

= 〈[am]〉 ⊕ [am−1]⊕

〈 1

. . .

+
1

[a2] +
1

[a1]

〉

= 〈[am]〉 ⊕ [am−1]⊕

〈 . . .

+
1

[a2] +
1

[a1]

〉

...

= 〈[am]〉 ⊕ 〈[am−1]〉 · · ·
...

〈[a2]〉 ⊕ 〈[a1]〉.

Continue in the same way with the following assumptions h (αi) = 〈[∞]〉 , and
h(βi) = 〈[0]〉 for i = 1, . . . ,m, and xi a variable that takes the values αi or βi,
and P the product given by

P =

{
xmx

∗
m−1 · · ·x2x∗1, if m is even

xmx
∗
m−1xm−2 · · ·x∗2x1, if m is odd

}
, and

←−
P the product given by

←−
P = h(xm)⊕ h(xm−1) · · ·

···

h(x3)⊕ h(x2)⊕ h(x1).

Then we will finally have 2m terms each consists of a possible product P
←−
P . There-

fore

〈T 〉 =
∑
P

P
←−
P .

�
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Example 24. We compute the bracket for the tangle T = [5 6 7]. At first, using the
formula

〈[n]〉 = δ−1
[(
−A3

)n − (A−n)] 〈[∞]〉+
[
A−n

]
〈[0]〉

we get

α1 = δ−1
[(
−A3

)5 − (A−5)] , β1 =
[
A−5

]
α∗2 = δ−1

[(
−A−3

)6 − (A6
)]
, β∗2 =

[
A6
]

α3 = δ−1
[(
−A3

)7 − (A−7)] , β3 =
[
A−7

]
then

〈T 〉 =
∑
P

P
←−
P

= α3α
∗
2α1

(
〈[∞]〉 〈[∞]〉 〈[∞]〉

)
+ α3α

∗
2β1

(
〈[∞]〉 〈[∞]〉 〈[0]〉

)
+ α3β

∗
2α1

(
〈[∞]〉 〈[0]〉 〈[∞]〉

)
+ α3β

∗
2β1

(
〈[∞]〉 〈[0]〉 〈[0]〉

)
+ β3β

∗
2β1

(
〈[0]〉 〈[0]〉 〈[0]〉

)
+ β3α

∗
2β1

(
〈[0]〉 〈[∞]〉 〈[0]〉

)
+ β3β

∗
2α1

(
〈[0]〉 〈[0]〉 〈[∞]〉

)
+ β3α

∗
2α1

(
〈[0]〉 〈[∞]〉 〈[∞]〉

)
.

Therefore

〈T 〉 = α3α
∗
2α1 〈[∞]〉+ α3α

∗
2β1δ 〈[∞]〉+ α3β

∗
2α1δ 〈[∞]〉+ α3β

∗
2β1 〈[∞]〉

+ β3β
∗
2β1 〈[0]〉+ β3α

∗
2β1δ 〈[0]〉+ β3β

∗
2α1 〈[∞]〉+ β3α

∗
2α1 〈[0]〉 .

Finally

〈T 〉 = [α3α
∗
2α1 + α3α

∗
2β1δ + α3β

∗
2α1δ + α3β

∗
2β1 + β3β

∗
2α1] 〈[∞]〉

+ [β3β
∗
2β1 + β3α

∗
2β1δ + β3α

∗
2α1] 〈[0]〉

where α1, α
∗
2, α3, β1, β

∗
2 , and β3 are given above, and δ = −A2 −A−2.
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Moreover, if we want the bracket of the numerator of T , that is the knot N(T ) =
N [5 6 7] given below

we just replace 〈[∞]〉 by

〈 〉
= 1, and 〈[0]〉 by

〈 〉
= δ. Therefore

〈N(T )〉 = [α3α
∗
2α1 + α3α

∗
2β1δ + α3β

∗
2α1δ + α3β

∗
2β1 + β3β

∗
2α1]

+ [β3β
∗
2β1 + β3α

∗
2β1δ + β3α

∗
2α1] δ.

The methodology used in this paper can be generalized for other knots and links.
Namely those which can be constructed using addition and reciprocals of rational
tangles. For example, Pretzel links, or more generally, Algebraic links.
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