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1. Introduction

The notion of weakly symmetric Riemannian manifold has been introduced by
Tamássy and Binh [23]. Thereafter, it becomes focus of interest for many geome-
ters. For details, we refer to [6], [9], [10], [12], [17], [19–21], [2] and the references
there in.
In the spirit of [23], a non flat Riemannian manifold (Mn, g)(n > 2), is said
to be weakly symmetric manifold, if its curvature tensor R̄ of type (0, 4) is not
identically zero and satisfies the identity

(∇XR̄)(Y,U, V, W ) = A(X)R̄(Y,U, V, W )

+B(Y )R̄(X,U, V, W ) +B(U)R̄(Y,X, V, W ) (1)

+D(V )R̄(Y, U,X, W ) +D(W )R̄(Y,U, V, X)

where A, B & D are non-zero one-forms defined by A(X ) = g(X,σ1), B(X) =
g(X,π1) andD(X) = g(X, ∂1), for allX and R̄(Y, U, V, W ) = g(R(Y, U)V, W ),
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∇ being the operator of the covariant differentiation with respect to the metric ten-
sor g. Such an n-dimensional Riemannian manifold is abbreviated hereafter by
(WS)n.
Keeping in tune with Dubey [7], recently the first author[1] introduced a new type
of manifold called generalized weakly symmetric manifold which is abbreviated
by (GWS)n and defined as follows.
A non-flat n-dimensional Riemannian manifold (Mn, g) (n > 2), is termed as
generalized weakly symmetric manifold, if its Riemannian curvature tensor R̄ of
type (0; 4) is not identically zero and admits the identity

(∇XR̄)(Y,U, V, W ) = A(X)R̄(Y,U, V, W ) +B(Y )R̄(X,U, V, W )

+B(U)XR̄(Y,X, V, W ) +D(V )R̄(Y,U,X, W )

+D(W )R̄(Y, U, V,X ) + α(X)G(Y,U, V, W ) (2)

+β(Y )G(X,U, V, W ) + β(U) G(Y,X, V, W )

+γ(V ) G(Y,U,X, W ) + γ(W ) G(Y,U, V,X )

where
G(Y, U, V, W ) = [g(U, V )g(Y, W )− g(Y, V )g(U, W )] (3)

and A, B, D, α, β & γ are non-zero one-forms which are defined as A(X) =
g(X, θ1), B(X) = g(X,φ1), D(X) = g(X,π1), α(X) = g(X, θ2), β(X) =
g(X,φ2) and γ(X) = g(X,π2).

Keeping in tune with Shaikh and Patra [22], we shall call a Riemannian manifold
of dimension n, hyper generalized weakly symmetric (which will be abbreviated
hereafter as H(GWS)n) if it admits the equation

(∇XR̄)(Y,U, V, W ) =A(X)R̄(Y, U, V, W ) +B(Y )R̄(X,U, V, W )

+B(U)R̄(Y,X, V, W ) +D(V )R̄(Y,U,X, W )

+D(W )R̄(Y, U, V, X) + α(X)(g ∧ S)(Y,U, V,W ) (4)

+β(Y )(g ∧ S)(X,U, V,W ) + β(U) (g ∧ S)(Y,X, V,W )

+γ(V ) (g ∧ S)(Y,U,X,W ) + γ(W ) (g ∧ S)(Y,U, V,X)

where

(g ∧ S)(Y,U, V,W ) = g(Y,W )S(U, V ) + g(U, V )S(Y,W )
(5)

−g(Y, V )S(U,W )− g(U,W )S(Y, V )

and A, B, D, α, β & γ are non-zero one-forms which are defined as A(X) =
g(X, θ1), B(X) = g(X,φ1), D(X) = g(X,π1), α(X) = g(X, θ2), β(X) =
g(X,φ2) and γ(X) = g(X,π2). The beauty of such H(GWS)n-manifold is that
it has the flavour of

i) locally symmetric space [3] (for A = B = D = α = β = γ = 0)
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ii) recurrent space [26] (for A 6= 0, B = D = α = β = γ = 0)
iii) hyper recurrent space [22] (A 6= 0, α 6= 0 and B = D = β = γ = 0)
iv) pseudo symmetric space [4] (forA = B = D = δ 6= 0 andα = β = γ = 0)
v) semi-pseudo symmetric space [25] (for B = D and A = α = β = γ = 0)

