Nineteenth International Conference on Geometry, Integrability and Quantization June 02–07, 2017, Varna, Bulgaria Ivaïlo M. Mladenov and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2018, pp 66–74 doi: 10.7546/giq-19-2018-66-74

ON HYPER GENERALIZED WEAKLY SYMMETRIC MANIFOLDS

KANAK K. BAISHYA, FÜSUN ZENGIN † and JOSEF MIKEŠ ‡

Department Of Mathematics, Kurseong College, Darjeeling-734203 West Bengal, India

[†]Department of Mathematics, Faculty of Sciences and Letters, Istanbul Technical University, Istanbul, Turkey

[‡]Department of Algebra and Geometry, Faculty of Science, Palacky University 17 Listopadu 12, 771 46 Olomouc, Czech Republic

Abstract. This paper aims to introduce the notion of hyper generalized weakly symmetric manifolds with a non-trivial example.

MSC: 53C15, 53C25 *Keywords*: hyper generalized weakly symmetric manifolds

1. Introduction

The notion of weakly symmetric Riemannian manifold has been introduced by Tamássy and Binh [23]. Thereafter, it becomes focus of interest for many geometers. For details, we refer to [6], [9], [10], [12], [17], [19–21], [2] and the references there in.

In the spirit of [23], a non flat Riemannian manifold $(M^n, g)(n > 2)$, is said to be weakly symmetric manifold, if its curvature tensor \overline{R} of type (0, 4) is not identically zero and satisfies the identity

$$(\nabla_X \bar{R})(Y, U, V, W) = A(X)\bar{R}(Y, U, V, W) +B(Y)\bar{R}(X, U, V, W) + B(U)\bar{R}(Y, X, V, W)$$
(1)
+D(V) $\bar{R}(Y, U, X, W) + D(W)\bar{R}(Y, U, V, X)$

where A, B & D are non-zero one-forms defined by $A(X) = g(X, \sigma_1), B(X) = g(X, \pi_1)$ and $D(X) = g(X, \partial_1)$, for all X and $\overline{R}(Y, U, V, W) = g(R(Y, U)V, W)$,

 ∇ being the operator of the covariant differentiation with respect to the metric tensor g. Such an n-dimensional Riemannian manifold is abbreviated hereafter by $(WS)_n$.

Keeping in tune with Dubey [7], recently the first author[1] introduced a new type of manifold called generalized weakly symmetric manifold which is abbreviated by $(GWS)_n$ and defined as follows.

A non-flat *n*-dimensional Riemannian manifold (M^n, g) (n > 2), is termed as generalized weakly symmetric manifold, if its Riemannian curvature tensor \overline{R} of type (0; 4) is not identically zero and admits the identity

$$(\nabla_X R)(Y, U, V, W) = A(X)R(Y, U, V, W) + B(Y)R(X, U, V, W) +B(U)X\bar{R}(Y, X, V, W) + D(V)\bar{R}(Y, U, X, W) +D(W)\bar{R}(Y, U, V, X) + \alpha(X)G(Y, U, V, W) +\beta(Y)G(X, U, V, W) + \beta(U) G(Y, X, V, W) +\gamma(V) G(Y, U, X, W) + \gamma(W) G(Y, U, V, X)$$
(2)

where

$$G(Y, U, V, W) = [g(U, V)g(Y, W) - g(Y, V)g(U, W)]$$
(3)

and A, B, D, α , β & γ are non-zero one-forms which are defined as $A(X) = g(X, \theta_1), B(X) = g(X, \phi_1), D(X) = g(X, \pi_1), \alpha(X) = g(X, \theta_2), \beta(X) = g(X, \phi_2)$ and $\gamma(X) = g(X, \pi_2)$.

Keeping in tune with Shaikh and Patra [22], we shall call a Riemannian manifold of dimension n, hyper generalized weakly symmetric (which will be abbreviated hereafter as $H(GWS)_n$) if it admits the equation

$$\begin{aligned} (\nabla_X R)(Y, U, V, W) &= A(X)R(Y, U, V, W) + B(Y)R(X, U, V, W) \\ &+ B(U)\bar{R}(Y, X, V, W) + D(V)\bar{R}(Y, U, X, W) \\ &+ D(W)\bar{R}(Y, U, V, X) + \alpha(X)(g \wedge S)(Y, U, V, W) \quad (4) \\ &+ \beta(Y)(g \wedge S)(X, U, V, W) + \beta(U) \ (g \wedge S)(Y, X, V, W) \\ &+ \gamma(V) \ (g \wedge S)(Y, U, X, W) + \gamma(W) \ (g \wedge S)(Y, U, V, X) \end{aligned}$$

