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Abstract. We consider a canonical transformation of parabolic coordinates
on the plain associated with integrable Hénon-Heiles systems and suppose
that this transformation together with some additional relations may be con-
sidered as a counterpart of the auto and hetero Bäcklund transformations.
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1. Introduction

According classical definition by Darboux [5], a Bäcklund transformation between
two given PDEs

E1(u, x, t) = 0 and E2(v, y, τ) = 0

is a pair of relations

F1,2(u, x, t, v, y, τ) = 0 (1)

and some additional relations between (x, t) and (y, τ), which allow to get both
equationsE1,2. The BT is called an auto-BT or a hetero-BT depending whether the
two PDEs are the same or not. The hetero-BTs describe a correspondence between
equations rather than a one-to-one mapping between their solutions [1, 12]. In the
modern theory of partial differential equation Bäcklund transformations are seen
also as a powerful tool in the discretization of PDEs [2].
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A counterpart of the auto Bäcklund transformations for finite dimensional inte-
grable systems can be seen as canonical transformation

(u, pu)→ (v, pv) , {ui, puj} = {vi, pvj} = δij , i, j = 1, . . . , n (2)

preserving the algebraic form of the Hamilton-Jacobi equations

Hi

(
u,
∂S

∂u

)
= αi and Hi

(
v,
∂S

∂v

)
= αi

associated with the Hamiltonians H1, . . . ,Hn [15].
The counterpart of the discretization for finite dimensional systems is also currently
accepted: by viewing the new v-variables as the old u-variables, but computed
at the next time step; then the Bäcklund transformation (2) defines an integrable
symplectic map or discretization of the continuous model, see discussion in [8,17].
The counterpart of the hetero Bäcklund transformations for finite dimensional in-
tegrable systems has to be a canonical transformation (2), which has to relate two
different systems of the Hamilton-Jacobi equations

Hi

(
u,
∂S

∂u

)
= αi and H̃i

(
v,
∂S̃

∂v

)
= α̃i (3)

and has to satisfy some additional conditions. It is necessary to add these condi-
tions to (2) and (3) in order to get non-trivial, useful theory. The question of how
to do it, remains open.
One of the possible additional conditions may be found in the theory of superin-
tegrable systems. For instance, let us consider integrals of motion for the two-
dimensional harmonic oscillator

H1 = p2x + p2y + a(x2 + y2) , H2 = p2x − p2y + a(x2 − y2)

which yield the Hamilton-Jacobi equations separable in Cartesian coordinates u =
(x, y) on the plane. Another pair of Hamiltonians for the same harmonic oscillator

H̃1 = p2x + p2y + a(x2 + y2) , H̃2 = xpy − ypx
is separable in polar coordinates v = (r, ϕ) on the plain. Canonical transformation
of variables

(u, pu) = (x, y, px, py)→ (v, pv) = (r, ϕ, pr, pϕ) (4)

defines a correspondence between two different systems of the Hamilton-Jacobi
equations

H1,2

(
x, y,

∂S

∂x
,
∂S

∂y

)
= α1,2 and H̃1,2

(
r, ϕ,

∂S̃

∂r
,
∂S̃

∂ϕ

)
= α̃1,2.
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This correspondence may be considered as a hetero-BT defined by the generating
function

F = pxr cosϕ+ pyr sinϕ

relations between (x, y) and (r, ϕ)

x = r cosϕ , y = r sinϕ

and an additional condition that Hamilton function H1 = H̃1 is simultaneously
separable in u and v variables.
Canonical transformation (4) can be considered as the semi hetero-BT relating
different Hamilton-Jacobi equations, which are various faces of the same superin-
tegrable system. We know that theory of such semi hetero-BTs is a profound and
very useful theory, both in classical and quantum cases [10].
The main aim of this note is to discuss a correspondence between integrable Hénon-
Heiles systems proposed in [13]. This correspondence between different Hamilto-
nians may be considered as a counterpart of the generic hetero-BTs relating differ-
ent but simultaneously separable in v-variables Hamilton-Jacobi equations.