vi) hyper semi-pseudo symmetric space (for A = 0 = α,B = D 6= 0 and
β = γ 6= 0)

vii) hyper pseudo symmetric space (for A = B = D = α = β = γ 6= 0)
viii) almost pseudo symmetric space [5] (for A = B + H , H = B = D 6= 0

and α = β = γ = 0)
ix) almost hyper pseudo symmetric space (for A = B +H , H = B = D 6= 0,

α = λ+, β = γ = µ 6= 0)) and
x) weakly symmetric space[23] (for α = β = γ = 0).

Our work is structured as follows. Section 2 is concerned with some results on
H(GWS)n. Among others it is proved that every weakly conharmonically sym-
metric space which is Ricci symmetric is necessarily a H(GWS)n. In Section 3,
we have investigated conformally flat H(GWS)n and obtained some interesting
results. Finally, the existence of H(GWS)4 is ensured by a non-trivial example.
More general types of recurrency can be found in [8, 13–16].

2. Some Results on (HGWS)n

In this section, we consider a Riemann manifold (Mn, g) n > 2 which is hyper
generalized weakly symmetric. Now, making use of (5) in (4) we find

(∇XR̄)(Y, U, V, W )

= A(X)R̄(Y,U, V, W ) +B(Y )R̄(X,U, V, W )

+B(U)R̄(Y,X, V, W ) +D(V )R̄(Y,U,X, W )

+D(W )R̄(Y,U, V, X) + α(X)[g(Y,W )S(U, V ) + g(U, V )S(Y,W )

−g(Y, V )S(U,W )− g(U,W )S(Y, V )] + β(Y )[g(X,W )S(U, V )
(6)

+g(U, V )S(X,W )− g(X,V )S(U,W )− g(U,W )S(X,V )]

+β(U) [g(Y,W )S(X,V ) + g(X,V )S(Y,W )− g(Y, V )S(X,W )

−g(X,W )S(Y, V )] + γ(V ) [g(Y,W )S(U,X) + g(U,X)S(Y,W )

−g(Y,X)S(U,W )− g(U,W )S(Y,X)] + γ(W )[g(Y,X)S(U, V )

+g(U, V )S(Y,X)− g(Y, V )S(U,X)− g(U,X)S(Y, V )].

Note that for an Einstein space, H(GWS)n reduces to (GWS)n. This leads to the
following:

Theorem 1. EveryH(GWS)n is (GWS)n provided that the space is an Einstein.
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Next, contracting (6) we have

(∇XS)(U, V )

= A(X)S(U, V ) +B(U)S(X,V ) +D(V )S(U,X) +B(R(X,U)V )

+D(R(X,V )U) + α(X)[(n− 2)S(U, V ) + rg(U, V )]

+β(U) [(n− 2)S(X,V ) + rg(X,V )] + γ(V ) [(n− 2)S(U,X) (7)

+rg(U,X)] + β(X)S(U, V ) + β̃(X)g(U, V )− β̃(U)g(X,V )

−β(U)S(X,V ) + γ(X)S(U, V ) + γ̃(X)g(U, V )S(Y, )

−γ(V )S(U,X)− γ̃(V )g(U,X)

which yields after further contraction

dr(X) = A(X)r + 2B̄(X) + 2D̄(X) + 2(n− 1)rα(X)

+ 2r[β(X) + γ(X)] + 2(n− 2)[γ̃(X) + β̃(X)] (8)

where B̄(X) = S(X,φ1), D̄(X) = S(X,π1) β̃(X) = S(X,φ2) and γ̃(X) =
S(X,π2) for all X .
Next, if we suppose that the scalar curvature of a H(GWS)n is non-zero constant,
then (8) becomes

r[A(X) + 2(n− 1)α(X) + 2β(X) + 2γ(X)]

= −2[B̄(X) + D̄(X)]− 2(n− 2)[γ̃(X) + β̃(X)]. (9)

This leads to

Theorem 2. Let (Mn, g)(n > 2) be a Riemannian manifold with non-zero con-
stant scalar curvature. Then the one-forms are related by the relation (9).