where

$$(g \wedge S)(Y, U, V, W) = g(Y, W)S(U, V) + g(U, V)S(Y, W) -g(Y, V)S(U, W) - g(U, W)S(Y, V)$$
(5)

and A, B, D, α , β & γ are non-zero one-forms which are defined as $A(X) = g(X, \theta_1), B(X) = g(X, \phi_1), D(X) = g(X, \pi_1), \alpha(X) = g(X, \theta_2), \beta(X) = g(X, \phi_2)$ and $\gamma(X) = g(X, \pi_2)$. The beauty of such $H(GWS)_n$ -manifold is that it has the flavour of

i) locally symmetric space [3] (for $A = B = D = \alpha = \beta = \gamma = 0$)

- ii) recurrent space [26] (for $A \neq 0$, $B = D = \alpha = \beta = \gamma = 0$)
- iii) hyper recurrent space [22] ($A \neq 0$, $\alpha \neq 0$ and $B = D = \beta = \gamma = 0$)
- iv) pseudo symmetric space [4] (for $A = B = D = \delta \neq 0$ and $\alpha = \beta = \gamma = 0$)
- v) semi-pseudo symmetric space [25] (for B = D and $A = \alpha = \beta = \gamma = 0$)
- vi) hyper semi-pseudo symmetric space (for $A = 0 = \alpha, B = D \neq 0$ and $\beta = \gamma \neq 0$)
- vii) hyper pseudo symmetric space (for $A = B = D = \alpha = \beta = \gamma \neq 0$)
- viii) almost pseudo symmetric space [5] (for A = B + H, $H = B = D \neq 0$ and $\alpha = \beta = \gamma = 0$)
- ix) almost hyper pseudo symmetric space (for A = B + H, $H = B = D \neq 0$, $\alpha = \lambda +, \beta = \gamma = \mu \neq 0$)) and
- x) weakly symmetric space[23] (for $\alpha = \beta = \gamma = 0$).

Our work is structured as follows. Section 2 is concerned with some results on $H(GWS)_n$. Among others it is proved that every weakly conharmonically symmetric space which is Ricci symmetric is necessarily a $H(GWS)_n$. In Section 3, we have investigated conformally flat $H(GWS)_n$ and obtained some interesting results. Finally, the existence of $H(GWS)_4$ is ensured by a non-trivial example. More general types of recurrency can be found in [8, 13–16].

2. Some Results on $(HGWS)_n$

_

In this section, we consider a Riemann manifold (M^n, g) n > 2 which is hyper generalized weakly symmetric. Now, making use of (5) in (4) we find

$$\begin{aligned} (\nabla_X R)(Y,U,V,W) &= A(X)\bar{R}(Y,U,V,W) + B(Y)\bar{R}(X,U,V,W) \\ &+ B(U)\bar{R}(Y,X,V,W) + D(V)\bar{R}(Y,U,X,W) \\ &+ D(W)\bar{R}(Y,U,V,X) + \alpha(X)[g(Y,W)S(U,V) + g(U,V)S(Y,W) \\ &- g(Y,V)S(U,W) - g(U,W)S(Y,V)] + \beta(Y)[g(X,W)S(U,V) \\ &+ g(U,V)S(X,W) - g(X,V)S(U,W) - g(U,W)S(X,V)] \\ &+ \beta(U) [g(Y,W)S(X,V) + g(X,V)S(Y,W) - g(Y,V)S(X,W) \\ &- g(X,W)S(Y,V)] + \gamma(V) [g(Y,W)S(U,X) + g(U,X)S(Y,W) \\ &- g(Y,X)S(U,W) - g(Y,V)S(Y,X)] + \gamma(W)[g(Y,X)S(U,V) \\ &+ g(U,V)S(Y,X) - g(Y,V)S(U,X) - g(U,X)S(Y,V)]. \end{aligned}$$

Note that for an Einstein space, $H(GWS)_n$ reduces to $(GWS)_n$. This leads to the following:

Theorem 1. Every $H(GWS)_n$ is $(GWS)_n$ provided that the space is an Einstein.