2. The Jacobi Method

Let us consider some natural Hamilton function on T ∗Rn

H = p21 + · · ·+ p2n + V (q1, . . . , qn). (5)

The corresponding Hamilton-Jacobi is said to be separable in a set of canonical
coordinates ui if it has the additively separated complete integral

S(u1, . . . , un;α1, . . . , αn) =
n∑

i=1

Si(ui;α1, . . . , αn)

where Si are found by quadratures as solutions of ordinary differential equations.
In order to express initial physical variables (q, p) in terms of canonical variables of
separation (u, pu) we have to obtain momenta pui from the second Jacobi equations

pui =
∂Si(ui;α1, . . . , αn)

∂ui
, i = 1, . . . , n. (6)

Solving these equations with respect to αi one gets integrals of motion Hi = αi as
functions on variables of separation (u, pu).
According to Jacobi we can use canonical transformation (q, p) → (u, pu) in or-
der to construct different integrable systems simultaneously separable in the same
coordinates, see pp. 198-199 in [3]
“The main difficulty in integrating a given differential equation lies in introducing
convenient variables, which there is no rule for finding. Therefore, we must travel
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the reverse path and after finding some notable substitution, look for problems to
which it can be successfully applied.”
For instance, let us consider some natural Hamiltonian on the plane

H1 = p21 + p22 + V (q1, q2)

separable in the parabolic coordinates u1,2

λ− 2q2 −
q21
λ

=
(λ− u1)(λ− u2)

λ
· (7)

In this case second Jacobi equations (6) may be rewritten in the following form

p2ui
+ Ui(ui) = H1 +

H2

ui
, i = 1, 2 (8)

where Ui(ui) are functions defined by the potential V (q1, q2) [9].
Adding together the separated relations (8) one gets another integrable Hamiltonian

H̃1 =
1

2

(
p2u1

+ U1(u1) + p2u2
+ U2(u2)

)
= H1 +

H2

2

(
1

u1
+

1

u2

)
(9)

which can be considered as an integrable perturbation ofH (5) because there exists
second independent integrals of motion

H̃2 =
(
p2u1

+ U1(u1)− p2u2
− U2(u2)

)
= H2

(
1

u1
− 1

u2

)
.

Of course, in generic case this perturbation has no physical meaning. Auto-BTs of
the initial Hamilton-Jacobi equation

(ui, pui) → (vi, pvi)

preserve an algebraic form of the initial Hamiltonian H (5) and change the form of
the second Hamiltonians

H̃1 = H1 +
H2

2

(
1

v1
+

1

v2

)
, H̃2 = H2

(
1

v1
− 1

v2

)
. (10)

We can try to pick out a special and maybe unique auto-BT, which gives physical
meaning to the second Hamiltonian H̃ , as some of the possible counterparts of
the hetero-BTs relating different but simultaneously separable Hamilton-Jacobi
equations.

3. Hénon-Heiles Systems

There are three integrable Hénon-Heiles systems on the plane, which can be iden-
tified with appropriate finite-dimensional reductions of the integrable fifth order
KdV, Kaup-Kupershmidt and Sawada-Kotera equations [6]. An explicit integra-
tion for all these cases is discussed in [4].
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We can try to get a hetero-BT for the finite-dimensional Hénon-Heiles systems
taking the hetero-BT between these integrable PDEs and then applying the Fordy
finite-dimensional reduction [6]. We believe that the same information may be
directly extracted from the well-known Lax representation for the Hénon-Heiles
system separable in parabolic coordinates.
Let us take a Lax matrix for the first Hénon-Heiles system separable in parabolic
coordinates

L(λ) =


p2
2

+
p1q1
2λ

λ− 2q2 −
q21
λ

aλ2 + 2aq2λ+ a(q21 + 4q22) +
p21
4λ
−p2

2
− p1q1

2λ

 , a ∈ R.