Claim 3. There does not exist a hyper recurrent Riemannian manifold (Mn, g)(n >
2) whose clear curvature is non-zero constant and the one-forms are co-linear.

In analogous to the definition of (WS)n, we can define the following

Definition 4. A non flat Riemannian manifold (Mn, g)(n > 2), is said to be
weakly conharmonically symmetric manifold, if its nonharmonic curvature tensor

K̄ = R̄− 1

n− 2
(g ∧ S)(Y,U, V,W ) (10)

of type (0, 4) is not identically zero and satisfies the identity

(∇XK̄)(Y,U, V, W ) = A(X)K̄(Y, U, V, W )

+B(Y )K̄(X,U, V, W ) +B(U)K̄(Y,X, V, W ) (11)

+D(V )K̄(Y,U,X, W ) +D(W )K̄(Y, U, V, X)
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where A, B and D are non-zero one-forms defined by the formulas A(X ) =
g(X,σ1),B(X) = g(X,π1) andD(X) = g(X, ∂1), for allX and K̄(Y,U, V, W )
= g(K(Y,U)V, W ).

From the above definition, it is follows that

Theorem 5. A weakly conharmonically symmetric space which is Ricci symmetry
is necessarily a H(GWS)n.

However, the converse of the above Theorem may not be true.

3. Conformally Flat H(GWS)n

In this section, we shall study conformally flat H(GWS)n. Next, in a H(GWS)n
the relation (7) holds which is equivalent to

Sij,l = AlSij +BhR̄lijh +BiSlj +DjSil +DhR̄hijl + αl{(n− 2)Sij + gijr}
+βlSij + βi{(n− 3)Slj + gljr}+ βh(gijSlh − gljSih) (12)

+γj{(n− 3)Sil + rgil}+ γlSij + γh(gijShl − gilShj).

Let as assume that our manifold is conformally flat. Thus we have

Sij,l − Sil,j =
1

2(n− 1)
(gijr,l−gilr,j ). (13)

Multiplying (12) by gij , we find

r,l={Al+2(n−1)αl+2βl+2γl}r+2Slh{Bh+Dh+(n−2)βh+(n−2)γh}. (14)

Comparing (12) with the equations (13) and (14), we obtain

AlSij +BhR̄lijh +DjSil +DhR̄hijl + αl{(n− 2)Sij + gijr}+ βlSij

+gijβ
hSlh + γlSij + γj{(n− 3)Sil + gijr}+ γh(gijShl − gilShj)

−AjSil −BhR̄jilh −DlSij −DhR̄hilj − αj{(n− 2)Sil + gilr}
−βjSil − gilβhSjh − γjSil − γl{(n− 3)Sij + gijr}

(15)
−γh(gilShj − gijShl)

=
1

2(n− 1)
[gij{Al + 2(n− 1)αl + 2βl + 2γl}r + 2gijSlh{Bh +Dh

+(n− 2)βh + (n− 2)γh} − gil{Aj + 2(n− 1)αj + 2βj + 2γj}r
−2gilSjh{Bh +Dh + (n− 2)βh + (n− 2)γh}].
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Multiplying (15) by gij , it can found that

{1

2
Al −Dl + (n− 2)αl − 2(n− 2)γl}r

= {Ah − 2Dh + (n− 2)αh − 2(n− 2)γh}Slh. (16)

From (16), we get

− 1

2
Alr +Dlr + {Al − 2Dl + (n− 2)αl − 2(n− 2)γl}r

= {Ah − 2Dh + (n− 2)αh − 2(n− 2)γh}Slh. (17)

Assuming that λl = Al − 2Dl + (n− 2)αl − 2(n− 2)γl[
rDl −

1

2
Alr

]
+ λlr = λhSlh. (18)

If r is an eigenvalue of the Ricci tensor S corresponding to the eigenvector ρ we
have(r 6= 0)

g(X, ρ) = A(X)− 2D(X) + (n− 2)α(X)− 2(n− 2)γ(X)

then we get
Dl = 2Al. (19)

In this case, by putting(19) in (17), it can be easily seen that (since n > 3)

(αl − 2γl)r = (αh − 2γh)Slh (20)

and
λl = (n− 2)(αl − 2γl). (21)

Hence, we have the following theorem

Theorem 6. If a hyper generalized weakly symmetric manifold is also conformally
flat then r is an eigenvalue of the Ricci tensor S corresponding to the eigenvector
ρ, where

g(X, ρ) = α(X)− 2γ(X) = λ(X).