Next, contracting (6) we have

$$\begin{aligned} (\nabla_X S)(U,V) &= A(X)S(U,V) + B(U)S(X,V) + D(V)S(U,X) + B(R(X,U)V) \\ &+ D(R(X,V)U) + \alpha(X)[(n-2)S(U,V) + rg(U,V)] \\ &+ \beta(U) \left[(n-2)S(X,V) + rg(X,V) \right] + \gamma(V) \left[(n-2)S(U,X) \right] (7) \\ &+ rg(U,X) + \beta(X)S(U,V) + \tilde{\beta}(X)g(U,V) - \tilde{\beta}(U)g(X,V) \\ &- \beta(U)S(X,V) + \gamma(X)S(U,V) + \tilde{\gamma}(X)g(U,V)S(Y,) \\ &- \gamma(V)S(U,X) - \tilde{\gamma}(V)g(U,X) \end{aligned}$$

which yields after further contraction

$$dr(X) = A(X)r + 2\bar{B}(X) + 2\bar{D}(X) + 2(n-1)r\alpha(X) + 2r[\beta(X) + \gamma(X)] + 2(n-2)[\tilde{\gamma}(X) + \tilde{\beta}(X)]$$
(8)

where $\overline{B}(X) = S(X, \phi_1), \ \overline{D}(X) = S(X, \pi_1) \ \widetilde{\beta}(X) = S(X, \phi_2)$ and $\widetilde{\gamma}(X) = S(X, \pi_2)$ for all X.

Next, if we suppose that the scalar curvature of a $H(GWS)_n$ is non-zero constant, then (8) becomes

$$r[A(X) + 2(n-1)\alpha(X) + 2\beta(X) + 2\gamma(X)] = -2[\bar{B}(X) + \bar{D}(X)] - 2(n-2)[\tilde{\gamma}(X) + \tilde{\beta}(X)].$$
(9)

This leads to

Theorem 2. Let $(M^n, g)(n > 2)$ be a Riemannian manifold with non-zero constant scalar curvature. Then the one-forms are related by the relation (9).

Claim 3. There does not exist a hyper recurrent Riemannian manifold $(M^n, g)(n > 2)$ whose clear curvature is non-zero constant and the one-forms are co-linear.

In analogous to the definition of $(WS)_n$, we can define the following

Definition 4. A non flat Riemannian manifold $(M^n, g)(n > 2)$, is said to be weakly conharmonically symmetric manifold, if its nonharmonic curvature tensor

$$\bar{K} = \bar{R} - \frac{1}{n-2}(g \wedge S)(Y, U, V, W) \tag{10}$$

of type (0, 4) is not identically zero and satisfies the identity

$$(\nabla_X \bar{K})(Y, U, V, W) = A(X)\bar{K}(Y, U, V, W) +B(Y)\bar{K}(X, U, V, W) + B(U)\bar{K}(Y, X, V, W) (11) +D(V)\bar{K}(Y, U, X, W) + D(W)\bar{K}(Y, U, V, X)$$

where A, B and D are non-zero one-forms defined by the formulas $A(X) = g(X, \sigma_1)$, $B(X) = g(X, \pi_1)$ and $D(X) = g(X, \partial_1)$, for all X and $\overline{K}(Y, U, V, W) = g(K(Y, U)V, W)$.

From the above definition, it is follows that

Theorem 5. A weakly conharmonically symmetric space which is Ricci symmetry is necessarily a $H(GWS)_n$.

However, the converse of the above Theorem may not be true.

3. Conformally Flat $H(GWS)_n$

In this section, we shall study conformally flat $H(GWS)_n$. Next, in a $H(GWS)_n$ the relation (7) holds which is equivalent to

$$S_{ij,l} = A_l S_{ij} + B^h \bar{R}_{lijh} + B_i S_{lj} + D_j S_{il} + D^h \bar{R}_{hijl} + \alpha_l \{ (n-2)S_{ij} + g_{ij}r \} + \beta_l S_{ij} + \beta_i \{ (n-3)S_{lj} + g_{lj}r \} + \beta^h (g_{ij}S_{lh} - g_{lj}S_{ih}) + \gamma_j \{ (n-3)S_{il} + rg_{il} \} + \gamma_l S_{ij} + \gamma^h (g_{ij}S_{hl} - g_{il}S_{hj}).$$
(12)

Let as assume that our manifold is conformally flat. Thus we have

$$S_{ij,l} - S_{il,j} = \frac{1}{2(n-1)} (g_{ij}r_{,l} - g_{il}r_{,j}).$$
(13)