(11)

Characteristic polynomial of this matrix

det
(
L(λ)− µ

)
= µ2 − aλ3 − H1

4
+
H2

λ

contains the Hamilton function of the first Hénon-Heiles system associated with a
fifth order KdV

H1 = p21 + p22 − 16aq2(q
2
1 + 2q22) (12)

and a second integral of motion

H2 = aq21(q21 + 4q22) +
p1(q2p1 − q1p2)

2
. (13)

The auto-BTs preserve the algebraic form of the Hamiltonians [15]. Since the
characteristic polynomial is the generating function of these integrals of motion,
their invariance amounts to requiring the existence of a similarity transformation
for the Lax matrix

L̂ = V LV −1

associated with the given auto-BT. The matrix V needs not to be unique because a
dynamical system can have different auto BTs [8, 17].
In contrast with [7] we do not require that the transformed Lax matrix L̂(λ) have
the same structure in the spectral parameter λ as the original Lax matrix. This
requirement is a property of the particular BTs associated with the special transla-
tions on hyperelliptic Jacobians.
Let us consider a special, unique similarity transformation associated with matrix

V =

(
L12 0

4
(
L11 − L̂11(λ)

)
4L12

)
(14)
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where Lij are entries of the Lax matrix (11) and

L̂11(λ) =
p2
2

+
p1(λ− 2q2)

2q1
·

The Lax matrix L̂(λ) = V LV −1 has the following properties:

1. first off-diagonal element of the Lax matrix

L̂12(λ) =
(λ− u1)(λ− u2)

4λ

yields initial parabolic coordinates on the plane (7);
2. second off-diagonal element

L̂21 = 4a(λ− v1)(λ− v2) (15)

= 4aλ2 +
(8aq21q2 − p21)λ

q21
+ 4a(q21 + 4q22) +

2p1(p1q2 − p2q1)
q21

has only two commuting and functionally independent zeroes v1,2;
3. the conjugated momenta for u and v variables are the values of the diagonal

element

pui = L̂11(λ = ui) , pvi = L̂11(λ = vi) , i = 1, 2.

In generic case such 2×2 Lax matrices L̂(λ) exist only if the genus of hyperelliptic
curve defined by equation

det
(
L(λ)− µ

)
= 0

is no more a number of degrees of freedom. The corresponding transformation of
the classical r-matrix is discussed in [13].
In (u, pu) and (v, pv) variables entries of the transformed Lax matrix L̂ have the
following form:

L̂11 =
λ− u2
u1 − u2

pu1
+

λ− u1
u2 − u1

pu2
=

λ− v2
v1 − v2

pv1 +
λ− v1
v2 − v1

pv2

L̂12 =
(λ− u1)(λ− u2)

4λ

=
λ2 + λ(v1 + v2) + v21 + v1v2 + v22

4λ
− (pv1 − pv2)2

4a(v1 − v2)2

L̂21 = 4a
(
λ2 + λ(u1 + u2) + u21 + u1u2 + u22

)
− 4λ(pu1

− pu2
)2

(u1 − u2)2
−

4(p2u1
− p2u2

)

u1 − u2
= 4a(λ− v1)(λ− v2).
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Thus, we have two families of variables of separation for the first Hénon-Heiles
system and canonical transformation between them:

u1,2 = −v1 + v2
2

+
(pv1 − pv2)2 ±

√
A

2a(v1 − v2)2

pu1,2
=

(pv1 − pv2)
(
(pv1 − pv2)2 ±

√
A
)

2a(v1 − v2)3
− pv1(v1 + 3v2)− pv2(v2 + 3v1)

2(v1 − v2)

(16)

where

A = (pv1 − pv2)4 + 2a(v1 − v2)2(pv1 − pv2)
(
pv1(v1 − 3v2)− pv2(v2 − 3v1)

)
− a2(3v21 + 2v1v2 + 3v22)(v1 − v2)4.

We can directly prove that HamiltonainsH1,2 (12-13) have the same algebraic form
in (u, pu) and (v, pv) variables using this explicit canonical transformation.