Now, rearranging the equation (16)

{Al − 2Dl + (n− 2)αl − 2(n− 2)γl}
r

2
+ [(n− 2)αl − 2(n− 2)γl]

r

2

= {Ah − 2Dh + (n− 2)αh − 2(n− 2)γh}Slh. (22)

By taking λl = Al − 2Dl + (n− 2)αl − 2(n− 2)γl

λl
r

2
+ (n− 2)[αl − 2γl]

r

2
= λhSlh. (23)
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If r
2 is an eigenvalue of the Ricci tensor S corresponding to the eigenvector µ we

have(r 6= 0)

g(X,µ) = A(X)− 2D(X) + (n− 2)α(X)− 2(n− 2)γ(X) = λ(X)

then we get
αl = 2γl. (24)

In this case, by putting (24) in (23), we find

(Al − 2Dl)
r

2
= (Ah − 2Dh)Slh, λl = Al − 2Dl. (25)

Theorem 7. If a hyper generalized weakly symmetric manifold is also conformally
flat then r

2 is an eigenvalue of the Ricci tensor S corresponding to the eigenvector
µ, where

g(X,µ) = A(X)− 2D(X) = λ(X).

4. Existence of Hyper Generalized Weakly Symmetric Space

Example 8. Consider a four-dimensional space (M4, g) with the metric g defined
by

ds2 = (dx2)2 + 2ex
2 [

dx1dx2 + dx3dx4
]

(26)

where x2 > 0. From the above one can calculate and list the non-vanishing com-
ponents of Christoffel symbols, as well as of R̄hijk, Sij , Chijk and ∇mR̄hijk as
follows

Γ1
22 =− e−x

2
,

1

2
Γ2
22 = Γ3

23 = Γ4
24 = −Γ1

34 =
1

2

R2324 =
1

4
ex

2
, S22 =− 1

2

R2324,2 =− 1

2
ex

2
, S22,2 = 1.

Making use of the relation, we can easily bring out

(g ∧ S)(Y, U, V,W ) = g(Y,W )S(U, V ) + g(U, V )S(Y,W )

−g(Y, V )S(U,W )− g(U,W )S(Y, V )

(g ∧ S)2324 = S23g24 + g23S24 − S22g34 − S34g22 = −1

2
ex

2

(27)
(g ∧ S)2224 = S22g24 + g22S24 − S22g24 − S24g22 = 0

(g ∧ S)2424 = S24g24 + g24S24 − S22g44 − S44g22 = 0

(g ∧ S)2322 = S23g22 + g23S22 − S22g32 − S32g22 = 0

For the following choice of the one-forms
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Ai = −2, for i = 2 αi =
1

4
ex

2
, for i = 2

= 0, otherwise = 0, otherwise

Bi = −1

3
ex

2
, for i = 2 βi =

1

4
ex

2
, for i = 2

= 0, otherwise = 0, otherwise

Di =
1

3
ex

2
, for i = 2 γi = −1

2
ex

2
, for i = 2

= 0, otherwise = 0, otherwise
one can easily conclude that

R2324,k = AkR2324 +B2Rk324 +B3R2k24 +D2R23k4 +D4R232k

+αk (g ∧ S)2324 + β2(g ∧ S)k324 + β3(g ∧ S)2k24

+γ2(g ∧ S)23k4 + γ4(g ∧ S)232k

where, k = 1, 2, 3, 4. As a consequence of the above one can state

Theorem 9. There exists a (R4, g) which is a hyper generalized weakly symmetric
space with non-zero and non-constant scalar curvature for the above mentioned
choice of the i-forms.
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