Multiplying (12) by g^{ij} , we find

$$r_{l} = \{A_{l} + 2(n-1)\alpha_{l} + 2\beta_{l} + 2\gamma_{l}\}r + 2S_{lh}\{B^{h} + D^{h} + (n-2)\beta^{h} + (n-2)\gamma^{h}\}.$$
 (14)

Comparing (12) with the equations (13) and (14), we obtain

$$A_{l}S_{ij} + B^{h}\bar{R}_{lijh} + D_{j}S_{il} + D^{h}\bar{R}_{hijl} + \alpha_{l}\{(n-2)S_{ij} + g_{ij}r\} + \beta_{l}S_{ij} + g_{ij}\beta^{h}S_{lh} + \gamma_{l}S_{ij} + \gamma_{j}\{(n-3)S_{il} + g_{ij}r\} + \gamma^{h}(g_{ij}S_{hl} - g_{il}S_{hj}) - A_{j}S_{il} - B^{h}\bar{R}_{jilh} - D_{l}S_{ij} - D^{h}\bar{R}_{hilj} - \alpha_{j}\{(n-2)S_{il} + g_{il}r\} - \beta_{j}S_{il} - g_{il}\beta^{h}S_{jh} - \gamma_{j}S_{il} - \gamma_{l}\{(n-3)S_{ij} + g_{ij}r\} - \gamma^{h}(g_{il}S_{hj} - g_{ij}S_{hl}) = \frac{1}{2(n-1)}[g_{ij}\{A_{l} + 2(n-1)\alpha_{l} + 2\beta_{l} + 2\gamma_{l}\}r + 2g_{ij}S_{lh}\{B^{h} + D^{h} + (n-2)\beta^{h} + (n-2)\gamma^{h}\} - g_{il}\{A_{j} + 2(n-1)\alpha_{j} + 2\beta_{j} + 2\gamma_{j}\}r - 2g_{il}S_{jh}\{B^{h} + D^{h} + (n-2)\beta^{h} + (n-2)\gamma^{h}\}].$$

$$(15)$$

Multiplying (15) by g^{ij} , it can found that

$$\{\frac{1}{2}A_l - D_l + (n-2)\alpha_l - 2(n-2)\gamma_l\}r = \{A^h - 2D^h + (n-2)\alpha^h - 2(n-2)\gamma^h\}S_{lh}.$$
 (16)

From (16), we get

$$-\frac{1}{2}A_{l}r + D_{l}r + \{A_{l} - 2D_{l} + (n-2)\alpha_{l} - 2(n-2)\gamma_{l}\}r$$
$$= \{A^{h} - 2D^{h} + (n-2)\alpha^{h} - 2(n-2)\gamma^{h}\}S_{lh}.$$
 (17)

Assuming that $\lambda_l = A_l - 2D_l + (n-2)\alpha_l - 2(n-2)\gamma_l$

$$\left[rD_l - \frac{1}{2}A_lr\right] + \lambda_l r = \lambda_h S_{lh}.$$
(18)

If r is an eigenvalue of the Ricci tensor S corresponding to the eigenvector ρ we have $(r \neq 0)$

$$g(X,\rho) = A(X) - 2D(X) + (n-2)\alpha(X) - 2(n-2)\gamma(X)$$

then we get

$$D_l = 2A_l. (19)$$

In this case, by putting(19) in (17), it can be easily seen that (since n > 3)

$$(\alpha_l - 2\gamma_l)r = (\alpha_h - 2\gamma_h)S_{lh}$$
⁽²⁰⁾

and

$$\lambda_l = (n-2)(\alpha_l - 2\gamma_l). \tag{21}$$

Hence, we have the following theorem

Theorem 6. If a hyper generalized weakly symmetric manifold is also conformally flat then r is an eigenvalue of the Ricci tensor S corresponding to the eigenvector ρ , where

$$g(X,\rho) = \alpha(X) - 2\gamma(X) = \lambda(X).$$

Now, rearranging the equation (16)

$$\{A_l - 2D_l + (n-2)\alpha_l - 2(n-2)\gamma_l\}\frac{r}{2} + [(n-2)\alpha_l - 2(n-2)\gamma_l]\frac{r}{2}$$
$$= \{A^h - 2D^h + (n-2)\alpha^h - 2(n-2)\gamma^h\}S_{lh}.$$
 (22)