Definition 1. The auto-BT for the first Hénon-Heiles system is a correspondence
between two equivalent systems of the Hamilton-Jacobi equations

H1,2

(
λ,
∂S

∂λ

)
= α1,2 , λ = u, v

where variables (u, pu) and (v, pv) are related by canonical transformation (16)
and Hamiltonians H1,2 are defined by the following equations

Φ(λ, µ) = µ2 − aλ3 =
H1

4
− H2

λ
, λ = u1,2, v1,2, µ = pu1,2 , pv1,2 . (17)

This auto Bäcklund transformation changes coordinates on an algebraic invariant
manifold defined by H1,2 without changing the manifold itself [8].
We can convert this special, unique auto-BT to some analogue of the hetero-BT by
adding one more relation. Namely, substituting roots of the off-diagonal element
L̂2,1 (15) into the definition (10) one gets the Hamilton function for the second
integrable Hénon-Heiles system associated with the Kaup-Kupershmidt equation

H̃1 = p21 + p22 − 2aq2(3q
2
1 + 16q22) (18)

up to rescaling p1 →
√

2p1 and q1 → q1/
√

2.
After canonical transformation

(q, p)→ (Q,P ) , P1,2 =
pv1 ± pv2√

2
, Q1,2 =

v1 ± v2√
2

(19)

the same Hamiltonian

H̃1 = P 2
1 + P 2

2 − 2aQ2(3Q
2
1 +Q2

2) (20)
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defines a third integrable Hénon-Heiles system associated with the the Sawada-
Kotera equation. According [6] canonical transformation (19) is a counterpart of
the gauge equivalence of the Sawada-Kotera and Kaup-Kupershmidt equations.
So, all the Hénon-Heiles systems on the plane are simultaneously separable in v-
variables, and we suppose that this fact allows us to define some natural counterpart
of the hetero-BT.

Definition 2. For the Hénon-Heiles systems on the plane (12) and (18,20) an ana-
logue of the hetero-BT is the correspondence between two different systems of the
Hamilton-Jacobi equations

H1,2

(
u,
∂S

∂u

)
= α1,2 and H̃1,2

(
v,
∂S̃

∂v

)
= α̃1,2

where variables (u, pu) and (v, pv) are related by canonical transformation (16)
and Hamiltonians are defined by the following equations

Φ(λ, µ) = µ2 − aλ3 =
H1

4
− H2

λ
, λ = u1,2, v1,2, µ = pu1,2 , pv1,2

and

H̃1,2 = Φ(v1, pv1)± Φ(v2, pv2) .

This analogue of the hetero-BT relates different algebraic invariant manifolds as-
sociated with Hamiltonians H1,2 and H̃1,2 similar to the well-studied relations be-
tween different invariant manifolds in the theory of superintegrable systems.
For the first Hénon-Heiles system on the plane (12) we can consider parabolic
variables (u1,2, pu1,2) as coordinates on the Jacobian variety defined by equations
(17). In order to get integrals of motion for the second or third Hénon-Heiles
systems (18,20) we have to take linear combinations of these equations and to
make simultaneously the special shift of the coordinates (u, pu) → (v, pv) on the
Jacobian variety.

4. Integrable Hamiltonian with Velocity Dependent Potential

It is well-known that Hamilton-Jacobi equation is separable in parabolic coordi-
nates u1,2 if the Hamilton function has the form

H = p21 + p22 + VN (q1, q2) , VN = 4a

[N/2]∑
k=0

21−2k

(
N − k
k

)
q2k1 q

N−2k
2

where the positive integer N enumerates the members of the hierarchy.
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At N = 3 one gets the Hénon-Heiles system (12), at N = 4 the next member of
hierarchy is a “(1:12:16)” system with the following Hamiltonian

H = p21 + p22 − 4a
(
q41 + 12q21q

2
2 + 16q42

)
. (21)