By taking $\lambda_l = A_l - 2D_l + (n-2)\alpha_l - 2(n-2)\gamma_l$ $\lambda_l \frac{r}{2} + (n-2)[\alpha_l - 2\gamma_l]\frac{r}{2} = \lambda^h S_{lh}.$ (23) If $\frac{r}{2}$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector μ we have $(r \neq 0)$

$$g(X,\mu) = A(X) - 2D(X) + (n-2)\alpha(X) - 2(n-2)\gamma(X) = \lambda(X)$$

then we get

$$\alpha_l = 2\gamma_l. \tag{24}$$

In this case, by putting (24) in (23), we find

$$(A_l - 2D_l)\frac{r}{2} = (A^h - 2D^h)S_{lh}, \qquad \lambda_l = A_l - 2D_l.$$
(25)

Theorem 7. If a hyper generalized weakly symmetric manifold is also conformally flat then $\frac{r}{2}$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector μ , where

$$g(X,\mu) = A(X) - 2D(X) = \lambda(X).$$

4. Existence of Hyper Generalized Weakly Symmetric Space

Example 8. Consider a four-dimensional space (M^4, g) with the metric g defined by

$$ds^{2} = (dx^{2})^{2} + 2e^{x^{2}} \left[dx^{1} dx^{2} + dx^{3} dx^{4} \right]$$
(26)

where $x^2 > 0$. From the above one can calculate and list the non-vanishing components of Christoffel symbols, as well as of \bar{R}_{hijk} , S_{ij} , C_{hijk} and $\nabla_m \bar{R}_{hijk}$ as follows

$$\Gamma_{22}^{1} = -e^{-x^{2}}, \qquad \frac{1}{2}\Gamma_{22}^{2} = \Gamma_{23}^{3} = \Gamma_{24}^{4} = -\Gamma_{34}^{1} = \frac{1}{2}$$
$$R_{2324} = \frac{1}{4}e^{x^{2}}, \qquad S_{22} = -\frac{1}{2}$$
$$R_{2324,2} = -\frac{1}{2}e^{x^{2}}, \qquad S_{22,2} = 1.$$

Making use of the relation, we can easily bring out

$$(g \wedge S)(Y, U, V, W) = g(Y, W)S(U, V) + g(U, V)S(Y, W) -g(Y, V)S(U, W) - g(U, W)S(Y, V) (g \wedge S)_{2324} = S_{23}g_{24} + g_{23}S_{24} - S_{22}g_{34} - S_{34}g_{22} = -\frac{1}{2}e^{x^2} (g \wedge S)_{2224} = S_{22}g_{24} + g_{22}S_{24} - S_{22}g_{24} - S_{24}g_{22} = 0 (g \wedge S)_{2424} = S_{24}g_{24} + g_{24}S_{24} - S_{22}g_{44} - S_{44}g_{22} = 0 (g \wedge S)_{2322} = S_{23}g_{22} + g_{23}S_{22} - S_{22}g_{32} - S_{32}g_{22} = 0$$
(27)

For the following choice of the one-forms

 $A_{i} = -2, \text{ for } i = 2 \qquad \alpha_{i} = \frac{1}{4}e^{x^{2}}, \text{ for } i = 2$ $= 0, \text{ otherwise} \qquad = 0, \text{ otherwise}$ $B_{i} = -\frac{1}{3}e^{x^{2}}, \text{ for } i = 2 \qquad \beta_{i} = \frac{1}{4}e^{x^{2}}, \text{ for } i = 2$ $= 0, \text{ otherwise} \qquad = 0, \text{ otherwise}$ $D_{i} = \frac{1}{3}e^{x^{2}}, \text{ for } i = 2 \qquad \gamma_{i} = -\frac{1}{2}e^{x^{2}}, \text{ for } i = 2$ $= 0, \text{ otherwise} \qquad = 0, \text{ otherwise}$

one can easily conclude that

$$R_{2324,k} = A_k R_{2324} + B_2 R_{k324} + B_3 R_{2k24} + D_2 R_{23k4} + D_4 R_{232k} + \alpha_k (g \land S)_{2324} + \beta_2 (g \land S)_{k324} + \beta_3 (g \land S)_{2k24} + \gamma_2 (g \land S)_{23k4} + \gamma_4 (g \land S)_{232k}$$

where, k = 1, 2, 3, 4. As a consequence of the above one can state

Theorem 9. There exists a (\mathbb{R}^4, g) which is a hyper generalized weakly symmetric space with non-zero and non-constant scalar curvature for the above mentioned choice of the *i*-forms.

Acknowledgement

We have made all the calculations in Wolfram mathematica. The first author gratefully acknowledges the financial support of UGC, ERO-Kolkata, India, file # PSW-194/15-16. J. Mikeš gratefully acknowledges the project IGA PrF 2017012 Palacky University Olomouc.