The corresponding Lax matrix is equal to

L(λ) =


p2
2

+
p1q1
2λ

λ− 2q2 −
q21
λ

aλ3 + 2aq2λ
2 + a(q21 + 4q22)λ+

4aq2(q
2
1 + 2q22) +

p21
4λ

−p2
2
− p1q1

2λ

 . (22)

After similarity transformation of L(λ) with matrix V (14), where

L̂11(λ) =
√
a λ2 − 4

√
aq2q1 − p1

2q1
λ− 2

√
aq31 + 2p1q2 − p2q1

2q1

one gets the transformed Lax matrix with two off-diagonal elements L̂12(λ) and
L̂21(λ), which yield two families of variables of separation.
As above first coordinates are parabolic coordinates u1,2, whereas second coordi-
nates v1,2 are zeroes of the polynomial

L̂21 =
4(4aq1q2 −

√
ap1)

q1
λ2 +

8aq21(q21 + 2q22) + 4
√
aq1(2p1q2 − p2q1)− p21
q21

λ

+
16aq21q2(q21 + 2q22) + 2p1(p1q2 − p2q1)

q21

=
4(4aq1q2 −

√
ap1)

q1
(λ− v1)(λ− v2).

Substituting roots of this polynomial into the definition (10) one gets integrable
Hamiltonian with velocity dependent potential

H̃ =
p21
2

+ p22 + 4
√
ap1q1q2 − 2

√
ap2q

2
1 − 8aq22(5q21 + 8q22) .

Using canonical transformation we can rewrite this Hamiltonian in a more sym-
metric form

H̃ = p21 + p22 − 3
√
ap2q

2
1 + 2a(q41 − 12q21q

2
2 − 32q42). (23)

The corresponding second integral of motion is fourth order polynomial in mo-
menta

H̃2 = p41 + 4q41
(
q41 − 8q21q

2
2 − 112q42

)
a2 + 4q31

(
64p1q

3
2 − p2q31 − 12p2q1q

2
2

)
a3/2

+ q21
(
4p21q

2
1 − 48p21q

2
2 + 32p1p2q1q2 + p22q

2
1

)
a− 6a1/2p21p2q

2
1
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which also can be obtained from the Lax matrix L̂(λ). Of course, this integrable
system on the plane (23) could be obtained in the framework of different theories,
see [6, 11, 16] and references within.
Canonical transformation (19) allows us to identify a Hamilton function with ve-
locity dependent potential (23) and Hamilton function

Ĥ = P 2
1 + P 2

2 − a(Q4
1 + 6Q2

1Q
2
2 +Q4

2)

similar to the relation between second and third Hénon-Heiles systems.
Canonical transformation (u, pu)→ (v, pv) is the special auto-BT for the “(1:12:16)”
system, which can be considered as a hetero-BT relating two different Hamilton-
Jacobi equations associated with Hamiltonians H (21) and H̃ (23), respectively.

5. Conlusion

The problem of finding separation coordinates for the Hamilton-Jacobi equations
is highly non-trivial. The problem was originally formulated by Jacobi when he
invented elliptic coordinates and successfully applied them to solve several impor-
tant mechanical problems with quadratic integrals of motion in momenta.
We suppose that after suitable Bäcklund transformations standard elliptic, para-
bolic etc. coordinates turn into variables of separation for physically interesting
integrable systems with higher order integrals of motion. For example, in this note
we have constructed a canonical transformation of the standard parabolic coordi-
nates, which yields variables of separation for the three integrable Hénon-Heiles
systems.
Moreover, we believe that information about such suitable Bäcklund transforma-
tions and the corresponding integrable systems is incorporated into the Lax matri-
ces associated with these elliptic, parabolic etc. coordinates. In order to prove it
we obtained integrals of motion, variables of separation and separated relations for
some new integrable system with velocity dependent potential and fourth order in-
tegral of motion in momenta. In similar manner we can construct various simulta-
neously separable integrable systems associated with other curvilinear coordinates
on the Riemannian manifolds of constant curvature, see examples in [13, 14].
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