References

- [1] Baishya K., *On Generalized Weakly Symmetric Manifolds*, Bull. Transilvania Univ. Brasov, Ser. III: Math. Inf. Phys. **10** (2017) 31–38.
- [2] Baishya K., Chowdhury P., Mikeš. J. and Peška P., On Almost Generalized Weakly Symmetric Kenmotsu Manifolds, Acta Math. Univ. Palacki. 55 (2016) 5–15.
- [3] Cartan E., Sur une Classes Remarquable d'Espaces de Riemannian, Bull. Soc. Math. France 54 (1926) 214–264.
- [4] Chaki M., On Pseudo Symmetric Manifolds, Analele Stiint. Univ. "Al I. Cuza" Iasi 33 (1987) 53–58.
- [5] Chaki M. and Kawaguchi T., On Almost Pseudo Ricci Symmetric Manifolds, Tensor 68 (2007) 10–14.
- [6] De U. and Bandyopadhyay S., On Weakly Symmetric Spaces, Acta Math. Hungarica 83 (2000) 205–212.

- [7] Dubey R., *Generalized Recurrent Spaces*, Indian J. Pure Appl. Math. **10** (1979) 1508–1513.
- [8] Hinterleitner I. and Mikeš J., *Geodesic Mappings onto Weyl Manifolds*, Int. Conf. Proc. 2009, pp 423–430.
- [9] Hui S., Shaikh A. and Roy I., *On Totaly Umbilical Hypersurfaces of Weakly Conharmonically Symmetric Spaces*, Indian J. Pure and Appl. Math. **10** (2010) 28–31.
- [10] Jaiswal J. and Ojha R., On Weakly Pseudo-Projectively Symmetric Manifolds, Diff. Geom. Dynamical Syst. 12 (2010) 83–94.
- [11] Jana S. and Shaikh A., On Quasi-Conformally Flat Weakly Ricci Symmetric Manifolds, Acta Math. Hungarica 115 (2007) 197–214.
- [12] Malek F. and Samawaki M., On Weakly Symmetric Riemannian Manifolds, Diff. Geom. Dynam. Syst. 10 (2008) 215–220.
- [13] Mikeš J., On Geodesic Mappings of 2-Ricci Symmetric Riemannian Spaces, Math. Notes 28 (1980) 622–624.
- [14] Mikeš J., Projective-Symmetric and Projective-Recurrent Affine Connection Spaces, Tr. Geom. Semin. 13 (1981) 61–62.
- [15] Mikeš J., Vanžurová A., Hinterleitner I., *Geodesic Mappings and Some Generalizations*, Palacky Univ. Press, Olomouc 2009.
- [16] Mikeš J. et al, Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc 2015.
- [17] Özen F. and Altay S., On Weakly and Pseudo Symmetric Riemannian Spaces, Indian J. Pure Applied Math. 33 (2001) 1477–1488.
- [18] Özen F. and Altay S., *On Weakly and Pseudo Concircular Symmetric Structures on a Riemannian Manifold*, Acta Univ. Palack. Olomuc. Math. **47** (2008) 129–138.
- [19] Prvanović M., On Weakly Symmetric Riemannian Manifolds, Publ. Math. Debrecen 46 (1995) 19–25.
- [20] Prvanović M., On Totally Umbilical Submanifolds Immersed in a Weakly Symmetric Riemannian Manifolds, Publ. Math. Debrecen 6 (1998) 54–64.
- [21] Shaikh A. and Baishya K., On Weakly Quasi-Conformally Symmetric Manifolds, Soochow J. Math. 31 (2005) 581–595.
- [22] Shaikh A. and Patra A., On Generalized Class of Recurrent Manifolds, Arch. Math. (Brno) 46 (2010) 39–46.
- [23] Tamássy L. and Binh T., On Weakly Symmetric and Weakly Projective Symmetric Riemannian Manifolds, Coll. Math. Soc. J. Bolyai 56 (1989) 663–670.
- [24] Tamássy L. and Binh T., On Weak Symmetric of Einstein and Sasakian Manifolds, Tensor (N.S.) 53 (1993) 140–148.
- [25] Tarafdar M. and Jawarneh M., Semi-Pseudo Ricci Symmetric Manifold, J. Indian. Inst. Sci. 73 (1993) 591–596.
- [26] Walker, A., On Ruse's Space of Recurrent Curvature, Proc. London Math. Soc. 52 (1950) 36–54.